Computing Science (CMPUT) 657

Algorithms for Combinatorial Games

Martin Miller

Department of Computing Science
University of Alberta
mmueller@ualberta.ca

Winter 2022

mmueller@ualberta.ca

More on
Alpha-beta

More on Alpha-beta

Time and Memory Requirements of Alphabeta

More on
Alpha-beta

@ We Looked at best case and worst case number of
nodes searched

@ Runtime is dominated by number of nodes searched
@ What are the costs per node, and overall?
@ Let’s look at both time and memory costs

More on
Alpha-beta

Other
Alg

Algorithms

Al

Time Cost Per Node of Alphabeta Search

Simplest model: assume time per node (approximately)
constant
Real costs:

@ execute/undo moves during tree traversal
@ generate (and usually sort) moves in each interior state
@ check if game over (terminal node)

@ Often: evaluate a heuristic
@ can be expensive, e.g. big neural net

@ Bookkeeping for alphabeta logic - low overhead

Memory Cost of Alphabeta Search

More on
Alpha-beta

Basic algorithm:
@ depth-first search
@ needs only path from root to current node
@ a few numbers per recursion level
@ Kept in function call stack
@ very low overhead

Memory Cost of Alphabeta Search (2)

More on

Alpha:-beta Alphabeta enhancements may use much more memory:
@ Alphabeta can take advantage of extra memory

@ Main example: use for transposition table

@ Can control the size freely, very flexible

@ Other enhancement using memory:

e endgame tablebases
@ opening books
o table-based evaluation heuristics

More on
Alpha-beta

Other
Alpha-beta
Based
Algorithms

Alpha-beta
Enhance-
ments

Dealing with Repetitions and Cycles

Result of repetition depends on rules
Examples: draw (chess), illegal (Go)

Exact solution (inefficient): use full state including
history

Practical “Solution”: ignore history - leads to graph
history interaction (GHI) problem
Efficient exact GHI solution (Kishimoto and Mdiller)
o Reuse proofs for similar positions
@ Prove during search that history does not matter in
many cases
o Used in the checkers proof and for Go Life and Death
solver

Other
Alpha-beta
Based
Algorithms

Other Alpha-beta Based Algorithms

Other Alpha-beta Based Algorithms

@ |dea: smaller windows cause more cutoffs
@ Null window - equivalent to boolean search

Alpha-beta

Based @ With good move ordering, value of first move will allow
BRI to cut all other moves

Alpha-beta . .

Enhance- @ Change search strategy. Speculative, but remain exact

ments

by re-search if needed

@ Scout by Judea Pearl, NegaScout by Reinefeld: use
null window searches to try to cut all moves but the first.

@ PVS - principal variation search, equivalent to
NegaScout

Reducing the Search Window

Alpha.bots @ Classical alphabeta starts with window (-INFINITY,
Other +|NF|N|TY)

Alpha-beta

Sased @ Cutoffs happen only after first move has been searched

@ what if we have a “good guess” where the minimax
value will be?

@ E.g. “Aspiration windows” in chess: take score from last
move, + a pawn or so

@ Gamble: can reduce search effort, but can fail
@ Can optimize it using runtime statistics

Other
Alpha-beta
Based
Algorithms

Alpha-beta

ce

Reducing the Search Window (2)

@ Call alphabeta with initial values alpha > -INFINITY,
beta < +INFINITY

@ Three results:

@ result v within window (alpha, beta): reliable, true
minimax value

@ v < alpha: fail low - re-search with window
(-INFINITY,v)

@ v > beta: fail high- re-search with window
(v,2+INFINITY)

@ Make it work well: failsoft, use transposition table

Null Window Search

Other
Alpha-beta

Based . .
Algorithms @ Also called Minimal window search

@ Alphabeta Search with beta = alpha + 1

@ equivalent to boolean search with test (v < beta)

Other
Alpha-beta
Based
Algorithms

Alpha-beta

ce

Principal Variation (PV)

@ Sequence where both sides play a strongest move
@ All nodes along PV have the same value as the root
@ Neither player can improve upon PV moves

@ There may be many different PV if players have equally
good move choices

@ The term PV is typically used for the first sequence
discovered. Others are cut off by pruning.

