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Abstract. Combinatorial games lead to several interesting, clean prob-
lems in algorithms and complexity theory, many of which remain open.
The purpose of this paper is to provide an overview of the area to encour-
age further research. In particular, we begin with general background
in combinatorial game theory, which analyzes ideal play in perfect-
information games. Then we survey results about the complexity of de-
termining ideal play in these games, and the related problems of solving
puzzles, in terms of both polynomial-time algorithms and computational
intractability results. Our review of background and survey of algorith-
mic results are by no means complete, but should serve as a useful primer.

1 Introduction

Many classic games are known to be computationally intractable: one-player
puzzles are often NP-complete (as in Minesweeper), and two-player games are
often PSPACE-complete (as in Othello) or EXPTIME-complete (as in Checkers,
Chess, and Go). Surprisingly, many seemingly simple puzzles and games are
also hard. Other results are positive, proving that some games can be played
optimally in polynomial time. In some cases, particularly with one-player puzzles,
the computationally tractable games are still interesting for humans to play.

After reviewing some of the basic concepts in combinatorial game theory
in Section 2, Sections 3—5 survey several of these algorithmic and intractabil-
ity results. We do not intend to give a complete survey, but rather to give an
introduction to the area. Given the space restrictions, the sample of results men-
tioned here reflect a personal bias: results about “well-known” games (in North
America), some of the results I find interesting, and results in which I have
been involved. For a more complete overview, please see the full version of this
paper [12].

Combinatorial game theory is to be distinguished from other forms of game
theory arising in the context of economics. Economic game theory has applica-
tions in computer science as well, most notably in the context of auctions [11]
and analyzing behavior on the Internet [33].

2 Combinatorial Game Theory

A combinatorial game typically involves two players, often called Left and Right,
alternating play in well-defined moves. However, in the interesting case of a



combinatorial puzzle, there is only one player, and for cellular automata such
as Conway’s Game of Life, there are no players. In all cases, no randomness or
hidden information is permitted: all players know all information about gameplay
(perfect information). The problem is thus purely strategic: how to best play the
game against an ideal opponent.

It is useful to distinguish several types of two-player perfect-information
games [3, pp. 16-17]. A common assumption is that the game terminates after
a finite number of moves (the game is finite or short), and the result is a unique
winner. Of course, there are exceptions: some games (such as Life and Chess)
can be drawn out forever, and some games (such as tic-tac-toe and Chess) define
ties in certain cases. However, in the combinatorial-game setting, it is useful to
define the winner as the last player who is able to move; this is called normal
play. If, on the other hand, the winner is the first player who cannot move, this
is called misere play. (We will normally assume normal play.) A game is loopy
if it is possible to return to previously seen positions (as in Chess, for example).
Finally, a game is called impartial if the two players (Left and Right) are treated
identically, that is, each player has the same moves available from the same game
position; otherwise the game is called partizan.

A particular two-player perfect-information game without ties or draws can
have one of four outcomes as the result of ideal play: player Left wins, player
Right wins, the first player to move wins (whether it is Left or Right), or the
second player to move wins. One goal in analyzing two-player games is to deter-
mine the outcome as one of these four categories, and to find a strategy for the
winning player to win. Another goal is to compute a deeper structure to games
described in the remainder of this section, called the value of the game.

A beautiful mathematical theory has been developed for analyzing two-player
combinatorial games. The most comprehensive reference is the book Winning
Ways by Berlekamp, Conway, and Guy [3], but a more mathematical presen-
tation is the book On Numbers and Games by Conway [8]. See also [21] for
a bibliography. The basic idea behind the theory is simple: a two-player game
can be described by a rooted tree, each node having zero or more left branches
correspond to options for player Left to move and zero or more right branches
corresponding to options for player Right to move; leaves corresponding to fin-
ished games, the winner being determined by either normal or misere play. The
interesting parts of combinatorial game theory are the several methods for ma-
nipulating and analyzing such games/trees. We give a brief summary of some of
these methods in this section.

2.1 Conway’s Surreal Numbers

A richly structured special class of two-player games are John H. Conway’s
surreal numbers([8], a vast generalization of the real and ordinal number systems.
Basically, a surreal number {L | R} is the “simplest” number larger than all Left
options (in L) and smaller than all Right options (in R); for this to constitute a
number, all Left and Right options must be numbers, defining a total order, and



each Left option must be less than each Right option. See [8] for more formal
definitions.

