
Computing Science (CMPUT) 657
Algorithms for Combinatorial Games

Martin Müller

Department of Computing Science
University of Alberta

mmueller@ualberta.ca

Winter 2022

mmueller@ualberta.ca

CMPUT 657

More on
Alpha-beta

Other
Alpha-beta
Based
Algorithms

Alpha-beta
Enhance-
ments

More on Alpha-beta

CMPUT 657

More on
Alpha-beta

Other
Alpha-beta
Based
Algorithms

Alpha-beta
Enhance-
ments

Time and Memory Requirements of Alphabeta

We Looked at best case and worst case number of
nodes searched
Runtime is dominated by number of nodes searched
What are the costs per node, and overall?
Let’s look at both time and memory costs

CMPUT 657

More on
Alpha-beta

Other
Alpha-beta
Based
Algorithms

Alpha-beta
Enhance-
ments

Time Cost Per Node of Alphabeta Search

Simplest model: assume time per node (approximately)
constant
Real costs:

execute/undo moves during tree traversal
generate (and usually sort) moves in each interior state
check if game over (terminal node)
Often: evaluate a heuristic

can be expensive, e.g. big neural net

Bookkeeping for alphabeta logic - low overhead

CMPUT 657

More on
Alpha-beta

Other
Alpha-beta
Based
Algorithms

Alpha-beta
Enhance-
ments

Memory Cost of Alphabeta Search

Basic algorithm:
depth-first search
needs only path from root to current node
a few numbers per recursion level
Kept in function call stack
very low overhead

CMPUT 657

More on
Alpha-beta

Other
Alpha-beta
Based
Algorithms

Alpha-beta
Enhance-
ments

Memory Cost of Alphabeta Search (2)

Alphabeta enhancements may use much more memory:
Alphabeta can take advantage of extra memory
Main example: use for transposition table
Can control the size freely, very flexible
Other enhancement using memory:

endgame tablebases
opening books
table-based evaluation heuristics

CMPUT 657

More on
Alpha-beta

Other
Alpha-beta
Based
Algorithms

Alpha-beta
Enhance-
ments

Dealing with Repetitions and Cycles

Result of repetition depends on rules
Examples: draw (chess), illegal (Go)
Exact solution (inefficient): use full state including
history
Practical “Solution”: ignore history - leads to graph
history interaction (GHI) problem
Efficient exact GHI solution (Kishimoto and Müller)

Reuse proofs for similar positions
Prove during search that history does not matter in
many cases
Used in the checkers proof and for Go Life and Death
solver

CMPUT 657

More on
Alpha-beta

Other
Alpha-beta
Based
Algorithms

Alpha-beta
Enhance-
ments

Other Alpha-beta Based Algorithms

CMPUT 657

More on
Alpha-beta

Other
Alpha-beta
Based
Algorithms

Alpha-beta
Enhance-
ments

Other Alpha-beta Based Algorithms

Idea: smaller windows cause more cutoffs
Null window - equivalent to boolean search
With good move ordering, value of first move will allow
to cut all other moves
Change search strategy. Speculative, but remain exact
by re-search if needed
Scout by Judea Pearl, NegaScout by Reinefeld: use
null window searches to try to cut all moves but the first.
PVS - principal variation search, equivalent to
NegaScout

CMPUT 657

More on
Alpha-beta

Other
Alpha-beta
Based
Algorithms

Alpha-beta
Enhance-
ments

Reducing the Search Window

Classical alphabeta starts with window (-INFINITY,
+INFINITY)
Cutoffs happen only after first move has been searched
what if we have a “good guess” where the minimax
value will be?
E.g. “Aspiration windows” in chess: take score from last
move, ± a pawn or so
Gamble: can reduce search effort, but can fail
Can optimize it using runtime statistics

CMPUT 657

More on
Alpha-beta

Other
Alpha-beta
Based
Algorithms

Alpha-beta
Enhance-
ments

Reducing the Search Window (2)

Call alphabeta with initial values alpha > -INFINITY,
beta < +INFINITY
Three results:
result v within window (alpha, beta): reliable, true
minimax value
v ≤ alpha: fail low - re-search with window
(-INFINITY,v)
v ≥ beta: fail high- re-search with window
(v,+INFINITY)
Make it work well: failsoft, use transposition table

CMPUT 657

More on
Alpha-beta

Other
Alpha-beta
Based
Algorithms

Alpha-beta
Enhance-
ments

Null Window Search

Also called Minimal window search
Alphabeta Search with beta = alpha + 1
equivalent to boolean search with test (v < beta)

CMPUT 657

More on
Alpha-beta

Other
Alpha-beta
Based
Algorithms

Alpha-beta
Enhance-
ments

Principal Variation (PV)

Sequence where both sides play a strongest move
All nodes along PV have the same value as the root
Neither player can improve upon PV moves
There may be many different PV if players have equally
good move choices
The term PV is typically used for the first sequence
discovered. Others are cut off by pruning.