PVS / NegaScout

@ |dea: search first move fully to establish a lower bound

Other 174
Alpha-beta

Based

Algorithims @ Boolean (null window) search to try to prove that other

moves have value < v

@ If fail-high, re-search to establish exact value of new,
better move

@ With good move ordering, re-search rarely needed.
Savings from using null window outweigh cost of
re-search

NegaScout Code

Adapted from

https://www.chessprogramming.org/NegaScout

int NegaScout (GameState state, int alpha, int beta)
if (state.IsTerminal ())

Zgihaa return state.StaticallyEvaluate ()
Based \\ evaluate from root player’s view
Algorithms
b = beta
foreach legal move m_i, i=1,2,... from state
state.Execute (m_1)
int value = -NegaScout (state, -b, -alpha)
if (value > alpha && value < beta && i > 1) // re-se:
value = —-NegaScout (state, -beta, —-alpha)

if (value > alpha)
alpha = value
state.Undo ()
if (alpha >= beta)
return alpha
b = alpha + 1 // set up null window
return alpha

https://www.chessprogramming.org/NegaScout

Alpha-beta
Enhance-
ments

Alpha-beta Enhancements

Alpha-beta
Based
Algorithms

Alpha-beta
Enhance-
[UENTS

Search Enhancements

@ Basic alphabeta search is simple but limited

@ To create high performance games program, need
many enhancements

@ General (game-independent, algorithm-independent)
and specific

@ Even many “general” ones work well only in some
games

@ Depends on many things: size, structure of search tree,
availability of domain knowledge, speed vs quality
tradeoff, parallel vs sequential,...

@ Look at some of the most important ones in practice

Types of Enhancements

@ Exact (guarantee minimax value) vs inexact

(speculative, heuristic)
Alpha-beta

Enhance- @ Improve move ordering (reduces tree size)

ments

@ Improve search behavior
@ Improve search space (pruning)

lterative Deepening (ID)

@ Series of depth-limited searches, d = (0),1,2,3, ...
@ Advantages:

@ anytime algorithm - first iterations are very fast
Aphacbets Q If b is big, smgl.l overhead - last see;rch dominates
[Er— © With transposition table, store previous best move to
menis improve move ordering

© In practice, often searches less than without ID
@ some games/programs increase d in steps of 2 (e.qg.

odd/even fluctuations in evaluation, small branching
factor)

ID and Time Control

@ With fixed time limit, last iteration must usually be

aborted
Aha-beta @ always store best move from recent completed iteration
T @ Try to predict if another iteration can be completed

@ Can use incomplete last iteration if at least one move
searched (however, the first move is by far the slowest)

Transposition Tables

@ |dea: store and reuse information about search
@ Avoid searching same subtree twice

Alphasbeta @ Get best move information from earlier, shallower

SEEe: searches

ments

@ essential in DAG’s where many paths to same node
exist

@ Help even in trees e.g. with iterative deepening

Transposition Table Content

Hash code of state (usually not one-on-one)

Evaluation
Alpha-beta

ments

Search depth, possibly other engine settings
Best move

°
°

Enhance- @ Flags - exact value, upper bound, lower bound
°
o

Use of Transposition Tables in Search

int AlphaBeta (GameState state, int alpha, int beta, int depth)
bool foundHashEntry = tpTable.Lookup (state, hashEntry)

if (foundHashEntry AND hashEntry.depth >= depth

AND Valid(currentNodeType, hashEntry))
return hashEntry.value
if (state.IsTerminal() OR depth == 0)
return state.StaticallyEvaluate ()

Alpha-beta —
B moves = LegalMoves ()
ments if (foundHashEntry AND HasLegalMove (hashEntry))
MoveToFront (moves, hashEntry.bestMove)
foreach m in moves
rest of code as before...
tpTable.store(...) Jjust before returning value or bound

@ Design choice: store/retrieve static evaluation or not?
@ Depends on speed of evaluation, size of table

Example: Implementation of Hash Data in
Fuego

/*% Hash data used in class SgSearch. =/
class SgSearchHashData

unsigned m_depth : 12;
unsigned m_isUpperBound : 1;
unsigned m_isLowerBound : 1;
unsigned m_isValid : 1;
unsigned m_isExactValue : 1;
signed m_value : 16;

Alpha-beta SgMove m_bestMove;

Enhance-

ments

@ 32 bit design (could do m_bestMove : 32 as wellon
64 bit)

@ Use C bitfields to pack multiple data into one word

@ Usually not a great idea, but justified here - save space,
can make table larger

Store and Lookup in Table

@ Size of table typically power of 2, 2", as big as memory
permits

@ Use first n bits of hash code to index into table
@ Lookup: verify that whole code is the same first
£ pna beta @ Store: need overwrite strategy - what if entry already

Enhance-

ments filled?
@ Popular: two-level table with 1. recent entries, 2.
valuable entries

@ Persistence: keep table between different searches,
reuse between moves in a game. Effective with iterative
deepening

Hash Collisions

@ Same index in table, different full code: discard one

@ Same hash code, different positions: error
Alpha-beta

Enhance- @ What is probability of error?

ments

@ Are astronomically small errors acceptable for your
application?

Zobrist Hashing

@ Fast, simple technique for computing hash codes
@ Idea:

@ Unique random hash code for each (square, value) pair

: - typically use 0 for one value (e.g. empty square)

Alpha-beta @ Code of overall position is XOR of all square’s codes

Shance: © Update: single XOR for each changed square - use
transition table
CodeChange[square][oldValue][newValue]

© If code of oldValue is 0 (e.g. for empty), need only 2-d
table.

