Computing Science (CMPUT) 657 Algorithms for Combinatorial Games

Martin Müller

Department of Computing Science University of Alberta

Winter 2022

CMPUT 65

Algorithms for Impartial Games

Applications
Solving
Impartial
Games

Algorithms for Impartial Games

Computational Issues for Impartial Games

CMPUT 657

Algorithms for Impartial Games

- Goal: review impartial games in terms of computation, including MEX rule, and work by Lemoine and Viennot
- Impartial Games both players have the same options throughout
- Classic example: Nim
- Can modify games to make them impartial
 - Example: Cram = Domineering where both players can play horizontal or vertical
- General idea: impartial version *I*(*G*) of game *G*:
 - Each player gets all options of both players from the partizan version
 - $I(G) = \{I(G^{\mathcal{L}}), I(G^{\mathcal{R}}) | I(G^{\mathcal{L}}), I(G^{\mathcal{R}})\}$
- In MCGS and CGSuite: impartial wrapper

Impartial Games Quick Review

CMPUT 65

Algorithms for Impartial Games

- ullet Outcome classes $\mathcal N$ and $\mathcal P$ only, cannot be $\mathcal L$ or $\mathcal R$
- G = -G, game is its own inverse
- Sprague-Grundy theorem: each finite impartial game is equal to some Nim heap *n, $n \ge 0$

• *0 = 0, *1 = *,
*
$$n = \{*0, *1, ... * (n-1) | *0, *1, ... * (n-1)\}$$

- *0 is the only \mathcal{P} -position
- All other *n are \mathcal{N} -positions, win by moving to 0

Impartial Games Review - Nim Addition

CMPUT 657

Algorithms for Impartial Games

- Nim addition: to compute *a + *b
 - Write a and b as sums of powers of 2, cancel equal powers
 - Example: *5 + *7 = *4 + *1 + *4 + *2 + *1 = *2
 - Equivalent: Write a and b in binary, compute bitwise XOR. *101 + *111 = *(1 XOR 1)(0 XOR 1)(1 XOR 1) = *010 = *10 in binary

CMPUT 657

Algorithms for Impartial Games

- Definition
- S = finite set of nonnegative integers
- mex(S) = Smallest integer $n \ge 0$ which is not in set S
- Examples
 - $mex(\{0,1,2\}) = 3$
 - $mex(\{0,1,4,5\}) = 2$
 - $mex(\{1,2,3\}) = 0$
 - Exercise: $mex(\{0,5,1,3,7,2,6\}) = ?$
 - Exercise: $mex({3,2}) = ?$

Mex Rule - Computing a Game From its Options

CMPUT 657

Algorithms for Impartial Games

- Given $G = \{G^{\mathcal{L}}|G^{\mathcal{R}}\}$
- Since G is impartial, $G^{\mathcal{L}} = G^{\mathcal{R}}$
- Assume (through recursive evaluation) that all games in $G^{\mathcal{L}}$ have been simplified to nim heaps
- $G = \{*n_1, *n_2, ..., *n_k | *n_1, *n_2, ..., *n_k\}$
- Let $n = mex(\{n_1, n_2, ..., n_k)\}.$
- Mex is the minimum excluded number
- Theorem (e.g. Siegel, Theorem 1.2): G = *n

Examples

CMPUT 657

Algorithms for Impartial Games

Applications · Solving Impartial Games

•
$$G = \{*1, *3, *0 | *1, *3, *0\}$$

•
$$mex(\{1,3,0\}) = 2$$

•
$$H = \{*1, *3, *2 | *1, *3, *2\}$$

 In class: compute nim-values for q1game for board sizes 1..10

Proof of Mex Theorem

CMPUT 65

Algorithms for Impartial Games

- $G = \{*n_1, *n_2, ..., *n_k | *n_1, *n_2, ..., *n_k\}$
- Let $n = mex(\{n_1, n_2, ..., n_k)\}$. Theorem: G = *n
- We show that G *n = 0, a second player win
- Case 1:
 - Player 1 moves to some *k with k < n, in either G or *n.
 - Then player 2 can copy that move, leaving *k + *k = 0
- Case 2:
 - Player 1 moves in G, to some *k with k > n.
 - Then player 2 can move from *k to *n, leaving *n + *n = 0

More Mex Examples

CMPUT 65

Algorithms for Impartial Games

- Example $G = \{*1, *3, *0 | *1, *3, *0\} = *2$
- We show that G + *2 = 0
- Example: move G to *1:Win *1+*2 by moving to *1+*1
- Example: move G to *3:Win *3+*2 by moving to *2+*2
- Example: move *2 to *1:Win G+*1 by moving to *1+*1
- Exercise: work out the winning ways for the other moves

Applications Solving Impartial Clarification: what I meant here are games where each position can be described by a single parameter n.

