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Introduction

- Expected Work Search (EWS) is a new combinatorial search algorithm
- Not asearch engine like Google or Bing
- Searches for solutions to problems with many possible positions

- Use heuristics to efficiently guide search

- Can exponentially improve performance   .‘ :! e .- |
- EWS can outperform existing algorithms
- 3.8xto 291x faster when solving Go

- 2.0xto 3032x faster when solving Hex

https://en.wikipedia.org/wiki/A*_search_algorithm#/media/File:Astarpathfinding.gif



Solving

- Evaluate EWS by solving two player perfect

information games
- Specifically Go and Hex
- Well defined rules
- Scalable difficulty
- Solving games prove who wins under optimal play
- Any winning move = winning position

- Alllosing moves = losing position

https://github.com/sotetsuk/pgx?tab=readme-ov-file https://www.irish-go.org/how-to-play-go/



Heuristics

Win rate estimation

- Monte Carlo Tree Search

- Prioritizes strong moves

Proof size estimation

- Proof number search

- Prioritizes quickly ending the game

Both have strengths and weaknesses

EWS combines both using Expected Work

https://www.365chess.com/board_editor.php




Expected Work Search

- Build anode tree in memory
- Nodes represent positions

- Each node has awinrate, and
Expected Work estimate

- Each iteration of EWS builds
the tree, refines node
estimates, and backs up proofs



Expected Work Calculation

- How can we estimate the work it
will take to solve a node?

- Inductively assume children have
expected work values

- Separate cases for winning & losing

- Use MCTS style winrates to
estimate winning probability

- Base case expected work values
come from random simulations
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Expected Work Calculation

A position is either winning or losing

Losing case:

? ? ?
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Expected Work Calculation
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Expected Work Calculation

A position is either winning or losing

Losing case:

L L L



Expected Work Calculation L L

- Apositionis either winning or losing

- Losing case: Z

- Sum of winning children’'s EW

EWZOSS(X) .= Z Eszn(Cz)
1=1



Expected Work Calculation

A position is either winning or losing

Winning case:

? ? ?



Expected Work Calculation

A position is either winning or losing

Winning case:
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Expected Work Calculation

A position is either winning or losing

Winning case:
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Expected Work Calculation L ?

- Apositionis either winning or losing

- Winning case:

- Weighted sum of losing children’s EW

n 1—1

Eszn(X) — Z(EWZOSS(CZ') ' H WR(CJ))

i=1 j=1



Eszn(X) — Z(Ewloss(cz> . f[ WR(CJ)) (2)

Children are searched in order Win Rate (.8

Search stops once a losing child

Search Prob. 1.0

is found
The probability of searching a @ @ @

child = the probability none of

the previous children are losing a



n 1—1

EWpin(X) 1= (EWioss(Ci) - [ | WR(C)))  (2)

- Children are searched in order Win Rate (.8 ~N 0.5

- Search stops once a losing child

is found :
- The probability of searching a @ @ @

child = the probability none of

the previous children are losing a



n 1—1
EWpin(X) 1= (EWioss(Ci) - [ | WR(C)))  (2)
i=0 7=0
Children are searched in order Win Rate (.8 '\ 0.5 \ 0.6

Search stops once a losing child

Search Prob. 1.0 / 0.8 /

is found
The probability of searching a @ @ @

child = the probability none of

the previous children are losing a
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Selection

-  Traverse the search tree

- Select the best child according
to the move ordering

- If the selected child has been
expanded, continue selection

- Otherwise, expand the leaf node




Child Ordering

- Sort children with:

EWioss(A)/(1-WR(A)) < EWioss(B)/(1-WR(B))
<—
A< B

- Best first move ordering
- Move ordering of children determines EW .

- This ordering minimizes EW .



