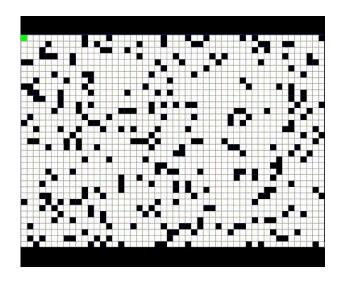
Efficiently Solving Games with Expected Work Search

Owen Randall, Martin Müller, Ting-Han Wei, and Ryan Hayward

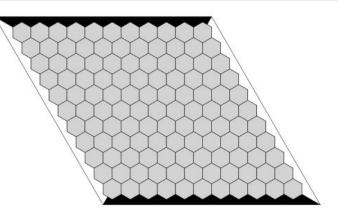
Introduction

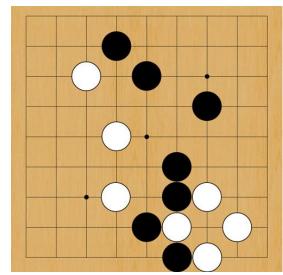
- Expected Work Search (**EWS**) is a new combinatorial search algorithm
 - Not a search engine like Google or Bing
 - Searches for solutions to problems with many possible positions
- Use **heuristics** to efficiently guide search
 - Can exponentially improve performance
- EWS can outperform existing algorithms
 - 3.8x to 291x faster when solving Go
 - 2.0x to 3032x faster when solving Hex



Solving

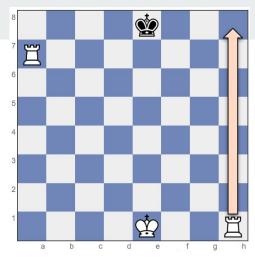
- Evaluate EWS by solving two player perfect information games
 - Specifically Go and Hex
 - Well defined rules
 - Scalable difficulty
- Solving games prove who wins under **optimal play**
 - Any winning move = winning position
 - All losing moves = losing position





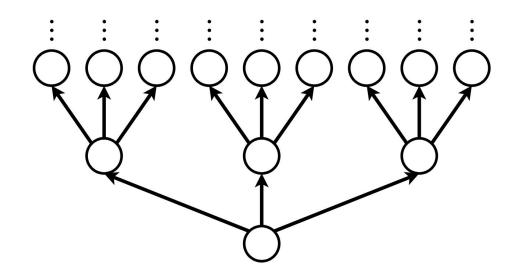
Heuristics

- Win rate estimation
 - Monte Carlo Tree Search
 - Prioritizes strong moves
- Proof size estimation
 - Proof number search
 - Prioritizes quickly ending the game
- Both have strengths and weaknesses
- EWS combines both using Expected Work

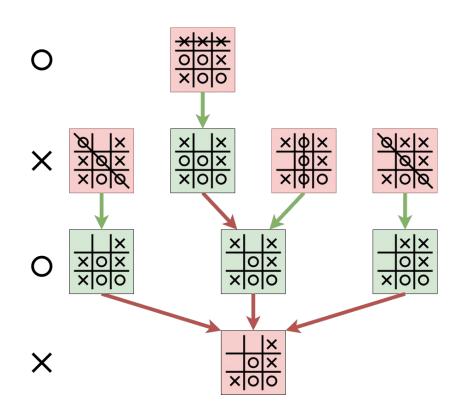


Expected Work Search

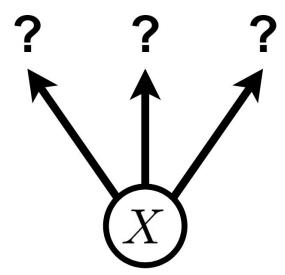
- Build a node tree in memory
- Nodes represent positions
- Each node has a win rate, and Expected Work estimate
- Each iteration of EWS builds the tree, refines node estimates, and backs up proofs



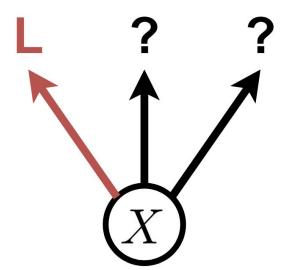
- How can we estimate the work it will take to solve a node?
- Inductively assume children have expected work values
- Separate cases for winning & losing
- Use MCTS style win rates to estimate winning probability
- Base case expected work values come from random simulations



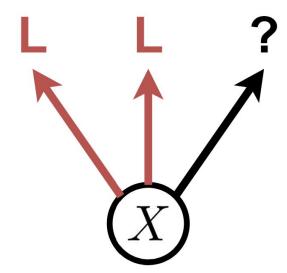
- A position is either winning or losing
- Losing case:



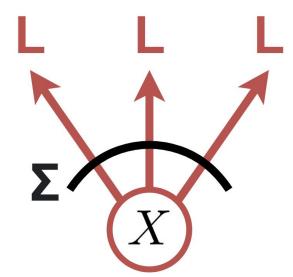
- A position is either winning or losing
- Losing case:



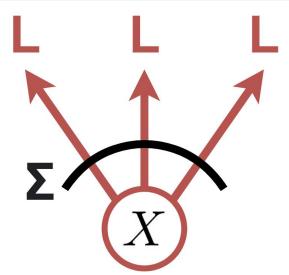
- A position is either winning or losing
- Losing case:



- A position is either winning or losing
- Losing case:

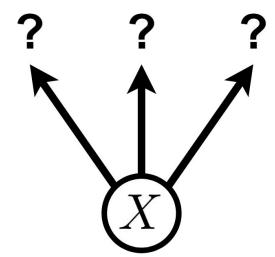


- A position is either winning or losing
- Losing case:
- Sum of winning children's EW

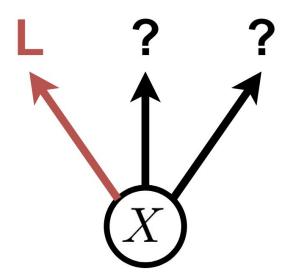


$$EW_{loss}(X) := \sum_{i=1}^{n} EW_{win}(C_i)$$

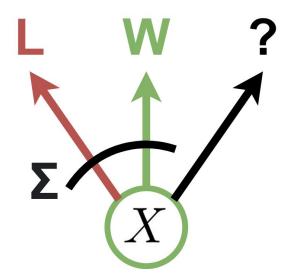
- A position is either winning or losing
- Winning case:



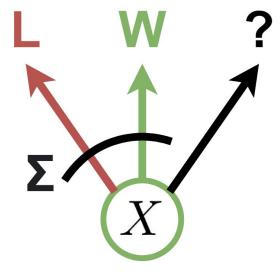
- A position is either winning or losing
- Winning case:



- A position is either winning or losing
- Winning case:



- A position is either winning or losing
- Winning case:
- Weighted sum of losing children's EW



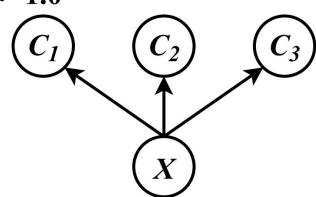
$$EW_{win}(X) := \sum_{i=1}^{n} (EW_{loss}(C_i) \cdot \prod_{j=1}^{n-1} WR(C_j))$$

$$EW_{win}(X) := \sum_{i=0}^{n} (EW_{loss}(C_i) \cdot \prod_{j=0}^{i-1} WR(C_j))$$
 (2)

- Children are searched in order
- Search stops once a losing child is found
- The probability of searching a child = the probability none of the previous children are losing

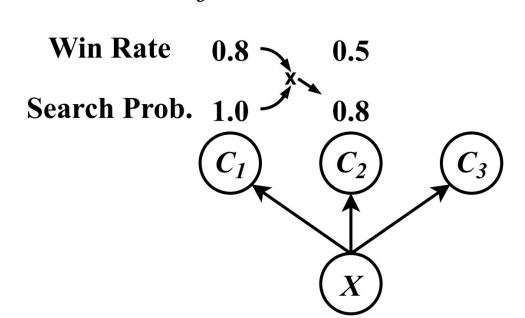
Win Rate 0.8

Search Prob. 1.0



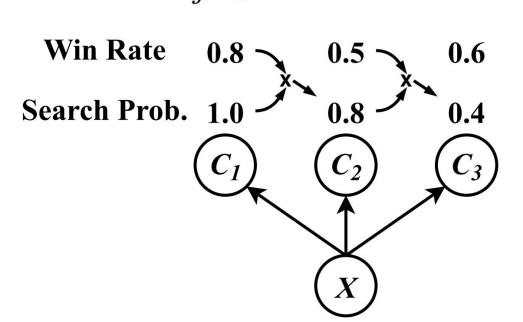
$$EW_{win}(X) := \sum_{i=0}^{n} (EW_{loss}(C_i) \cdot \prod_{j=0}^{i-1} WR(C_j))$$
 (2)

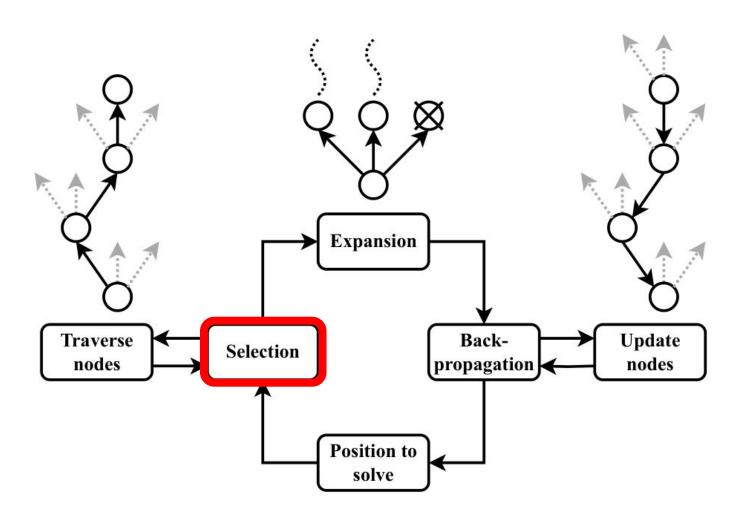
- Children are searched in order
- Search stops once a losing child is found
- The probability of searching a child = the probability none of the previous children are losing



$$EW_{win}(X) := \sum_{i=0}^{n} (EW_{loss}(C_i) \cdot \prod_{j=0}^{n-1} WR(C_j))$$
 (2)