This does NOT include games such as linear Clobber or linear NoGo, where there are exponentially many different games on a size n board.

- Computation can be much simpler than for partizan games!
- A game *n can be represented by an integer n
- Cost: linear in size of game tree in practice
- Bottleneck: compute mex. O(1) per option if Nim values are bounded (e.g. bitvector)
- Large nim values are very rare in practice
- For some games played on a 1 × n strip, billions of Nim-values have been computed
- Typical goal: show that they eventually become periodic

Paper: Nimbers are Inevitable

CMPUT 657

Algorithms for Impartial Games

- J. Lemoine and S. Viennot, Nimbers are inevitable (2012) - see readings
- Breakthrough algorithm for solving complex impartial games
- Applied to Sprouts and Cram (impartial Domineering)
- Greatly increased the number of results known for these games

Nimbers are Inevitable - Overview

CMPUT 657

Algorithms for Impartial Games

- First half of paper is review of impartial theory and negamax alphabeta
 - Unfortunately they use non-standard notation for everything...
- Second half of paper is crystal clear and beautiful
- Main result: while solving for win/loss of an impartial sum game G + H, you can get the nimber value of at least one subgame (either G or H) for free
- Turned this observation into an efficient algorithm by solving sums G + *n

Basic Facts (in Standard Notation)

CMPUT 657

Algorithms for Impartial Games

- If $G \in \mathcal{P}$ and $H \in \mathcal{P}$ then $G + H \in \mathcal{P}$
- Proof: $G \in \mathcal{P} \Leftrightarrow G = 0$ and 0 + 0 = 0
- If $G \in \mathcal{P}$ and $H \in \mathcal{N}$ then $G + H \in \mathcal{N}$
- Proof: G + H = 0 + H = H
- Case: $G \in \mathcal{N}$ and $H \in \mathcal{N}$
 - $G + H \in \mathcal{P}$ iff G and H are equal to the same nimber *n

Theorem 3 in Lemoine and Viennot

CMPUT 657

Algorithms for Impartial Games

- Assume we have an algorithm to solve G + H by game tree search and store the proof tree
- Then, with no extra search, we can determine the nim value of at least one of G or H
- Proof by Induction on G + H we assume it is true for the options from G + H
- Base case: no options in either subgame: G = H = *0
- Recursive cases on next slide

Theorem 3 Proof Continued

CMPUT 657

Algorithms for Impartial Games

Applications Solving Impartial Games

Case 1: G + H was a win. $G + H \in \mathcal{N}$

- There exists winning move, for example from G to some $G^{\mathcal{L}}$
- (WLOG: all other cases are analogous, e.g. win in H, or Right's move)
- Resulting position is loss (for opponent), so $G^{\mathcal{L}} + H = 0$
- By induction assumption, we know the nim value of either or $G^{\mathcal{L}}$ or H
- Since their sum is 0, they must be the same, so we know some n such that $G^{\mathcal{L}} = H = *n$.
- Since we know that H = *n, we know the nim value of one subgame in G + H

Theorem 3 Proof Continued

CMPUT 657

Algorithms for Impartial

Applications
Solving
mpartial
Games

Case 2: G + H is a loss, $G + H \in \mathcal{P}$

- Any move leads to a win for the opponent
- If we know the nim value of *H*, there is nothing left to prove
- So look at the case where we do not know the nim value of H
- WLOG consider all Left options in $G, G_1, ... G_k$
- By induction assumption, we know the nim value of all G₁,...G_k (since we know it for one of G_i, H for each i, and we do not know it for H)
- We can use the mex rule to compute nim value of G!