For example, the simplest number without any larger-than or smaller-than
constraints, denoted {|}, is 0; the simplest number larger than 0 and without
smaller-than constraints, denoted {0] }, is 1. This method can be used to gener-
ate all natural numbers and indeed all ordinals. On the other hand, the simplest
number less than 0, denoted { |0}, is —1; similarly, all negative integers can be
generated. Another example is the simplest number larger than 0 and smaller
than 1, denoted {0|1}, which is %; similarly, all dyadic rationals can be gen-
erated. After a countably infinite number of such construction steps, all real
numbers can be generated; after many more steps, the surreals are all numbers

that can be generated in this way.

What is interesting about the surreals from the perspective of combinatorial
game theory is that they are a subclass of all two-player perfect-information
games, and some of the surreal structure, such as addition and subtraction,
carries over to general games. Furthermore, while games are not totally ordered,
they can still be compared to some surreal numbers and, amazingly, how a game
compares to the surreal number 0 determines exactly the outcome of the game.
This connection is detailed in the next few paragraphs.

First we define some algebraic structure of games that carries over from
surreal numbers. Two-player combinatorial games, or trees, can simply be rep-
resented as {L| R} where, in contrast to surreal numbers, no constraints are
placed on L and R. The negation of a game is the result of reversing the roles of
the players Left and Right throughout the game. The (disjunctive) sum of two
(sub)games is the game in which, at each player’s turn, the player has a binary
choice of which subgame to play, and makes a move in precisely that subgame.
A partial order is defined on games recursively: a game x is less than or equal to
a game y if every Left option of x is less than y and every Right option of y is
more than z.

Note that while {—1]1} =0 = {|} in terms of numbers, {—1|1} and {|}
denote different games (lasting 1 move and 0 moves, respectively), and in this
sense are equal in value but not identical symbolically or game-theoretically.
Nonetheless, the games {—1|1} and {|} have the same outcome: the second
player to move wins.

Amazingly, this holds in general: two equal numbers represent games with
equal outcome (under ideal play). In particular, all games equal to 0 have the
outcome that the second player to move wins. Furthermore, all games equal
to a positive number have the outcome that the Left player wins; more gener-
ally, all positive games (games larger than 0) have this outcome. Symmetrically,
all negative games have the outcome that the Right player wins (this follows
automatically by the negation operation).

There is one outcome not captured by the characterization into zero, positive,
and negative games: the first player to move wins. An example of such a game
is {1|0}; this fails to be a surreal number because 1 > 0. By the claim above,
{1]0}]/0. Indeed, {1]|0} ||z for all surreal numbers z, 0 < z < 1. In contrast,



x < {1]0} for all z < 0 and {1]|0} < « for all 1 < z. In general it holds that a
game is fuzzy with some surreal numbers in an interval [—n,n] but comparable
with all surreals outside that interval.

For brevity we omit many other useful notions in combinatorial game theory,
such as additional definitions of summation, super-infinitesimal games * and 1,
mass, temperature, thermographs, the simplest form of a game, remoteness, and
suspense; see [3, 8].

2.2 Sprague-Grundy Theory

A celebrated result in combinatorial game theory is the characterization of im-
partial two-player perfect-information games, discovered independently in the
1930’s by Sprague [39] and Grundy [25]. Recall that a game is impartial if it
does not distinguish between the players Left and Right. The Sprague-Grundy
theory [39,25,8,3] states that every finite impartial game is equivalent to an
instance of the game of Nim, characterized by a single natural number n. This
theory has since been generalized to all impartial games by generalizing Nim to
all ordinals n; see [8, 38].

Nim [5] is a game played with several heaps, each with a certain number of
tokens. A Nim game with a single heap of size n is denoted by *n and is called a
nimber. During each move a player can pick any pile and reduce it to any smaller
nonnegative integer size. The game ends when all piles have size 0. Thus, a single
pile #n can be reduced to any of the smaller piles %0, 1, ..., *(n — 1). Multiple
piles in a game of Nim are independent, and hence any game of Nim is a sum of
single-pile games *n for various values of n. In fact, a game of Nim with & piles
of sizes n1, no, ..., ng is equivalent to a one-pile Nim game *n, where n is the
binary XOR of n, no, ..., ng. As a consequence, Nim can be played optimally
in polynomial time (polynomial in the encoding size of the pile sizes).