CMPUT 657

More on
Alpha-beta

Other
Alpha-beta
Based
Algorithms

Alpha-beta
Enhance-
ments

PVS / NegaScout

Idea: search first move fully to establish a lower bound
v
Boolean (null window) search to try to prove that other
moves have value ≤ v
If fail-high, re-search to establish exact value of new,
better move
With good move ordering, re-search rarely needed.
Savings from using null window outweigh cost of
re-search

CMPUT 657

More on
Alpha-beta

Other
Alpha-beta
Based
Algorithms

Alpha-beta
Enhance-
ments

NegaScout Code

Adapted from
https://www.chessprogramming.org/NegaScout

int NegaScout(GameState state, int alpha, int beta)
if (state.IsTerminal())

return state.StaticallyEvaluate()
\\ evaluate from root player’s view

b = beta
foreach legal move m_i, i=1,2,... from state

state.Execute(m_i)
int value = -NegaScout(state, -b, -alpha)
if (value > alpha && value < beta && i > 1) // re-search

value = -NegaScout (state, -beta, -alpha)
if (value > alpha)

alpha = value
state.Undo()
if (alpha >= beta)

return alpha
b = alpha + 1 // set up null window

return alpha

https://www.chessprogramming.org/NegaScout

CMPUT 657

More on
Alpha-beta

Other
Alpha-beta
Based
Algorithms

Alpha-beta
Enhance-
ments

Alpha-beta Enhancements

CMPUT 657

More on
Alpha-beta

Other
Alpha-beta
Based
Algorithms

Alpha-beta
Enhance-
ments

Search Enhancements

Basic alphabeta search is simple but limited
To create high performance games program, need
many enhancements
General (game-independent, algorithm-independent)
and specific
Even many “general” ones work well only in some
games
Depends on many things: size, structure of search tree,
availability of domain knowledge, speed vs quality
tradeoff, parallel vs sequential,...
Look at some of the most important ones in practice

CMPUT 657

More on
Alpha-beta

Other
Alpha-beta
Based
Algorithms

Alpha-beta
Enhance-
ments

Types of Enhancements

Exact (guarantee minimax value) vs inexact
(speculative, heuristic)
Improve move ordering (reduces tree size)
Improve search behavior
Improve search space (pruning)

CMPUT 657

More on
Alpha-beta

Other
Alpha-beta
Based
Algorithms

Alpha-beta
Enhance-
ments

Iterative Deepening (ID)

Series of depth-limited searches, d = (0),1,2,3, ...
Advantages:

1 anytime algorithm - first iterations are very fast
2 If b is big, small overhead - last search dominates
3 With transposition table, store previous best move to

improve move ordering
4 In practice, often searches less than without ID

some games/programs increase d in steps of 2 (e.g.
odd/even fluctuations in evaluation, small branching
factor)

CMPUT 657

More on
Alpha-beta

Other
Alpha-beta
Based
Algorithms

Alpha-beta
Enhance-
ments

ID and Time Control

With fixed time limit, last iteration must usually be
aborted
always store best move from recent completed iteration
Try to predict if another iteration can be completed
Can use incomplete last iteration if at least one move
searched (however, the first move is by far the slowest)

CMPUT 657

More on
Alpha-beta

Other
Alpha-beta
Based
Algorithms

Alpha-beta
Enhance-
ments

Transposition Tables

Idea: store and reuse information about search
Avoid searching same subtree twice
Get best move information from earlier, shallower
searches
essential in DAG’s where many paths to same node
exist
Help even in trees e.g. with iterative deepening

CMPUT 657

More on
Alpha-beta

Other
Alpha-beta
Based
Algorithms

Alpha-beta
Enhance-
ments

Transposition Table Content

Hash code of state (usually not one-on-one)
Evaluation
Flags - exact value, upper bound, lower bound
Search depth, possibly other engine settings
Best move