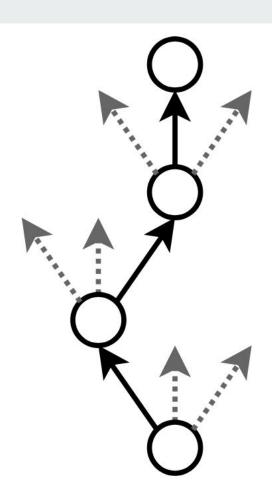
- Children are searched in order
- Search stops once a losing child is found
- The probability of searching a child = the probability none of the previous children are losing





Selection

- Traverse the search tree
- Select the best child according to the move ordering
- If the selected child has been expanded, continue selection
- Otherwise, expand the leaf node



Sort children with:

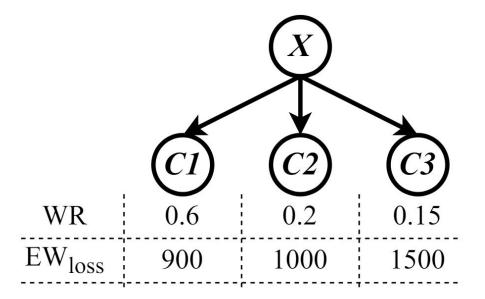
$$EW_{loss}(A)/(1-WR(A)) < EW_{loss}(B)/(1-WR(B))$$

$$\iff$$

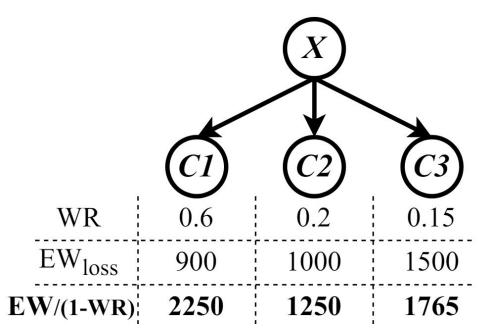
$$A < B$$

- Best first move ordering
- Move ordering of children determines EW_{win}
 - This ordering minimizes EW_{win}

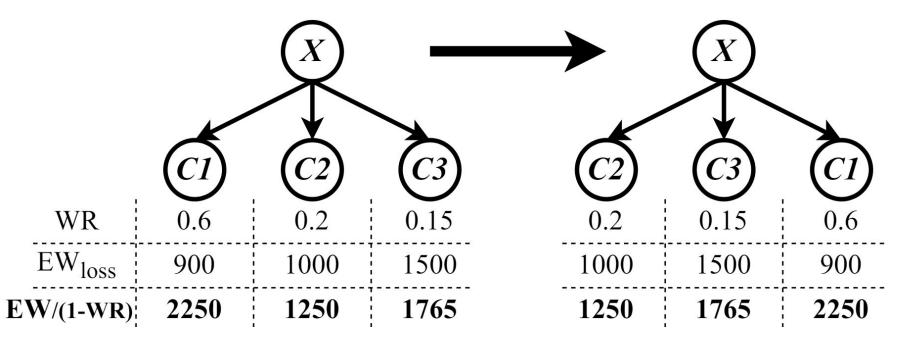
$$EW_{loss}(A)/(1-WR(A)) < EW_{loss}(B)/(1-WR(B))$$



$$EW_{loss}(A)/(1-WR(A)) < EW_{loss}(B)/(1-WR(B))$$



$$EW_{loss}(A)/(1-WR(A)) < EW_{loss}(B)/(1-WR(B))$$



Selection

- Traverse the search tree
- Select the best child according to the move ordering
- If the selected child has been expanded, continue selection
- Otherwise, expand the leaf node

Algorithm 1 SelectBackpropagate X: returns whether X is solved and if so whether X is winning 1: C := X.children[0] Selection

2: Make move C.move

3: **if** C.expanded **then**

isSolved, isWinning = SelectBackpropagate(C)

5: else

isSolved, isWinning = Expand(C)

11:

13:

7: Undo move C.move

▶ Backpropagation

8: **if** isSolved and isWinning **then** Remove C from X.children

if X.children is empty then 10:

return true, false

Solved loss

12: **else if** isSolved and not isWinning **then**

14: Sort X.children with (3)

