Computing Science (CMPUT) 657 Algorithms for Combinatorial Games

Martin Müller

Department of Computing Science University of Alberta

Winter 2022

CMPUT 657

Introduction to Impartial Games

Impartial Games

CMPUT 657

- Impartial games are a special type of combinatorial games
- Restriction: both players always have the same options
- We will look at finite, loop-free impartial games only

Impartial Game - Nim

CMPUT 65

- Nim is an impartial game
- Both players have the same options
- Take any number of pebbles from a single heap
- Notation: *n = single Nim heap with n pebbles
- By rules of Nim:
- $*n = \{*0, *1, *2, ..., *n 1 | *0, *1, ..., *n 1\}$
- The games **n* are called **nimbers** (a pun on numbers)
- Note: *0 = 0 (no moves in a heap of 0 pebbles)

Example: Impartial Clobber

CMPUT 65

Introduction to Impartial Games

- In regular Clobber, players have different moves
- B moves the Black pebbles, W the white ones
- Impartial Clobber: both can move with any pebble
- Same types of moves, must clobber the other color
- Example:

```
BWW = \{.BW, W.W \mid .BW, W.W \}
```

Compare with regular Clobber:

```
BWW = \{.BW \mid W.W \}
```

Sprague-Grundy Theorem

CMPUT 657

- Sprague-Grundy theorem:
- Every finite impartial game is equal to some nimber *n
- Remember what equal means in CG
- Not too difficult to prove, but I'll skip it
- We'll just do examples
- The theorem is the basis for efficient algorithms to solve impartial games
- For each subgame: find which nimber *n it is equal to
- Then, just add up the nimbers (efficient)

Examples - Impartial Clobber as Nimbers

CMPUT 657

- WWW = *0 (no move)
- BW = ★1 (only moves to *0 for each player)
 - Detailed proof:

```
• BW = {.B, W. | .B, W. } = \{*0, *0 | *0, *0 \} = \{*0 | *0 \} = *1
```

• BWW = {.BW, W.W | .BW, W.W } =
$$\{*1, *0 | *1, *0 \} = *2$$

Example: A 2022 Course Project

CMPUT 65

- J. Dai and X. Chen, Impartial Clobber Solver, CMPUT 655 project report, University of Alberta 2022
- Studied Impartial Clobber computationally
- Solved all $1 \times n$ boards up to 1×16 , and most boards up to 1×42
- Not solved: n = 17, 21, 39
- Can you do better?

Nim Addition

CMPUT 657

- How do nimbers add?
- What is *n + *m?
- By Sprague-Grundy, we know the result must be equal to some nimber
- But which one?

Nim Addition Simple Cases

CMPUT 657

- Two equal heaps add to 0:
- *n + *n = *0 = 0
- $0 = \text{second player win}, \mathcal{P}\text{-position}$
- Strategy: mimic opponent's move in the other heap
- Can you prove *n + *n = 0 formally by induction?
 (Easy)

Nim Addition - Powers of Two Trick

CMPUT 657

- Write n in binary to get a decomposition of *n
- Example
- n = 39 = 32 + 4 + 2 + 1
- Then: *39 = *32 + *4 + *2 + *1
- Can you prove that this equality is always correct?
 (Not as easy but not too hard)

How to play Nim Perfectly

CMPUT 657

Introduction to Impartial Games

- Win in Nim: move to *0 = 0
- Break each heap into powers of 2
- Equal heaps cancel
- Move to 0
- Example

$$\bullet$$
 *3 + *4 + *6 = (*2 + *1) + *4 + (*4 + *2)

$$\bullet = *4 + *4 + *2 + *2 + *1 = *1$$

Winning move: remove *1

How to play Nim Perfectly

CMPUT 65

- Does this always work?
- Yes, if the sum is different from zero
- What if there is no move directly?
- Insight: Can "convert" a big heap into any smaller one
- Example: sum game *4 + *2 + *1

How to play Nim Perfectly

CMPUT 65

- Example: sum game *4 + *2 + *1
- How to win?
- To move to 0, must pair up all three heaps
- Idea: break up the largest unpaired heap (*4 here) to match all the other unpaired ones
- Move from *4 to *2 + *1 = *3
- The *3 = *2 + *1 cancels the other two heaps *2 + *1

How to play Nim Perfectly - Relation to binary numbers

CMPUT 657

- Another equivalent way to view this method
- Write each heap size in binary
- Add all binary numbers bitwise modulo two (xor)
- The result is the nim sum, written in binary

Example - Nim Sum

CMPUT 65

Introduction to Impartial Games

- *39 + *31 + *22
- Convert into binary:

*39:100111

• *31:11111

*22:10110

Add each digit modulo 2 (1+1=0)

	bit5	bit4	bit3	bit2	bit1	bit0
	1	0	0	1	1	1
	0	1	1	1	1	1
	0	1	0	1	1	0
	1	0	1	1	1	0

• 101110 (binary) = 46 (decimal)

- 101110 (binary) = 46 (decimal)
- So *39 + *31 + *22 = *46
- How to win? Move from *46 to 0
- How? Well, if we could add a *46 then *46 + *46 = 0
- We can write *39 + *31 + *22 + *46 in three different ways
- (*39 + *46) + *31 + *22
- *39 + (*31 + *46) + *22
- *39 + *31 + (*22 + *46)
- Which of those will be legal moves? Do these nim sums to check!

Theorems and Observations

CMPUT 65

- Any Nim sum of value *0 is a \mathcal{P} -position (second player win)
- Any other Nim sum (of value *n, n > 0 is a \mathcal{N} -position (first player win)
- By minimax:
- ullet Any move from a ${\mathcal P}$ -position leads to an ${\mathcal N}$ -position
 - Any move by the loser leads to a winning position for the opponent
- From any \mathcal{N} -position, there is at least one move to a \mathcal{P} -position
 - At least one move by the winner leads to a losing position for the opponent

Solving Impartial Games by Computer

CMPUT 65

- We can solve large sums of large nimbers efficiently
 - How to solve real impartial games such as Impartial Clobber?
 - We need to find the corresponding nimbers for each subgame
- This can still be a large search problem for complex games
- We will talk about the (really interesting!) algorithms next
- After solving each subgame to a nimber, use the nim addition rule