CMPUT 657

More on
Alpha-beta

Other
Alpha-beta
Based
Algorithms

Alpha-beta
Enhance-
ments

Use of Transposition Tables in Search

int AlphaBeta(GameState state, int alpha, int beta, int depth)
bool foundHashEntry = tpTable.Lookup(state, hashEntry)

if (foundHashEntry AND hashEntry.depth >= depth
AND Valid(currentNodeType, hashEntry))

return hashEntry.value
if (state.IsTerminal() OR depth == 0)

return state.StaticallyEvaluate()
moves = LegalMoves()
if (foundHashEntry AND HasLegalMove(hashEntry))
MoveToFront(moves, hashEntry.bestMove)
foreach m in moves

... rest of code as before...
tpTable.store(...) just before returning value or bound

Design choice: store/retrieve static evaluation or not?
Depends on speed of evaluation, size of table

CMPUT 657

More on
Alpha-beta

Other
Alpha-beta
Based
Algorithms

Alpha-beta
Enhance-
ments

Example: Implementation of Hash Data in
Fuego

/** Hash data used in class SgSearch. */
class SgSearchHashData
...

unsigned m_depth : 12;
unsigned m_isUpperBound : 1;
unsigned m_isLowerBound : 1;
unsigned m_isValid : 1;
unsigned m_isExactValue : 1;
signed m_value : 16;
SgMove m_bestMove;

32 bit design (could do m_bestMove : 32 as well on
64 bit)
Use C bitfields to pack multiple data into one word
Usually not a great idea, but justified here - save space,
can make table larger

CMPUT 657

More on
Alpha-beta

Other
Alpha-beta
Based
Algorithms

Alpha-beta
Enhance-
ments

Store and Lookup in Table

Size of table typically power of 2, 2n, as big as memory
permits
Use first n bits of hash code to index into table
Lookup: verify that whole code is the same first
Store: need overwrite strategy - what if entry already
filled?
Popular: two-level table with 1. recent entries, 2.
valuable entries
Persistence: keep table between different searches,
reuse between moves in a game. Effective with iterative
deepening

CMPUT 657

More on
Alpha-beta

Other
Alpha-beta
Based
Algorithms

Alpha-beta
Enhance-
ments

Hash Collisions

Same index in table, different full code: discard one
Same hash code, different positions: error
What is probability of error?
Are astronomically small errors acceptable for your
application?

CMPUT 657

More on
Alpha-beta

Other
Alpha-beta
Based
Algorithms

Alpha-beta
Enhance-
ments

Zobrist Hashing

Fast, simple technique for computing hash codes
Idea:

1 Unique random hash code for each (square, value) pair
- typically use 0 for one value (e.g. empty square)

2 Code of overall position is XOR of all square’s codes
3 Update: single XOR for each changed square - use

transition table
CodeChange[square][oldValue][newValue]

4 If code of oldValue is 0 (e.g. for empty), need only 2-d
table.

5 for Undo moves, XOR again -> restore previous code
6 Typically, at least 64 bits are used (why?)

CMPUT 657

More on
Alpha-beta

Other
Alpha-beta
Based
Algorithms

Alpha-beta
Enhance-
ments

Hashing: Exact vs Heuristic

Tradeoff: exact code for whole state may be too big,
especially if history is needed
Example: n cells, 3 states each, dn log2 3e ≈ 1.58n bits
Typical: 64 bit code, heuristic
in Solver, can use non-exact hash code, but must then
verify the proof tree (see df-pn and GHI discussions
later)
For Assignment, correctness is key. More important
than speed.

CMPUT 657

More on
Alpha-beta

Other
Alpha-beta
Based
Algorithms

Alpha-beta
Enhance-
ments

Space for Square Board with 3 States

n squares(n) squares(n)× log2 3 bits(n)
1 1 1.584963 2
2 4 6.339850 7
3 9 14.264663 15
4 16 25.359400 26
5 25 39.624063 40
6 36 57.058650 58
7 49 77.663163 78
8 64 101.437600 102
9 81 128.381963 129

10 100 158.496250 159
...

13 169 267.858663 268
...

