Computing Science (CMPUT) 657 Algorithms for Combinatorial Games

Martin Müller

Department of Computing Science University of Alberta

Winter 2022

CMPUT 657

Comparing and Simplifying Games

Names and Notation for Outcome Classes

CMPUT 657

Game property	Meaning	Outcome class	Notation
<i>G</i> > 0	Left = Black wins	\mathcal{L}	L-position
G < 0	Right = White wins	${\cal R}$	R-position
G = 0	Second player wins	${\cal P}$	P-position
$G \not \geq 0$	First player wins	\mathcal{N}	N-position

- Why these names? Tradition in CGT
- Left = positive
- Right = negative
- P = Previous player wins (same as our second player)
- N = Next player wins (same as our first player)

Examples of Using Names and Notation for Outcome Classes

CMPUT 657

- $0 \in \mathcal{P}$, 0 is a P-position
- ullet Clobber: BW $\in \mathcal{N}$, BW is a N-position
- ullet BBW $\in \mathcal{L}$, BBW is a L-position
- BWW $\in \mathcal{R}$, BWW is a R-position

When are Two Games Equal?

CMPUT 657

- What does it mean to be equal?
- There could be many different definitions
- Same game tree?
- Same winner?
- In CGT, it is something else
- An equivalence relation, as in arithmetic

Example - Equal Arithmetic Expressions

CMPUT 657

- Example, equality relation in arithmetic:
- 3 + 5 = (10 6) * (5 3)
- Proof: simplify each side to a canonical form, then compare
- **8** = 8

When are Two Games Equal?

CMPUT 65

- Same kind of defined equality relation for games
- We also have math operations to compute a canonical form
- Practical problem
 - Unlike arithmetic, canonical form of a game can be very complex
- Fortunately, we have another, search based algorithmic way to test equality
- Works directly on the games as given
- Avoids computing the canonical form
- It can still be slow if the games are large

More on Comparing Games

CMPUT 657

- Last time: we can compare games by playing the difference game G H = G + (-H)
- −H is the inverse of H
 (switch colors Left ↔ Right))
- Example: to prove that G = H:
- Show that G H = 0, a second player win
- We can do that with two searches
 - B going first loses
 - W going first also loses
- These two results together prove that G = H

More on Comparing Games (2)

CMPUT 657

- Last time: distinguish 4 outcome classes by 2 searches
- How about $G \ge 0$, $G \le 0$?
- Good news! Can do these with a single search!
- $G \ge 0$ \Leftrightarrow If White goes first, Black wins
- $G \le 0$ \Leftrightarrow If Black goes first, White wins

Black first	White first	Compare to 0
Black wins	Black wins	<i>G</i> > 0
White wins	White wins	G < 0
White wins	Black wins	G = 0
Black wins	White wins	$G \not \geq 0$
(don't care)	Black wins	$G \ge 0$
White wins	(don't care)	$G \leq 0$

The Special Game 0

CMPUT 65

- In arithmetic, 0 is the neutral element for addition
- x + 0 = 0 for all x
- The same is true for games:
- G + 0 = G for all games G
- Any second player win is equal to 0
- So G + 0 = G means:
 G + H = G for all games G,
 and for all 2nd player wins H

All Second Player Wins are equal to 0

CMPUT 65

- G + H = G for all games G, and all 2nd player wins H
- Proof: play the difference game!

•
$$G + H = G \Leftrightarrow G + H - G = 0 \Leftrightarrow (G - G) + H = 0$$

- Note: game addition is associative,
 a + (b + c) = (a + b) + c (from definition of sum)
- Last time: G G is a second player win by mimicking
- Assumption: H is 2nd player win
- (G-G)+H=0 is also 2nd player win
- Proof: follow 2nd player win strategies in both G G and H

CMPUT 657

- G + 0 = G
- This is extremely useful for pruning in search
- We can just remove any zero subgames
- We can remove any subsets of several subgames that add up to zero...
- ... such as G + (-G)
- Example: $1 + (-1) + \{0|1\} + \{-1|0\} = 0$
 - Why? 1 + -1 = 0
 - $-\{0|1\} = \{-1|0\}$, so $\{0|1\} + \{-1|0\} = \{0|1\} \{0|1\} = 0$