Even more surprising is that every impartial two-player perfect-information
game has the same value as a single-pile Nim game, *n for some n. The number
n is called variously the G-value, Grundy-value, or Sprague-Grundy function of
the game. It is easy to define: suppose that game = has k options yi, ...,y for
the first move (independent of which player goes first). By induction, we can
compute y; = *nq, ..., Yy = *ng. LThe theorem is that x equals *n where n
is the smallest natural number not in the set {ni,...,ng}. This number n is
called the minimum excluded value or mez of the set. This description has also
assumed that the game is finite, but this is easy to generalize [8, 38].

The Sprague-Grundy function can increase by at most 1 at each level of the
game tree, and hence the resulting nimber is linear in the maximum number
of moves that can be made in the game; the encoding size of the nimber is
only logarithmic in this count. Unfortunately, computing the Sprague-Grundy
function for a general game by the obvious method uses time linear in the number
of possible states, which can be exponential in the nimber itself.

Nonetheless, the Sprague-Grundy theory is extremely helpful for analyzing
impartial two-player games, and for many games there is an efficient algorithm to



determine the nimber. Examples include Nim itself, Kayles, and various general-
izations [27]; and Cutcake and Maundy Cake [3, pp. 26-29]. In all of these exam-
ples, the Sprague-Grundy function has a succinct characterization (if somewhat
difficult to prove); it can also be easily computed using dynamic programming.

2.3 Strategy Stealing

Another useful technique in combinatorial game theory for proving that a par-
ticular player must win is strategy stealing. The basic idea is to assume that
one player has a winning strategy, and prove that in fact the other player has
a winning strategy based on that strategy. This contradiction proves that the
second player must in fact have a winning strategy. An example of such an argu-
ment is given in Section 3.1. Unfortunately, such a proof by contradiction gives
no indication of what the winning strategy actually is, only that it exists. In
many situations, such as the one in Section 3.1, the winner is known but no
polynomial-time winning strategy is known.

2.4 Puzzles

There is little theory for analyzing combinatorial puzzles (one-player games)
along the lines of two-player theory summarized in this section. We present one
such viewpoint here. In most puzzles, solutions subdivide into a sequence of
moves. Thus, a puzzle can be viewed a tree, similar to a two-player game except
that edges are not distinguished between Left and Right. The goal is to reach
a position from which there are no valid moves (normal play). Loopy puzzles
are common; to be more explicit, repeated subtrees can be converted into self-
references to form a directed graph.

A consequence of the above view is that a puzzle is basically an impartial two-
player game except that we are not interested in the outcome from two players
alternating in moves. Rather, questions of interest in the context of puzzles are
(a) whether a given puzzle is solvable, and (b) finding the solution with the fewest
moves. An important open direction of research is to develop a general theory
for resolving such questions, similar to the two-player theory. For example, using
the analogy between impartial two-player games described above, the notion of
sums of puzzles makes sense, although it is not clear that it plays a similarly key
role as with games.

3 Algorithms for Two-Player Games

Many nonloopy two-player games are PSPACE-complete. This is fairly natu-
ral because games are closely related to boolean expressions with alternating
quantifiers (for which deciding satisfiability is PSPACE-complete): there exists
a move for Left such that, for all moves for Right, there exists another move for
Left, etc. A PSPACE-completeness result has two consequences. First, being in



PSPACE means that the game can be played optimally, and typically all posi-
tions can be enumerated, using possibly exponential time but only polynomial
space. Thus such games lend themselves to a somewhat reasonable exhaustive
search for small enough sizes. Second, the games cannot be solved in polynomial
time unless P = PSPACE, which is even “less likely” than P equaling NP.

On the other hand, loopy two-players games are often EXPTIME-complete.
Such a result is one of the few types of true lower bounds in complexity theory,
implying that all algorithms require exponential time in the worst case.