19 361 572.171463 573

CMPUT 657

More on
Alpha-beta

Other
Alpha-beta
Based
Algorithms

Alpha-beta
Enhance-
ments

Move Ordering

Good move ordering is essential for efficient search
Iterative deepening is effective
Often use game-specific ordering heuristics, e.g. mate
threats
More general: use game-specific evaluation function

CMPUT 657

More on
Alpha-beta

Other
Alpha-beta
Based
Algorithms

Alpha-beta
Enhance-
ments

History Heuristic

Improve move ordering without needing game-specific
knowledge (Schaeffer 1983, 1989)
Give bonus for moves that lead to cutoff
Prefer those moves at other places in the search
Will see similar ideas later in MCTS - all-moves-as-first
heuristic, RAVE

CMPUT 657

More on
Alpha-beta

Other
Alpha-beta
Based
Algorithms

Alpha-beta
Enhance-
ments

Search Extensions and Reductions, Selective
Search

Idea: search promising moves deeper, unpromising
ones less deeply
Shape the search tree
Both exact and heuristic methods

CMPUT 657

More on
Alpha-beta

Other
Alpha-beta
Based
Algorithms

Alpha-beta
Enhance-
ments

Examples of Search Extensions and
Reductions

Null move
ProbCut
Fractional search extensions and reductions
Quiescence search
Late Move Reductions

CMPUT 657

More on
Alpha-beta

Other
Alpha-beta
Based
Algorithms

Alpha-beta
Enhance-
ments

Null Move

Observation: almost all searched paths contain one or
more terrible moves
Idea: cut off those subtrees quicker
Null move: if we pass and can still get a search cut,
then prune

CMPUT 657

More on
Alpha-beta

Other
Alpha-beta
Based
Algorithms

Alpha-beta
Enhance-
ments

ProbCut

Developed by Michael Buro 1994, 1995, 1997
Observation: in many games, with good evaluation,
search results are highly correlated between different
depths
Reduce search depth for moves that are “probably” bad
Yields more time to search promising moves deeper
More info:
https://www.chessprogramming.org/ProbCut

https://www.chessprogramming.org/ProbCut

CMPUT 657

More on
Alpha-beta

Other
Alpha-beta
Based
Algorithms

Alpha-beta
Enhance-
ments

Fractional Search Extensions and Reductions

Idea: Extend search after forcing, urgent moves
Reduce search depth by less than 1
Example in Go: capture threats and responses count
only 1/8 towards depth
Effect: lines with many such moves searched much
deeper - e.g. A nominal depth 5 search can reach 40
ply.
Use with care - size of search can explode
Search Reduction: reduce depth by more than 1 for
unpromising lines

CMPUT 657

More on
Alpha-beta

Other
Alpha-beta
Based
Algorithms

Alpha-beta
Enhance-
ments

Realization Probability Search and Fractional
Search Depth Algorithms

One way of systematically setting fractional search
depth reductions
Idea: define move categories, assign a fractional depth
to each category (Levy et al 1989)
Realization Probability Search (Tsuruoka et al 2002),
Enhanced Realization Probability Search (Winands and
Bjornsson 2007)
Estimate probability that next move is in specific
category by learning from master game records

CMPUT 657

More on
Alpha-beta

Other
Alpha-beta
Based
Algorithms

Alpha-beta
Enhance-
ments

Quiescence Search

Hard to evaluate chaotic, unstable positions. Examples
in chess: king in check, hanging pieces.
Idea: evaluate only “stable” positions
Replace static evaluation by a small quiescence search
Highly restricted move generation - just resolve
unstability

CMPUT 657

More on
Alpha-beta

Other
Alpha-beta
Based
Algorithms

Alpha-beta
Enhance-
ments

Late Move Reductions

Source: https://www.chessprogramming.org/
Late_Move_Reductions

Late Move Reductions (LMR), similar: History Pruning,
History Reductions
Idea: in likely fail low nodes, reduce search depth of
low-ranked moves
Popular, used in many chess programs

https://www.chessprogramming.org/Late_Move_Reductions
https://www.chessprogramming.org/Late_Move_Reductions

CMPUT 657

More on
Alpha-beta

Other
Alpha-beta
Based
Algorithms

Alpha-beta
Enhance-
ments

Summary

Discussed a large number of search enhancements
Many are general and work for other search algorithms,
not just games
Many were first developed for games

	Two Player Games
	More on Alpha-beta
	Other Alpha-beta Based Algorithms
	Alpha-beta Enhancements