Solved win

▶ Unsolved

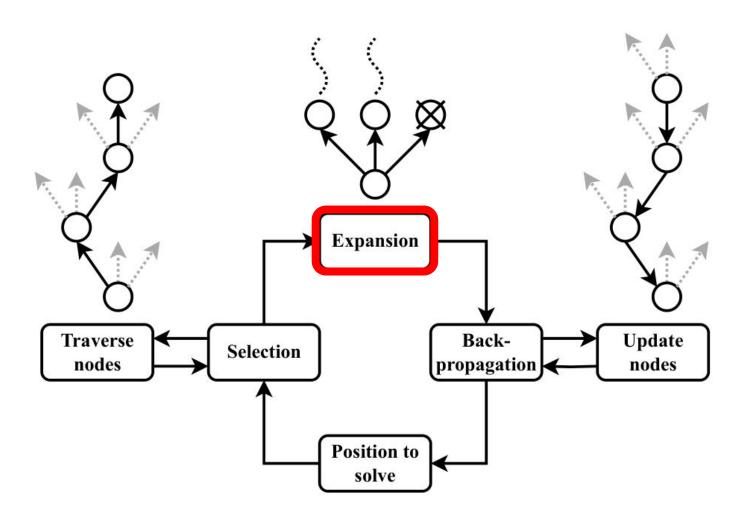
15: Update X.winRate

return true, true

16: Update X.expectedWorkLoss with (1)

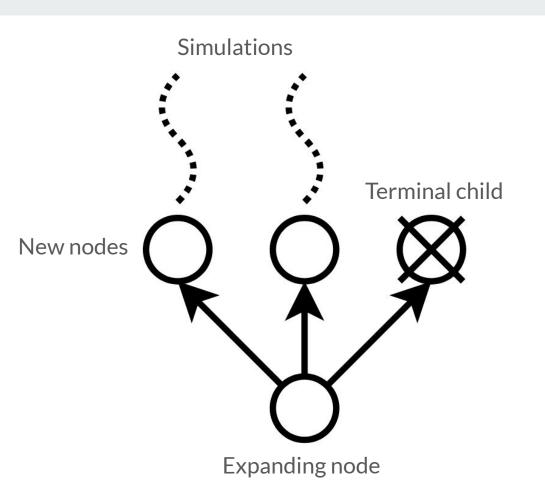
17: Update X.expectedWorkWin with (2)

18: return false, false



Expansion

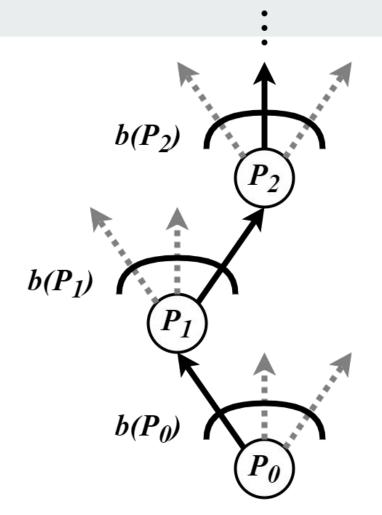
- Create new nodes
- Check for terminal children
- Initialize WR and EW with random simulation results
- Return if the expanded node is proven



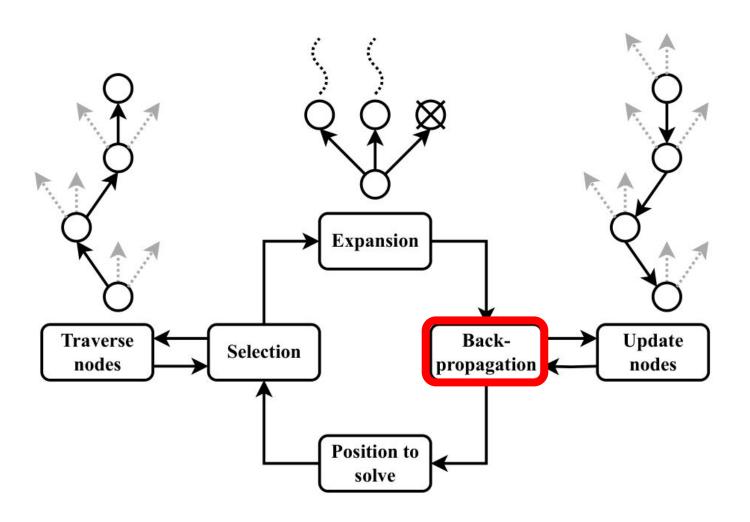
Initial Evaluation

- Random simulations
- Win rates = wins / visits
- Initialize EW as the sum of the branching factors of positions in random simulations

$$EW_0(X) := \sum_{i=0}^{m} b(P_i)$$

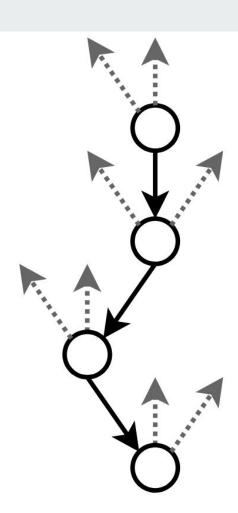


	Algorithm 2 Expand X : returns whether X is solved and if so whether X is winning					
Expansion	1: X.expanded := true					
	2: for all legal moves m do					
	3: if m is a terminal winning	ng move for X then				
- Create new nodes	4: return true, true	⊳ Solved win				
	5: else if m is not a termin	al losing move for X then				
- Check for terminal children	6: Create node C					
	7: $C.expanded = false$					
- Initialize WR and EW with	8: C .move := m					
	9: Evaluate C.winRate					
random simulation results	10: Evaluate C.expected	dWorkLoss				
	11: Evaluate C.expected	dWorkWin				
- Return if the expanded node is	12: Add C to X .childre	n				
proven	13: if X .children is empty then	ı				
	14: return true, false	⊳ Solved loss				
	15: else					
	16: return false, false					



