
Computing Science (CMPUT) 657
Algorithms for Combinatorial Games

Martin Müller

Department of Computing Science
University of Alberta

mmueller@ualberta.ca

Winter 2022

mmueller@ualberta.ca

CMPUT 657

Algorithms for
Impartial
Games

Applications -
Solving
Impartial
Games Algorithms for Impartial Games

CMPUT 657

Algorithms for
Impartial
Games

Applications -
Solving
Impartial
Games

Computational Issues for Impartial Games

Goal: review impartial games in terms of computation,
including MEX rule, and work by Lemoine and Viennot
Impartial Games - both players have the same options
throughout
Classic example: Nim
Can modify games to make them impartial

Example: Cram = Domineering where both players can
play horizontal or vertical

General idea: impartial version I(G) of game G:
Each player gets all options of both players from the
partizan version
I(G) = {I(GL), I(GR)|I(GL), I(GR)}

In MCGS and CGSuite: impartial wrapper

CMPUT 657

Algorithms for
Impartial
Games

Applications -
Solving
Impartial
Games

Impartial Games Quick Review

Outcome classes N and P only, cannot be L or R
G = −G, game is its own inverse
Sprague-Grundy theorem: each finite impartial game is
equal to some Nim heap ∗n, n ≥ 0
*0 = 0, *1 = *,
∗n = {∗0, ∗1, ... ∗ (n − 1)| ∗ 0, ∗1, ... ∗ (n − 1)}
*0 is the only P-position
All other ∗n are N -positions, win by moving to 0

CMPUT 657

Algorithms for
Impartial
Games

Applications -
Solving
Impartial
Games

Impartial Games Review - Nim Addition

Nim addition: to compute ∗a + ∗b
Write a and b as sums of powers of 2, cancel equal
powers
Example: ∗5 + ∗7 = ∗4 + ∗1 + ∗4 + ∗2 + ∗1 = ∗2
Equivalent: Write a and b in binary, compute bitwise
XOR. *101 + *111 = *(1 XOR 1)(0 XOR 1)(1 XOR 1) =
*010 = *10 in binary

CMPUT 657

Algorithms for
Impartial
Games

Applications -
Solving
Impartial
Games

Mex - the Minimum EXcluded Number

Definition
S = finite set of nonnegative integers
mex(S) = Smallest integer n ≥ 0 which is not in set S
Examples

mex({0,1,2}) = 3
mex({0,1,4,5}) = 2
mex({1,2,3}) = 0
Exercise: mex({0,5,1,3,7,2,6}) =?
Exercise: mex({3,2}) =?

CMPUT 657

Algorithms for
Impartial
Games

Applications -
Solving
Impartial
Games

Mex Rule - Computing a Game From its
Options

Given G = {GL|GR}
Since G is impartial, GL = GR

Assume (through recursive evaluation) that all games in
GL have been simplified to nim heaps
G = {∗n1, ∗n2, ..., ∗nk | ∗ n1, ∗n2, ..., ∗nk}
Let n = mex({n1,n2, ...,nk)}.
Mex is the minimum excluded number
Theorem (e.g. Siegel, Theorem 1.2): G = ∗n

CMPUT 657

Algorithms for
Impartial
Games

Applications -
Solving
Impartial
Games

Examples

G = {∗1, ∗3, ∗0| ∗ 1, ∗3, ∗0}
mex({1,3,0}) = 2
G = ∗2
H = {∗1, ∗3, ∗2| ∗ 1, ∗3, ∗2}
H = 0
In class: compute nim-values for q1game for board
sizes 1..10

CMPUT 657

Algorithms for
Impartial
Games

Applications -
Solving
Impartial
Games

Proof of Mex Theorem

G = {∗n1, ∗n2, ..., ∗nk | ∗ n1, ∗n2, ..., ∗nk}
Let n = mex({n1,n2, ...,nk)}. Theorem: G = ∗n
We show that G − ∗n = 0, a second player win
Case 1:

Player 1 moves to some ∗k with k < n, in either G or ∗n.
Then player 2 can copy that move, leaving ∗k + ∗k = 0

Case 2:
Player 1 moves in G, to some ∗k with k > n.
Then player 2 can move from ∗k to ∗n, leaving
∗n + ∗n = 0

