Computing Science (CMPUT) 657 Algorithms for Combinatorial Games

Martin Müller

Department of Computing Science University of Alberta mmueller@ualberta.ca

Fall 2025

Example - The Book for Economic Rules

CMPUT 657

Goal: Play the sum game *G* perfectly under Economic Rules

$$\bullet$$
 $G = G1 + G2 + G3 + G4 + G5$

•
$$G1 = \{2|0\}$$

•
$$G2 = \{\{10|1\}|\{-1|-10\}\}$$

•
$$G3 = \{\{20|5\}|0\}$$

•
$$G4 = \{-3|5\}$$

•
$$G5 = \{8|7||6|5|||0|-1||-2|-3\}$$

 How to play perfectly? We need "the book" with all means and temperatures of subgames

The Book for Game G: Games G1 and G4

- G1 is simple switch:
- $G1 = \{2|0\}, \mu(G1) = 1, t(G1) = 1$
- $G1^L = 2$, $\mu(G1^L) = 2$, $t(G1^L) = -1$
- $G1^R = 0$, $\mu(G1^R) = 0$, $t(G1^R) = -1$
- G4 is zugzwang:
- $G4 = \{-3|5\} = 0$, $\mu(G4) = 0$, t(G4) = -1

The Book for Game G: Game G3

- G3 is one-sided sente for Left
- $G3 = \{\{20|5\}|0\}, \ \mu(G3) = 5, \ t(G3) = 5\}$
- $G3^L = \{20|5\}, \ \mu(G3^L) = 12.5, \ t(G3^L) = 7.5$
- $G3^R = 0$, $\mu(G3^R) = 0$, $t(G3^R) = -1$
- $G3^{LL} = 20$, $\mu(G3^{LL}) = 20$, $t(G3^{LL}) = -1$
- $G3^{LR} = 5$, $\mu(G3^{LR}) = 5$, $t(G3^{LR}) = -1$

The Book for Game G: Game G2

- G2 is "double sente", but not too hot:
- $G2 = \{\{10|1\}|\{-1|-10\}\}, \ \mu(G2) = 0, \ t(G2) = 5.5$
- $G2^{L} = \{10|1\}, \ \mu(G2^{L}) = 5.5, \ t(G2^{L}) = 4.5$
- $G2^R = \{-1|-10\}, \ \mu(G2^R) = -5.5, \ t(G2^R) = 4.5$
- $G2^{LL} = 10$, $G2^{LR} = 1$
- $G2^{RL} = -1$, $G2^{RR} = -10$

The Book for Game G: Game G5 and sum

- G5 can be written as 2.5 + a sum of switches:
- $G5 = 2.5 \pm 0.5 \pm 1 \pm 4$, $\mu(G5) = 2.5$, t(G5) = 4
- \bullet G = G1 + G2 + G3 + G4 + G5
- $\mu(G) = \mu(G1) + \mu(G2) + \mu(G3) + \mu(G4) + \mu(G5) = 1 + 0 + 5 + 0 + 2.5 = 8.5$
- $t(G) \le \max(t(G1), t(G2), t(G3), t(G4), t(G5)) =$ = $\max(1, 5.5, 5, -1, 4) = 5.5$
- Fair bid for playing Black: 8.5
- Fair initial tax rate: 5.5