Backpropagation

- Back up new information along the path chosen by selection:
- Win rate
- Expected Work
- Proofs
- Proven nodes are pruned



Backpropagation

Back up new information along the path chosen by selection:

- Win rate
- **Expected Work**

Proofs

Proven nodes are pruned

Algorithm 1 SelectBackpropagate X: returns whether X is solved and if so whether X is winning Selection

▶ Backpropagation

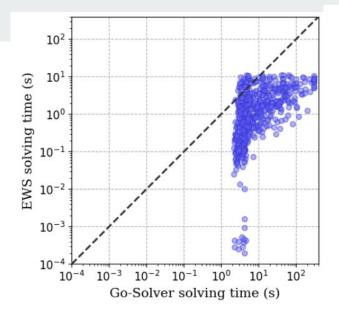
Solved loss

Solved win

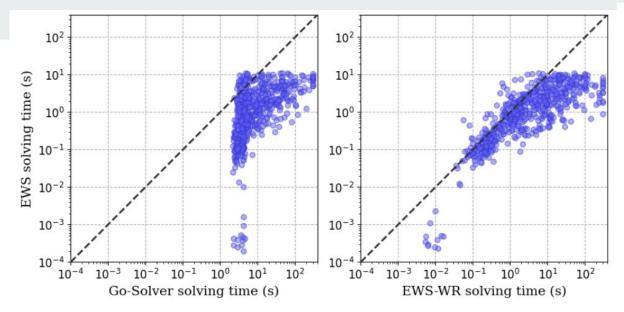
- 1: C := X.children[0]
- 2: Make move C.move
- 3: **if** C.expanded **then**
- isSolved, isWinning = SelectBackpropagate(C)
- 5: else
- isSolved, isWinning = Expand(C)
- 7: Undo move C.move
 - 8: **if** isSolved and isWinning **then**
- Remove C from X.children
- 10: if X.children is empty then
- return true, false 11:
- 12: **else if** isSolved and not isWinning **then**
- 13: return true, true
- 14: Sort X.children with (3)
- 15: Update X.winRate
- 16: Update X.expectedWorkLoss with (1)
- 17: Update X.expectedWorkWin with (2)
- 18: **return** false, false ▶ Unsolved

Results

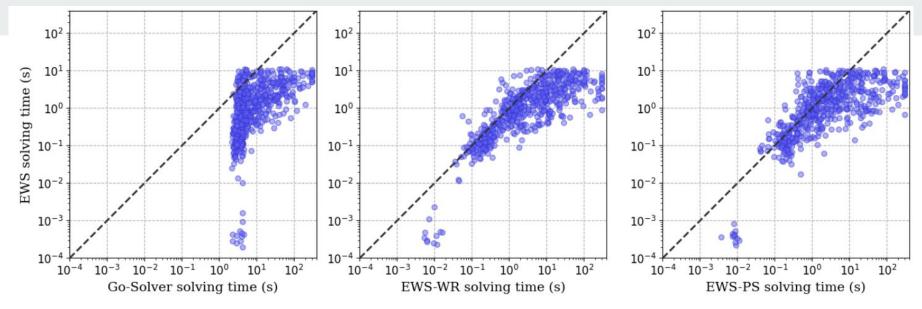
- Compared against different independent solving implementations
 - GoSolver, MIGOS, Enhanced AB, Morat PNS, Morat MCTS
- Ablation study
 - Removed proof-size / win-rate information
 - Performance drops
- Evaluated a variety of Go positions
 - Strong general performance
 - New results on empty boards
- Evaluated empty nxn Hex
 - Strong results with and without knowledge



Program	Av. solve time (s)	# Faster than EWS	# Timeouts
EWS	2.32	-	-
Go-Solver	22.63	31 (5.2%)	11 (1.8%)



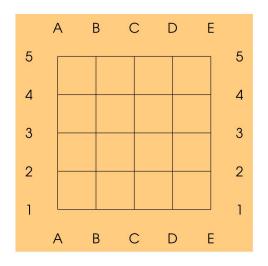
Program	Av. solve time (s)	# Faster than EWS	# Timeouts
EWS	2.32	-	-
Go-Solver	22.63	31 (5.2%)	11 (1.8%)
EWS-WR	19.70	96 (16.0%)	11 (1.8%)



Program	Av. solve time (s)	# Faster than EWS	# Timeouts
EWS	2.32	-	-
Go-Solver	22.63	31 (5.2%)	11 (1.8%)
EWS-WR	19.70	96 (16.0%)	11 (1.8%)
EWS-PS	19.58	171 (28.5%)	14 (2.3%)

Solving Square Go Boards

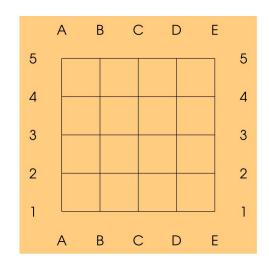
- Compare against:
 - EWS-WR (without win rate estimation)
 - EWS-PS (without proof size estimation)