CMPUT 657

Algorithms for
Impartial
Games

Applications -
Solving
Impartial
Games

More Mex Examples

Example G = {∗1, ∗3, ∗0| ∗ 1, ∗3, ∗0} = ∗2
We show that G + ∗2 = 0
Example: move G to ∗1:
Win *1+*2 by moving to *1+*1
Example: move G to ∗3:
Win *3+*2 by moving to *2+*2
Example: move ∗2 to ∗1:
Win G+*1 by moving to *1+*1
Exercise: work out the winning ways for the other
moves

CMPUT 657

Algorithms for
Impartial
Games

Applications -
Solving
Impartial
Games

Computation, “Linear strip” Games

Computation can be much simpler than for partizan
games!
A game ∗n can be represented by an integer n
Cost: linear in size of game tree in practice
Bottleneck: compute mex. O(1) per option if Nim
values are bounded (e.g. bitvector)
Large nim values are very rare in practice
For some games played on a 1× n strip, billions of
Nim-values have been computed
Typical goal: show that they eventually become periodic

Martin Mueller
Clarification: what I meant here are games where each position can be described by a single parameter n.
This does NOT include games such as linear Clobber or linear NoGo, where there are exponentially many different games on a size n board.

CMPUT 657

Algorithms for
Impartial
Games

Applications -
Solving
Impartial
Games

Paper: Nimbers are Inevitable

J. Lemoine and S. Viennot, Nimbers are inevitable
(2012) - see readings
Breakthrough algorithm for solving complex impartial
games
Applied to Sprouts and Cram (impartial Domineering)
Greatly increased the number of results known for
these games

CMPUT 657

Algorithms for
Impartial
Games

Applications -
Solving
Impartial
Games

Nimbers are Inevitable - Overview

First half of paper is review of impartial theory and
negamax alphabeta

Unfortunately they use non-standard notation for
everything...

Second half of paper is crystal clear and beautiful
Main result: while solving for win/loss of an impartial
sum game G + H, you can get the nimber value of at
least one subgame (either G or H) for free
Turned this observation into an efficient algorithm by
solving sums G + ∗n

CMPUT 657

Algorithms for
Impartial
Games

Applications -
Solving
Impartial
Games

Basic Facts (in Standard Notation)

If G ∈ P and H ∈ P then G + H ∈ P
Proof: G ∈ P ⇔ G = 0 and 0 + 0 = 0
If G ∈ P and H ∈ N then G + H ∈ N
Proof: G + H = 0 + H = H
Case: G ∈ N and H ∈ N

G + H ∈ P iff G and H are equal to the same nimber ∗n

CMPUT 657

Algorithms for
Impartial
Games

Applications -
Solving
Impartial
Games

Theorem 3 in Lemoine and Viennot

Assume we have an algorithm to solve G + H by game
tree search and store the proof tree
Then, with no extra search, we can determine the nim
value of at least one of G or H
Proof by Induction on G + H - we assume it is true for
the options from G + H
Base case: no options in either subgame: G = H = ∗0
Recursive cases on next slide

CMPUT 657

Algorithms for
Impartial
Games

Applications -
Solving
Impartial
Games

Theorem 3 Proof Continued

Case 1: G + H was a win, G + H ∈ N
There exists winning move, for example from G to
some GL

(WLOG: all other cases are analogous, e.g. win in H, or
Right’s move)
Resulting position is loss (for opponent), so GL + H = 0
By induction assumption, we know the nim value of
either or GL or H
Since their sum is 0, they must be the same, so we
know some n such that GL = H = ∗n.
Since we know that H = ∗n, we know the nim value of
one subgame in G + H

CMPUT 657

Algorithms for
Impartial
Games

Applications -
Solving
Impartial
Games

Theorem 3 Proof Continued

Case 2: G + H is a loss, G + H ∈ P
Any move leads to a win for the opponent
If we know the nim value of H, there is nothing left to
prove
So look at the case where we do not know the nim
value of H
WLOG consider all Left options in G, G1, ...Gk

By induction assumption, we know the nim value of all
G1, ...Gk (since we know it for one of Gi , H for each i ,
and we do not know it for H)
We can use the mex rule to compute nim value of G!