@ for Undo moves, XOR again -> restore previous code

@ Typically, at least 64 bits are used (why?)

Hashing: Exact vs Heuristic

@ Tradeoff: exact code for whole state may be too big,
especially if history is needed

5 @ Example: ncells, 3 states each, [nlog, 3] ~ 1.58n bits
Alpha-beta @ Typical: 64 bit code, heuristic

Enhance-

ments @ in Solver, can use non-exact hash code, but must then
verify the proof tree (see df-pn and GHI discussions
later)

@ For Assignment, correctness is key. More important
than speed.

Space for Square Board with 3 States

n squares(n) squares(n) x log,3 bits(n)

1 1 1.584963 2

2 4 6.339850 7

3 9 14.264663 15

4 16 25.359400 26

5 25 39.624063 40

Alpha-beta 6 36 57.058650 58
ments 7 49 77.663163 78
8 64 101.437600 102

9 81 128.381963 129

10 100 158.496250 159

13 169 267.858663 268

19 361 572.171463 573

Move Ordering

@ Good move ordering is essential for efficient search
@ lterative deepening is effective

Alpha-beta . i Lo
Enhance- @ Often use game-specific ordering heuristics, e.g. mate

ments

threats
@ More general: use game-specific evaluation function

History Heuristic

@ Improve move ordering without needing game-specific
knowledge (Schaeffer 1983, 1989)

Alpha-beta @ Give bonus for moves that lead to cutoff

Enhance-

TS @ Prefer those moves at other places in the search

@ Will see similar ideas later in MCTS - all-moves-as-first
heuristic, RAVE

Search Extensions and Reductions, Selective
Search

@ Idea: search promising moves deeper, unpromising
ones less deeply
Enhance-

ments @ Shape the search tree
@ Both exact and heuristic methods

Alpha-beta

Examples of Search Extensions and
Reductions

@ Null move
@ ProbCut

Alpha-beta

Enhance- @ Fractional search extensions and reductions

ments

@ Quiescence search
@ Late Move Reductions

Null Move

@ Observation: almost all searched paths contain one or

more terrible moves
Alpha-beta

Enhance- @ |dea: cut off those subtrees quicker

ments

@ Null move: if we pass and can still get a search cut,
then prune

ProbCut

@ Developed by Michael Buro 1994, 1995, 1997

@ Observation: in many games, with good evaluation,
search results are highly correlated between different

e depths

MEnS @ Reduce search depth for moves that are “probably” bad

@ Yields more time to search promising moves deeper

@ More info:
https://www.chessprogramming.org/ProbCut

https://www.chessprogramming.org/ProbCut

Fractional Search Extensions and Reductions

@ |dea: Extend search after forcing, urgent moves
@ Reduce search depth by less than 1

@ Example in Go: capture threats and responses count
only 1/8 towards depth

Alpha-beta

Enhance: @ Effect: lines with many such moves searched much
deeper - e.g. A nominal depth 5 search can reach 40
ply.

@ Use with care - size of search can explode

@ Search Reduction: reduce depth by more than 1 for
unpromising lines

More on
Alpha-beta

Other
Alpha-beta
Ba:

Alpha-beta
Enhance-
[UENTS

Realization Probability Search and Fractional
Search Depth Algorithms

@ One way of systematically setting fractional search
depth reductions

@ |dea: define move categories, assign a fractional depth
to each category (Levy et al 1989)

@ Realization Probability Search (Tsuruoka et al 2002),

Enhanced Realization Probability Search (Winands and
Bjornsson 2007)

@ Estimate probability that next move is in specific
category by learning from master game records

Quiescence Search

@ Hard to evaluate chaotic, unstable positions. Examples
in chess: king in check, hanging pieces.
Alpha-beta @ |dea: evaluate only “stable” positions

Enhance-

TS @ Replace static evaluation by a small quiescence search

@ Highly restricted move generation - just resolve
unstability

Late Move Reductions

@ Source: https://www.chessprogramming.org/
Late_Move_Reductions

Aphabeta @ Late Move Reductions (LMR), similar: History Pruning,

Enhance- History Reductions

ments

@ Idea: in likely fail low nodes, reduce search depth of
low-ranked moves

@ Popular, used in many chess programs

https://www.chessprogramming.org/Late_Move_Reductions
https://www.chessprogramming.org/Late_Move_Reductions

Summary

@ Discussed a large number of search enhancements
Alpha-beta @ Many are general and work for other search algorithms,

Enhance-

ments not jUSt games
@ Many were first developed for games

	Two Player Games
	More on Alpha-beta
	Other Alpha-beta Based Algorithms
	Alpha-beta Enhancements