Program	3×3 Time (s)	3×3 Nodes	4×4 Time (s)	4×4 Nodes	5×5 Time (h)	5×5 Nodes
EWS	0.053	161	13.626	495,494	5.252	2,605,781,360
EWS-WR	0.074	796	40.396	1,562,718	> 24	-
EWS-PS	0.070	232	18.320	744,169	> 24	-

Solving Square Go Boards

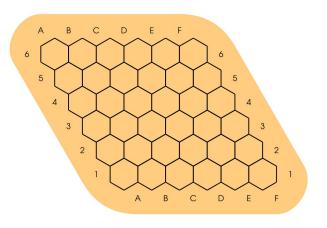
- Compare against:
 - EWS-WR (without win rate estimation)
 - EWS-PS (without proof size estimation)
 - Go-Solver (iterative deepening alpha beta)
 - MIGOS (state of the art using Japanese rules)



Program	3×3 Time (s)	3×3 Nodes	4×4 Time (s)	4×4 Nodes	5×5 Time (h)	5×5 Nodes
EWS	0.053	161	13.626	495,494	5.252	2,605,781,360
EWS-WR	0.074	796	40.396	1,562,718	> 24	-
EWS-PS	0.070	232	18.320	744,169	> 24	-
Go-Solver	1.299	1,628	51.522	799,607	> 24	-
MIGOS SSK	< 3.3	\sim 25,118	~3,960	~3,162,277,660	-	-

Solving Square Hex Boards

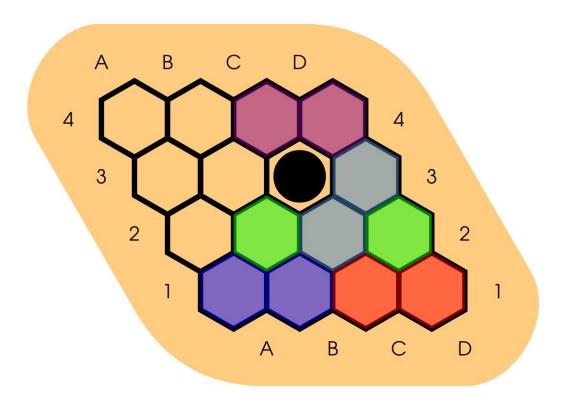
- Comparing against:
 - An enhanced alpha beta solver we developed
 - Morat Monte Carlo Tree Search
 - Morat Proof Number Search



Program	4×4 Time (s)	4×4 Nodes	5×5 Time (s)	5×5 Nodes	6×6 Time (h)	6×6 Nodes
EWS	0.002	283	0.253	37,034	0.422	93,963,192
Enhanced AB	0.004	1,673	3.935	698,402	> 24	-
Morat MCTS	0.035	4,644	29.669	3,554,546	> 24	-
Morat PNS	0.054	8,871	758.102	154,539,591	> 24	-

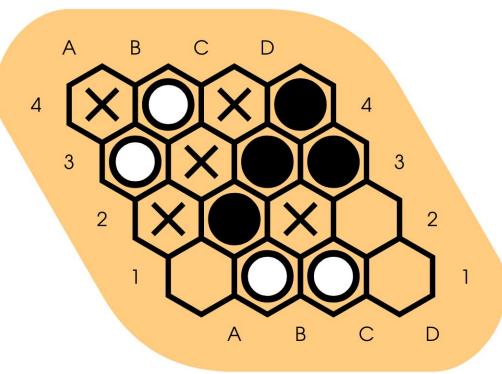
Solving with Hex Knowledge

- Virtual Connections
- Strategies to guarantee connections
- Full board connections determine the winner
- Intersections of first player
 VCs form a must-play zone



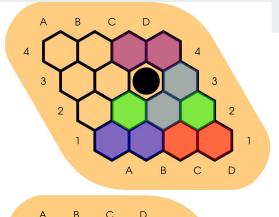
Solving with Hex Knowledge

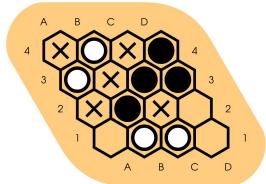
- Dead cells / Inferior cell analysis
- Some moves are irrelevant to the game's theoretical outcome
- Dead cells can be filled in, inferior moves can be ignored
- Found with pattern matching



Solving with Hex Knowledge

- Significantly reduces search space
- For 6x6 Hex: 93,963,192 nodes -> 26 nodes
- 8x8 can be solved
- Search is much slower, but more node efficient

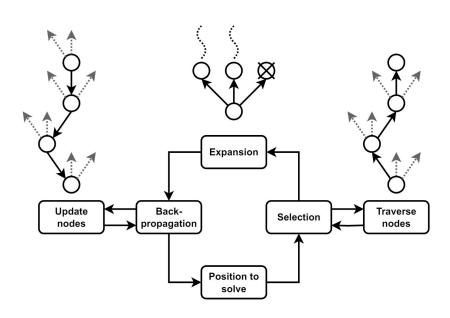




Program	6×6 Time (s)	6×6 Nodes	$7 \times 7 \text{ Time}$ (s)	7×7 Nodes	8×8 Time (s)	8×8 Nodes	
EWS with knowledge	0.005	26	0.588	2,318	234.449	555,158	

Conclusion

- Expected Work Search combines proof size and win rate heuristics
 - Balances these heuristics
 - Covers previous weaknesses
- Strong results on Go and Hex
 - New results solving 5x5 Go with pos. superko
 - More Hex knowledge is needed for S.O.T.A results
- Plenty of future work for EWS



Thank you for your time!