CMPUT 657

Algorithms for
Impartial
Games

Applications -
Solving
Impartial
Games

Algorithm

Compute outcomes of G = G + ∗0, G + ∗1,...G + ∗n
Stop when we hit a loss, then G = ∗n
Store all in a single table
Moves in G + ∗n: move in G, or move in ∗n if n > 0
Boolean negamax: return win as soon as a move leads
to a loss for the opponent
Return loss if all moves lead to a win (for them)
Can do either:

Bottom-up computation (database, retrograde analysis)
or
Top-down computation (cache and re-use all results in a
transposition table)

CMPUT 657

Algorithms for
Impartial
Games

Applications -
Solving
Impartial
Games

Sum Algorithm

If position G splits into subgames G1 + G2 + ...Gk

To compute win/loss result for G + ∗n
Pick one special subgame Gk , for example the
largest/hardest one
Compute all other nim values separately for
G1, . . . ,Gk−1

Collect results: G1 = ∗n1, . . . ,Gk−1 = ∗nk−1

Compute nim sum of ∗n plus these other subgames,
∗n′ = ∗n + ∗n1 + ∗n2 + ∗ nk−1

Now search Gk + ∗n′. It is a win if and only if G + ∗n is
a win

Do you see why?

CMPUT 657

Algorithms for
Impartial
Games

Applications -
Solving
Impartial
Games

Algorithm Engineering and Comments

Choice of which subgame Gk to search last, with one
fixed nim heap ∗n′ only
Move ordering for the boolean negamax
Comments

The idea is a special case of solving G + inf for simple
infinitesimals
Boolean win/loss only, thermographs do not make
sense (they all look the same except for n = 0)
Can use any boolean solver such as boolean negamax,
proof-number search, df-pn

CMPUT 657

Algorithms for
Impartial
Games

Applications -
Solving
Impartial
Games Applications - Solving Impartial Games

CMPUT 657

Algorithms for
Impartial
Games

Applications -
Solving
Impartial
Games

Sprouts

Paper and pencil game
Start with a number of dots
Move: connect two dots with a line, and add a new dot
in the middle
Constraints

Lines cannot cross
Dots cannot be used in more than 3 lines

CMPUT 657

Algorithms for
Impartial
Games

Applications -
Solving
Impartial
Games

Sprouts Results

Several Lemoine and Viennot papers, some focus on
game-specific decomposition rules. Current records -
see references page
Computed all Sprouts starting positions with up to
p = 44 dots, some positions up to p = 53 dots
Previous state of the art: p = 14 (!) Huge advance.
First approach to really use subgame decomposition for
Sprouts
Works really well, subgames appear early in search
Sprouts conjecture: game is a loss (P-position) iff
p ≡ 0,1,2 (mod 6)

CMPUT 657

Algorithms for
Impartial
Games

Applications -
Solving
Impartial
Games

Cram Rules and Symmetry

Cram = Domineering where both players can place a
domino in any way - either horizontal or vertical
Cram on rectangular boards:
Even by even is 0 by simple mirror strategy

Always copy opponent’s move mirrored from center
Even by odd is first player win by simple mirror strategy

Occupy two center squares on first move
Then mirror-copy all other moves
These are the “not *0” entries on next page

CMPUT 657

Algorithms for
Impartial
Games

Applications -
Solving
Impartial
Games

Cram Results - Nim Values

Values up to 3× 20,4× 9,5× 9,6× 7,7× 7 boards
No apparent structure
3× n, n = 1..20: *1, *1, *0, *1, *1, *4, *1, *3, *1, *2, *0,
*1, *2, *3, *1, *4, *0, *1, *0, *2
4× n, n = 4..9: *0, *2, *0, *3, *0, *1
5× n, n = 5..9: *0, *2, *1, *1, *1
6× n, n = 6..9: *0, *5, *0, not *0
7× n, n = 7..8: *1, not *0
Works less well than for sprouts, subgames appear
later in search - similar to Amazons?

CMPUT 657

Algorithms for
Impartial
Games

Applications -
Solving
Impartial
Games

Possible Course Projects and Readings

MCGS impartial game wrapper - can study impartial
version of any game
Do you have an impartial game that you want to solve?
We have an “almost finished” version of this algorithm
There is also the Beling and Rogalski algorithm that
claims to be more efficient

A good paper to present in class
Their source code is available (but hard to understand
for me)
Re-implement it in MCGS?

CMPUT 657

Algorithms for
Impartial
Games

Applications -
Solving
Impartial
Games

Summary

With Nim addition and Mex rule, we can efficiently
compute values of impartial games
Many results for “one-dimensional” games played with
numbers or strips, e.g. subtraction games
Theorem 3 in Lemoine and Viennot was a
breakthrough result for solving “two-dimensional”,
general impartial games efficiently
Pushed analysis of Sprouts and Cram much further

	Two Player Games
	Introduction to Combinatorial Games
	Algorithms for Impartial Games
	Applications - Solving Impartial Games