Shorthand Notation for Games

CMPUT 657

- Shorter form often used in literature
- omit curly brackets $\{\}: \{3 | 2\} = 3 | 2$
- Indicate precedence by multiple |: ||, |||,... $\{3 \mid \{2 \mid 1\}\} = 3 \mid |\{2 \mid 1\}\} = 3 \mid |2 \mid 1$
- Use special symbols for frequently occurring games Numbers, $* = \{0 \mid 0\}$, *n, up, down, many more...

Simplifying Games

CMPUT 657

- How can we simplify a combinatorial game?
- Simpler games are faster to search
- Some ideas:
 - Use symmetry
 - cancel games that add to 0
 - remove bad moves
 - stop early by using an endgame database
 - ...

Simplifying Games - the Theory

CMPUT 657

- Two simplification methods
 - Remove dominated options
 - ② Bypass reversible moves
- Simplify a game as long as possible
- Any order of simplification steps leads to same result
- Result is a unique canonical form

Simplifying Games - Algorithms

CMPUT 657

- In this class we will **NOT** purely follow the math approach
- Main problem: computational complexity
- Even sums of small games can have HUGE canonical forms
- We want algorithms that solve specific sum games quickly
- We will use some of the ideas, if they are fast to implement...

Simplifying Games - Clobber Examples

CMPUT 657

- ullet G=.BW.BB.WW..WWWB.WBBB.BW.BBWB..
- Simplify: strip dead parts, empty . at end
- ullet G= BW.BB.WW..WWWB.WBBB.BW.BBWB
- Simplify: break into subgames
- G = BW + BB + WW + WWWB + WBBB + BW + BBWB
- Simplify: remove zero subgames
- BB = 0, WW = 0
- G = BW + WWWB + WBBB + BW + BBWB

Simplifying Games - Clobber Examples

CMPUT 657

- G = BW + WWWB + WBBB + BW + BBWB
- Simplify: recognize and add up simple games
- BW = * , BW + BW = * + * = 0
- G = WWWB + WBBB + BBWB
- Simplify: recognize and remove game + inverse, G G = 0
- WWWB = -WBBB
- G = BBWB

Remove Dominated Options

CMPUT 65

- $L_1 \ge L_2$ means $L_1 > L_2$ or $L_1 = L_2$
- Two Left options L_1 , L_2 , with $L_1 \ge L_2$: can prune L_2
- Two Right options R₁, R₂, with R₁ ≤ R₂: can prune R₂
- Example: $\{2, -5, 6, 3 | -2, 6, 13, -8\} = \{6 | -8\}$
- General case: decide if $L_1 \ge L_2$ by checking whether Left can win the difference game $L_1 L_2$ as second player
- After removing dominated options, all remaining options for a player are incomparable

Remove Dominated Options - Example

CMPUT 657

- $G = \{2, 2*, -1 | -1, \{1 | -2\}, \{2 | 0\}\}$
- Prune left options:
 - 2 > -1, so prune -1
 - 2,2* incomparable (why?)
- Prune right options:
 - $-1 < \{2|0\}$ (why?), so prune $\{2|0\}$
 - -1, $\{1|-2\}$ incomparable (why?)
 - $\{1|-2\}$ is in canonical form
- Canonical form: $G = \{2, 2 * | -1, \{1|-2\}\}$

What About Bypassing Reversible Moves?

CMPUT 65

- To reduce a game to canonical form, need to apply both repeatedly:
 - Remove dominated options
 - Bypass reversible moves
- Bypass reversible moves is a bit more complicated
- I do not know an efficient algorithm (just "try all")
- We will discuss it in the CGT math lecture
- We can maybe develop a better algorithm once we discuss more concepts, such as temperature
- Note: We can always check if a simplification is valid by searching the difference game to verify if G – GSimple = 0

Summary

CMPUT 657

- More details on comparing games
- Use search(es)
- Use for pruning, removing dominated options
- Special role of 0 = any 2nd player win