Questions?

References

- ALLIS, L., HERIK, H., AND HUNTJENS, M. Go-Moku and Threat-Space Search. Computational Intelligence 12 (1994), pp. 7-23.
- [2] Allis, L., van der Meulen, M., and van den Herik, H. Proof-Number Search. Artificial Intelligence 66, 1 (1994), pp. 91–124.
- [3] ANSHELEVICH, V. V. The Game of Hex: An Automatic Theorem Proving Approach to Game Programming. In AAAI/IAAI 17 (2000), pp. 189–294.
- [4] ANSHELEVICH, V. V. A Hierarchical Approach to Computer Hex. Artificial Intelligence 134, 1 (2002), pp. 101–120.
- [5] ARNESON, B., HAYWARD, R., AND HENDERSON, P. Solving Hex: Beyond Humans. In Computers and Games (2010), pp. 1-10.
- [6] BENSON, D. Life in the Game of Go. Information Sciences 10 (1976), pp. 17–29.
- [7] BROWNE, C. B., POWLEY, E., WHITEHOUSE, D., LUCAS, S. M., COWLING, P. I., ROHLFSHAGEN, P., TAVENER, S., PEREZ, D., SAMOTHRAKIS, S., AND COLTON, S. A Survey of Monte Carlo Tree Search Methods. *IEEE Transactions on Computational Intelligence and AI in Games 4*, 1 (2012), pp. 1–43.
- [8] CAMPBELL, M. The Graph-History Interaction: On Ignoring Position History. In ACM Annual Conference on the Range of Computing (1985), pp. 278–280.
- [9] DOE, E., WINANDS, M. H. M., KOWALSKI, J., SOEMERS, D. J. N. J., GÓRSKI, D., AND BROWNE, C. Proof Number Based Monte-Carlo Tree Search. In *IEEE Conference on Games* (2022), pp. 206–212.
- [10] Du, H., Wei, T. H., and Müller, M. Solving NoGo on Small Rectangular Boards. In Advances in Computer Games (2024), Springer Nature Switzerland, pp. 39–49.
- [11] ENZENBERGER, M., MÜLLER, M., ARNESON, B., AND SEGAL, R. Fuego—An Open-Source Framework for Board Games and Go Engine Based on Monte Carlo Tree Search. *IEEE Transactions on Computational Intelligence and AI in Games* 2 (2011), pp. 259–270.
- [12] EWALDS, T. V. Playing and Solving Havannah, 2012. University of Alberta Master's Thesis (2012), https://github.com/tewalds/morat.

- [13] HAYWARD, R., BJÖRNSSON, Y., JOHANSON, M., KAN, M., PO, N., AND VAN RIJSWIJCK, J. Solving 7×7 Hex: Virtual Connections and Game-State Reduction. Advances in Computer Games: Many Games, Many Challenges (2004), pp. 261–278.
- [14] HENDERSON, P., ARNESON, B., AND HAYWARD, R. Solving 8x8 Hex. IJCAI International Joint Conference on Artificial Intelligence (2009), pp. 505-510.
- [15] KISHIMOTO, A., AND MÜLLER, M. A General Solution to the Graph History Interaction Problem. In Proceedings of the 19th National Conference on Artifical Intelligence (2004), pp. 644–649.
- [16] KISHIMOTO, A., WINANDS, M., MÜLLER, M., AND SAITO, J. T. Game-Tree Search Using Proof Numbers: The First Twenty Years. ICGA Journal 35 (2012), pp. 131–156.
- [17] KNUTH, D. E., AND MOORE, R. W. An Analysis of Alpha-Beta Pruning. Artificial Intelligence 6, 4 (1975), pp. 293–326.
- [18] KOCSIS, L., AND SZEPESVÁRI, C. Bandit Based Monte-Carlo Planning. In Machine Learning: ECML (2006), pp. 282–293.
- [19] MÜLLER, M. Playing it Safe: Recognizing Secure Territories in Computer Go by Using Static Rules and Search. In *Game Programming Workshop* (1997), pp. 80–86.
- [20] NAGAI, A. DF-PN Algorithm for Searching AND/OR Trees and its Applications. University of Tokyo Ph.D. Thesis (2002).
- [21] Neto, J. P., and Taylor, W. Game Mutators for Restricting Play. Game & Puzzle Design (2015), pp. 64-65.
- [22] NIU, X., KISHIMOTO, A., AND MÜLLER, M. Recognizing Seki in Computer Go. In Advances in Computer Games. 11th International Conference (2006), vol. 4250 of Lecture Notes in Computer Science, Springer, pp. 88–103.
- [23] NIU, X., AND MÜLLER, M. An Improved Safety Solver for Computer Go. In Computers and Games: 4th International Conference (2006), vol. 3846 of Lecture Notes in Computer Science, Springer, pp. 97–112.
- [24] NIU, X., AND MÜLLER, M. An Open Boundary Safety-of-Territory Solver for the game of Go. In Computers and Games. 5th International Conference (2007), vol. 4630 of Lecture Notes in Computer Science, Springer, pp. 37– 49.
- [25] NIU, X., AND MÜLLER, M. An Improved Safety Solver in Go using Partial Regions. In Computers and Games. 6th International Conference (2008), vol. 5131 of Lecture Notes in Computer Science, Springer, pp. 102–112.

