
Efficiently Solving Games with
Expected Work Search

Owen Randall, Martin Müller, Ting-Han Wei, and Ryan Hayward

Introduction

- Expected Work Search (EWS) is a new combinatorial search algorithm

- Not a search engine like Google or Bing

- Searches for solutions to problems with many possible positions

- Use heuristics to efficiently guide search

- Can exponentially improve performance

- EWS can outperform existing algorithms

- 3.8x to 291x faster when solving Go

- 2.0x to 3032x faster when solving Hex

https://en.wikipedia.org/wiki/A*_search_algorithm#/media/File:Astarpathfinding.gif

Solving

- Evaluate EWS by solving two player perfect

information games

- Specifically Go and Hex

- Well defined rules

- Scalable difficulty

- Solving games prove who wins under optimal play

- Any winning move = winning position

- All losing moves = losing position

https://github.com/sotetsuk/pgx?tab=readme-ov-file https://www.irish-go.org/how-to-play-go/

Heuristics

- Win rate estimation

- Monte Carlo Tree Search

- Prioritizes strong moves

- Proof size estimation

- Proof number search

- Prioritizes quickly ending the game

- Both have strengths and weaknesses

- EWS combines both using Expected Work

https://www.365chess.com/board_editor.php

Expected Work Search

- Build a node tree in memory

- Nodes represent positions

- Each node has a win rate, and
Expected Work estimate

- Each iteration of EWS builds
the tree, refines node
estimates, and backs up proofs

Expected Work Calculation

- How can we estimate the work it
will take to solve a node?

- Inductively assume children have
expected work values

- Separate cases for winning & losing

- Use MCTS style win rates to
estimate winning probability

- Base case expected work values
come from random simulations

Expected Work Calculation

- A position is either winning or losing

- Losing case:

Expected Work Calculation

- A position is either winning or losing

- Losing case:

Expected Work Calculation

- A position is either winning or losing

- Losing case:

Expected Work Calculation

- A position is either winning or losing

- Losing case:

Expected Work Calculation

- A position is either winning or losing

- Losing case:

- Sum of winning children’s EW

Expected Work Calculation

- A position is either winning or losing

- Winning case:

Expected Work Calculation

- A position is either winning or losing

- Winning case:

Expected Work Calculation

- A position is either winning or losing

- Winning case:

Expected Work Calculation

- A position is either winning or losing

- Winning case:

- Weighted sum of losing children’s EW

- Children are searched in order

- Search stops once a losing child

is found

- The probability of searching a

child = the probability none of

the previous children are losing

- Children are searched in order

- Search stops once a losing child

is found

- The probability of searching a

child = the probability none of

the previous children are losing

- Children are searched in order

- Search stops once a losing child

is found

- The probability of searching a

child = the probability none of

the previous children are losing

Selection

- Traverse the search tree

- Select the best child according

to the move ordering

- If the selected child has been

expanded, continue selection

- Otherwise, expand the leaf node

Child Ordering

- Sort children with:

- Best first move ordering

- Move ordering of children determines EW
win

- This ordering minimizes EW
win

Child Ordering

Child Ordering

Child Ordering

Selection

- Traverse the search tree

- Select the best child according

to the move ordering

- If the selected child has been

expanded, continue selection

- Otherwise, expand the leaf node

Expansion

- Create new nodes

- Check for terminal children

- Initialize WR and EW with

random simulation results

- Return if the expanded node is

proven

Simulations

New nodes

Terminal child

Expanding node

Initial Evaluation

- Random simulations

- Win rates = wins / visits

- Initialize EW as the sum of the branching

factors of positions in random simulations

-

Expansion

- Create new nodes

- Check for terminal children

- Initialize WR and EW with

random simulation results

- Return if the expanded node is

proven

Backpropagation

- Back up new information along the

path chosen by selection:

- Win rate

- Expected Work

- Proofs

- Proven nodes are pruned

Backpropagation

- Back up new information along the

path chosen by selection:

- Win rate

- Expected Work

- Proofs

- Proven nodes are pruned

Results

- Compared against different independent solving implementations

- GoSolver, MIGOS, Enhanced AB, Morat PNS, Morat MCTS

- Ablation study

- Removed proof-size / win-rate information

- Performance drops

- Evaluated a variety of Go positions

- Strong general performance

- New results on empty boards

- Evaluated empty nxn Hex

- Strong results with and without knowledge

Solving Square Go Boards

- Compare against:

- EWS-WR (without win rate estimation)

- EWS-PS (without proof size estimation)

- Go-Solver (iterative deepening alpha beta)

- MIGOS (state of the art using Japanese rules)

Solving Square Go Boards

- Compare against:

- EWS-WR (without win rate estimation)

- EWS-PS (without proof size estimation)

- Go-Solver (iterative deepening alpha beta)

- MIGOS (state of the art using Japanese rules)

Solving Square Hex Boards

- Comparing against:

- An enhanced alpha beta solver we developed

- Morat Monte Carlo Tree Search

- Morat Proof Number Search

Solving with Hex Knowledge

- Virtual Connections

- Strategies to guarantee

connections

- Full board connections

determine the winner

- Intersections of first player

VCs form a must-play zone

Solving with Hex Knowledge

- Dead cells / Inferior cell

analysis

- Some moves are irrelevant to

the game’s theoretical outcome

- Dead cells can be filled in,

inferior moves can be ignored

- Found with pattern matching

Solving with Hex Knowledge

- Significantly reduces search space

- For 6x6 Hex: 93,963,192 nodes -> 26 nodes

- 8x8 can be solved

- Search is much slower, but more node efficient

Conclusion

- Expected Work Search combines proof size and win rate heuristics

- Balances these heuristics

- Covers previous weaknesses

- Strong results on Go and Hex

- New results solving 5x5 Go

with pos. superko

- More Hex knowledge is

needed for S.O.T.A results

- Plenty of future work for EWS

Thank you for your time!

Questions?