Child Ordering

EWioss(A)/(1-WR(A)) < EWjoss(B)/(1-WR(B))

""""""""""""""""""""""""""""""""""""""""

__________________________________________________



Child Ordering

EWioss(A)/(1-WR(A)) < EWjoss(B)/(1-WR(B))

""""""""""""""""""""""""""""""""""""""""

__________________________________________________

EW/(1-WR); 2250 : 1250 : 1765



Child Ordering

EWioss(A)/(1-WR(A)) < EWjoss(B)/(1-WR(B))

""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""

________________________________________________________________________________________

EW/(1-WR), 2250 @ 1250 : 1765 1250 | 1765 | 2250



Algorithm 1 SelectBackpropagate X: returns whether X is
solved and if so whether X is winning

- 1
Selection N
i

4.

- Traverse the search tree 5:
6:

- Select the best child according 7:
. 8:

to the move ordering T

10:

- If the selected child has been 11:
expanded, continue selection 12:

13:

. 4

- Otherwise, expand the leaf node 15
16

17

(' := X .children|0]
Make move C.move
if C'.expanded then

> Selection

isSolved, isWinning = SelectBackpropagate(C')
else

isSolved, isWinning = Expand(C')
Undo move C.move
if isSolved and isWinning then

Remove C from X .children

if X .children is empty then

return true, false

> Backpropagation

> Solved loss
else if isSolved and not isWinning then

return true, true > Solved win

: Sort X .children with (3)

: Update X .winRate

: Update X .expectedWorkLoss with (1)
: Update X .expectedWorkWin with (2)
: return false, false

> Unsolved
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Expansion Simulations

L L
L L
N N
B B
A A
Create new nodes ., .
L .
a a
L] L] . . . L]
Check for terminal children P & Terminal child

Initialize WR and EW with New nodes
random simulation results

Return if the expanded node is
proven

Expanding node



Initial Evaluation

Random simulations
Win rates = wins / visits

Initialize EW as the sum of the branching
factors of positions in random simulations




Algorithm 2 Expand X: returns whether X is solved and if
so whether X is winning

EXpanSiOn 1: X.expanded := true
2: for all legal moves m do
3 if m is a terminal winning move for X then
Create new nodes 4 return true, true > Solved win
5: else if m is not a terminal losing move for X then
Check for terminal children 6 Create node C
7 C.expanded = false
Initialize WR and EW with ;i Calpye == e
q i ulati It 9: Evaluate C'.winRate
rahdom simuiation results 10: Evaluate C'.expectedWorkLoss
11: Evaluate C.expectedWorkWin
Return if the expanded node is 12- Ndd 6t6 X dhildien
proven 13: if X .children is empty then
14: return true, false > Solved loss
15: else

16: return false, false > Unsolved
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Backpropagation

Back up new information along the
path chosen by selection:

Winrate
Expected Work
Proofs

Proven nodes are pruned




Algorithm 1 SelectBackpropagate X: returns whether X is
solved and if so whether X is winning

" 1: C := X .children[O] > Selection
Backpropagation 2 Make move Cmove
3: if C.expanded then
. ) 4: isSolved, isWinning = SelectBackpropagate(C)
Back up new information along the s dlsn
path chosen by selection: 6:  isSolved, isWinning = Expand(C)
7: Undo move > Backpropagation
Win rate 8: if isSolved and isWinning then
9: Remove C' from X .children
e if X .children is empty then
Expected Work : return true, false > Solved loss
: else if isSolved and not isWinning then
Proofs - return true, true > Solved win

: Sort X .children with (3)

: Update X.winRate

: Update X .expectedWorkLoss with (1)

: Update X .expectedWorkWin with (2)

: return false, false > Unsolved

Proven nodes are pruned




Results

Compared against different independent solving implementations
- GoSolver, MIGOS, Enhanced AB, Morat PNS, Morat MCTS

Ablation study
- Removed proof-size / win-rate information
- Performance drops

Evaluated a variety of Go positions
- Strong general performance
- New results on empty boards

Evaluated empty nxn Hex
- Strong results with and without knowledge



EWS solving time (s)
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EWS solving time (s)

102.