Algorithm

CMPUT 65

Algorithms for Impartial Games

- Compute outcomes of G = G + *0, G + *1,...G + *n
- Stop when we hit a loss, then G = *n
- Store all in a single table
- Moves in G + *n: move in G, or move in *n if n > 0
- Boolean negamax: return win as soon as a move leads to a loss for the opponent
- Return loss if all moves lead to a win (for them)
- Can do either:
 - Bottom-up computation (database, retrograde analysis) or
 - Top-down computation (cache and re-use all results in a transposition table)

- If position G splits into subgames $G_1 + G_2 + ... G_k$
- To compute win/loss result for G + *n
- Pick one special subgame G_k , for example the largest/hardest one
- Compute all other nim values separately for G_1, \ldots, G_{k-1}
 - Collect results: $G_1 = *n_1, ..., G_{k-1} = *n_{k-1}$
- Compute nim sum of *n plus these other subgames, $*n' = *n + *n_1 + *n_2 + * n_{k-1}$
- Now search $G_k + *n'$. It is a win if and only if G + *n is a win
 - Do you see why?

Algorithm Engineering and Comments

CMPUT 657

Algorithms for Impartial Games

- Choice of which subgame G_k to search last, with one fixed nim heap *n' only
- Move ordering for the boolean negamax
- Comments
 - The idea is a special case of solving G + inf for simple infinitesimals
 - Boolean win/loss only, thermographs do not make sense (they all look the same except for n = 0)
 - Can use any boolean solver such as boolean negamax, proof-number search, df-pn

CMPUT 657

Algorithms for Impartial Games

Applications -Solving Impartial Games

Sprouts

CMPUT 65

Algorithms fo Impartial Games

Applications -Solving Impartial Games

FIGURE 1. Example of a Sprouts game, starting with 2 spots (the second player wins).

- Paper and pencil game
- Start with a number of dots
- Move: connect two dots with a line, and add a new dot in the middle
- Constraints
 - Lines cannot cross
 - Dots cannot be used in more than 3 lines

Sprouts Results

CMPUT 65

Algorithms for Impartial Games

- Several Lemoine and Viennot papers, some focus on game-specific decomposition rules. Current records see references page
- Computed all Sprouts starting positions with up to p = 44 dots, some positions up to p = 53 dots
- Previous state of the art: p = 14 (!) Huge advance.
- First approach to really use subgame decomposition for Sprouts
- Works really well, subgames appear early in search
- Sprouts conjecture: game is a loss (\mathcal{P} -position) iff $p \equiv 0, 1, 2 \pmod{6}$

Cram Rules and Symmetry

CMPUT 65

Algorithms for Impartial Games

- Cram = Domineering where both players can place a domino in any way - either horizontal or vertical
- Cram on rectangular boards:
- Even by even is 0 by simple mirror strategy
 - Always copy opponent's move mirrored from center
- Even by odd is first player win by simple mirror strategy
 - Occupy two center squares on first move
 - Then mirror-copy all other moves
 - These are the "not *0" entries on next page

Cram Results - Nim Values

CMPUT 65

Algorithms for Impartial Games

- Values up to $3 \times 20, 4 \times 9, 5 \times 9, 6 \times 7, 7 \times 7$ boards
- No apparent structure
- 3 × n, n = 1..20: *1, *1, *0, *1, *1, *4, *1, *3, *1, *2, *0, *1, *2, *3, *1, *4, *0, *1, *0, *2
- $4 \times n$, n = 4..9: *0, *2, *0, *3, *0, *1
- $5 \times n$, n = 5..9: *0, *2, *1, *1, *1
- 6 × *n*, *n* = 6..9: *0, *5, *0, not *0
- $7 \times n$, n = 7..8: *1, not *0
- Works less well than for sprouts, subgames appear later in search - similar to Amazons?

Possible Course Projects and Readings

CMPUT 65

Algorithms fo Impartial Games

- MCGS impartial game wrapper can study impartial version of any game
- Do you have an impartial game that you want to solve?
- We have an "almost finished" version of this algorithm
- There is also the Beling and Rogalski algorithm that claims to be more efficient
 - A good paper to present in class
 - Their source code is available (but hard to understand for me)
 - Re-implement it in MCGS?

Summary

CMPUT 65

Algorithms fo Impartial Games

- With Nim addition and Mex rule, we can efficiently compute values of impartial games
- Many results for "one-dimensional" games played with numbers or strips, e.g. subtraction games
- Theorem 3 in Lemoine and Viennot was a breakthrough result for solving "two-dimensional", general impartial games efficiently
- Pushed analysis of Sprouts and Cram much further