- [26] PAWLEWICZ, J., AND HAYWARD, R. B. Scalable Parallel DFPN Search. In Computers and Games (2013), pp. 138–150.
- [27] PAWLEWICZ, J., AND LEW, L. Improving Depth-First PN-Search: 1 + Epsilon Trick. In Proceedings of the 5th International Conference on Computers and Games (2006), pp. 160–171.
- [28] RANDALL, O., WEI, T.-H., HAYWARD, R., AND MÜLLER, M. Improving Search in Go Using Bounded Static Safety. In Computers and Games (2022), pp. 14–23.
- [29] ROSIN, C. Multi-armed Bandits with Episode Context. Annals of Mathematics and Artificial Intelligence 61 (2010), pp. 203–230.
- [30] SAFFIDINE, A., AND CAZENAVE, T. Developments on Product Propagation. In Computers and Games (2013), pp. 100–109.
- [31] SCHAEFFER, J., BURCH, N., BJÖRNSSON, Y., KISHIMOTO, A., MÜLLER, M., LAKE, R., Lu, P., and Sutphen, S. Checkers is Solved. Science 317, 5844 (2007), pp. 1518–1522.
- [32] SCHAEFFER, J., AND PLAAT, A. New Advances in Alpha-Beta Searching. In Proceedings of the 1996 ACM 24th annual Conference on Computer Science (1996), pp. 124-130.
- [33] SHIH, C.-C., Wu, T.-R., WEI, T. H., AND WU, I.-C. A Novel Approach to Solving Goal-Achieving Problems for Board Games. In Proceedings of the 36th AAAI Conference on Artificial Intelligence (2021), pp. 10362–10369.
- [34] SILVER, D., HUANG, A., MADDISON, C., GUEZ, A., SIFRE, L., DRIESS-CHE, G., SCHRITTWIESER, J., ANTONOGLOU, I., PANNEERSHELVAM, V., LANCTOT, M., DIELEMAN, S., GREWE, D., NHAM, J., KALCHBRENNER, N., SUTSKEVER, I., LILLICRAP, T., LEACH, M., KAVUKCUOGLU, K., GRAEPEL, T., AND HASSABIS, D. Mastering the Game of Go with Deep Neural Networks and Tree Search. Nature 529 (2016), pp. 484–489.
- [35] SILVER, D., HUBERT, T., SCHRITTWIESER, J., ANTONOGLOU, I., LAI, M., GUEZ, A., LANCTOT, M., SIFRE, L., KUMARAN, D., GRAEPEL, T., LILLICRAP, T., SIMONYAN, K., AND HASSABIS, D. A General Reinforcement Learning Algorithm that Masters Chess, Shogi, and Go through Self-Play. Science 362, 6419 (2018), pp. 1140-1144.
- [36] SLATE, D., AND ATKIN, L. Chess Skill in Man and Machine. In Springer-Verlag (1977), pp. 82–118.
- [37] SONG, J., AND MÜLLER, M. An Enhanced Solver for the Game of Amazons. IEEE Transactions on Computational Intelligence and AI in Games 7 (2015), pp. 16–27.

- [38] SUTTON, R. S., AND BARTO, A. G. Reinforcement Learning: An Introduction. MIT Press (1998), pp. 39-40.
- [39] VAN DER WERF, E., HERIK, H., AND UITERWIJK, J. Solving Go on Small Boards. ICGA Journal 26 (2003), pp. 92–107.
- [40] VAN DER WERF, E., AND WINANDS, M. Solving Go for Rectangular Boards. ICGA Journal 32, 2 (2009), pp. 77–88.
- [41] WAGNER, J., AND VIRÁG, I. Solving Renju. Joint International Computer Games Association 24 (2001), pp. 30–35.
- [42] WINANDS, M. H. M., BJÖRNSSON, Y., AND SAITO, J.-T. Monte-Carlo Tree Search Solver. In Computers and Games (2008), pp. 25–36.
- [43] Wu, T.-R., Shih, C.-C., Wei, T.-H., Tsai, M.-Y., Hsu, W.-Y., and
- Wu, I.-C. AlphaZero-based Proof Cost Network to Aid Game Solving. In International Conference on Learning Representations (2022).
- [44] ZOBRIST, A. A New Hashing Method with Application for Game Playing. ICGA Journal 13 (1990), pp. 69-73.