101.

100.

10—1_

10—24

10—3-

-4

102_

101-

100.

10—1_

10—2_

10—3_

-4

e
s W&

107% 1073 1072 107!
Go-Solver solving time (s)

10° 10 10

1074 1072 1072 107! 10° 10 107
EWS-WR solving time (s)

102_

101.

100.

10—1-

10—2_

10—3_

-4

104 10~ 10-2 10-!
EWS-PS solving time (s)

Program A.V' salve tr Faster # Timeouts
time (S) than EWS
EWS 2.32 - -
Go-Solver 22.63 31 (5.2%) 11 (1.8%)
EWS-WR 19.70 96 (16.0%) 11 (1.8%)
EWS-PS 19.58 171 (28.5%) | 14 (2.3%)

10°

10!

102




1 A B C D E
Solving Square Go Boards
5 5
- Compare against: 4 4
EWS-WR (without win rate estimation) 3 3
EWS-PS (without proof size estimation) 5 5
1 1
A B C D E
Program 3%3 Timé (8) 3x3 Nodes 4 x4 Time (s) 4 x4 Nodes 5x5 Time (h) 5x5 Nodes
EWS 0.053 161 13.626 495,494 5.252 2,605,781,360
EWS-WR 0.074 796 40.396 1,562,718 > 24 :
EWS-PS 0.070 232 18.320 744,169 > 24 -




1 A B @ D E
Solving Square Go Boards
5 5
- Compare against: 4 4
-  EWS-WR (without win rate estimation) 3 3
- EWS-PS (without proof size estimation) 5 5
- Go-Solver (iterative deepening alpha beta) : :
- MIGOS (state of the art using Japanese rules) £ 5 @ o B
Program 3%3 Timé (8) 3x3 Nodes 4 x4 Time (s) 4 x4 Nodes 5x5 Time (h) 5x5 Nodes
EWS 0.053 161 13.626 495,494 5252 2,605,781,360
EWS-WR 0.074 796 40.396 1,562,718 > 24 :
EWS-PS 0.070 232 18.320 744,169 > 24 -
Go-Solver 1.299 1,628 51.522 799,607 > 24 -
MIGOS SSK <33 ~ 25,118 ~3,960 ~3,162,277,660 - -




Solving Square Hex Boards

- Comparing against:

Morat Monte Carlo Tree Search
Morat Proof Number Search

An enhanced alpha beta solver we developed

Program 4 x4 Time (s) 4 x4 Nodes 5x5 Time (s) 5x5 Nodes 6x6 Time (h) | 6x6 Nodes

EWS 0.002 283 0.253 37,034 0.422 93.963,192
Enhanced AB 0.004 1,673 3935 698,402 > 24 -
Morat MCTS 0.035 4,644 29.669 3,554,546 > 24 -
Morat PNS 0.054 8,871 758.102 154,539,591 > 24 -




Solving with Hex Knowledge

Virtual Connections

Strategies to guarantee 4
connections

Full board connections
determine the winner

Intersections of first player
VCs form a must-play zone




Solving with Hex Knowledge

Dead cells / Inferior cell
analysis

Some moves are irrelevant to
the game’s theoretical outcome

Dead cells can be filled in,
inferior moves can be ignored

Found with pattern matching



Solving with Hex Knowledge

Significantly reduces search space
For 6x6 Hex: 93,963,192 nodes -> 26 nodes
8x8 can be solved

Search is much slower, but more node efficient

Program gy g 6x6 Nodes e L 7x7 Nodes R g 8x8 Nodes
(s) (s) (s)

s ST 0.005 2 0.588 2,318 934.449 555,158

knowledge




Conclusion

- Expected Work Search combines proof size and win rate heuristics
- Balances these heuristics
- Covers previous weaknesses %

- Strongresults on Go and Hex
- New results solving 5x5 Go
with pos. superko
- More Hex knowledge is
needed for S.O.T.A results
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Thank you for your time!

Questions?
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