In this section we briefly survey some of these complexity results and related
positive results, ordered roughly chronologically by the first result on a particular
game. See also [18] for a related survey. Because of space constraints we omit
discussion of games on graphs, as well as the board games Gobang, Shogi, and
Othello. For details on these and other games, please refer to the full version of
this paper [12].

3.1 Hex

Hex [3, pp. 679-680] is a game designed by Piet Hein and
played on a diamond-shaped hexagonal board; see Fig. 1.
Players take turns filling in empty hexagons with their
color. The goal of a player is to connect the opposite sides
of their color with hexagons of their color. (In the figure,
one player is solid and the other player is dotted.) A game
of Hex can never tie, because if all hexagons are colored Fig.1. A 5 x 5 Hex
arbitrarily, there is precisely one connecting path of an board.
appropriate color between opposite sides of the board.
Nash [3, p. 680] proved that the first player to move
can win by using a strategy stealing argument (see Section 2.3). In contrast,
Reisch [35] proved that determining the outcome of a general position in Hex is
PSPACE-complete.

3.2 Checkers (Draughts)

The standard 8 x 8 game of Checkers (Draughts), like many [ o[ [o] Jol [0
classic games, is finite and hence can be played optimally in =566 6
constant time (in theory). The complexity of playing in a |9 [0 [O] 0] |©
general n X n board from a natural starting position, such as
the one in Fig. 2, is open. However, deciding the outcome of an g~ 1@ e o o @ e
arbitrary configuration is PSPACE-hard [22]. If a polynomial .’ .. .’ .’ ..
bound is placed on the number of moves that are allowed in

between jumps (which is a reasonable generalization of the Fig.2. A nat-
drawing rule in standard Checkers [22]), then the problem is | ., starting
in PSPACE and hence is PSPACE-complete. Without such a configuration for
restriction, however, Checkers is EXPTIME-complete [37]. 10x 10 Checkers,

On the other hand, certain simple questions about Check- from [22)].

ers can be answered in polynomial time [22,13]. Can one

[©
[6)
[6)
6]
[6)




player remove all the other player’s pieces in one move (by several jumps)? Can
one player king a piece in one move? Because of the notion of parity on n x n
boards, these questions reduce to checking the existence of an Eulerian path
or general path, respectively, in a particular directed graph; see [22,13]. How-
ever, for boards defined by general graphs, at least the first question becomes
NP-complete [22].

3.3 Go

|

Presented at the same conference as the Checkers re-
sult in the previous section (FOCS’78), Lichtenstein - -
and Sipser [32] proved that the classic oriental game

of Go is also PSPACE-hard for an arbitrary config- Fig. 3. A simple ko.
uration on an n X n board. This proof does not in-

volve any situations called ko’s, where a rule must

be invoked to avoid infinite play. In contrast, Robson [36] proved that Go is
EXPTIME-complete when ko’s are involved, and indeed used judiciously. The
type of ko used in this reduction is shown in Fig. 3. When one of the players
makes a move shown in the figure, the ko rule prevents (in particular) the other
move shown in the figure to be made immediately afterwards.

Recently, Wolfe [41] has shown that even Go endgames are PSPACE-hard.
More precisely, a Go endgame is when the game has reduced to a sum of Go
subgames, each equal to a polynomial-size game tree. This proof is based on
several connections between Go and combinatorial game theory detailed in a
book by Berlekamp and Wolfe [2].

3.4 Chess

Fraenkel and Lichtenstein [23] proved that a generalization of the classic game
Chess to n x n boards is EXPTIME-complete. Specifically, their generalization
has a unique king of each color, and for each color the numbers of pawns, bish-
ops, rooks, and queens increase as some fractional power of n. (Knights are not
needed.) The initial configuration is unspecified; what is EXPTIME-hard is to
determine the winner (who can checkmate) from an arbitrary specified configu-
ration.

3.5 Hackenbush

Hackenbush is one of the standard examples of a combinatorial game in Winning
Ways; see e.g. [3, pp. 4-9]. A position is given by a graph with each edge colored
either red (Left), blue (Right), or green (neutral), and with certain vertices
marked as rooted. Players take turns removing an edge of an appropriate color
(either neutral or their own color), which also causes all edges not connected
to a rooted vertex to be removed. The winner is determined by normal play.
Chapter 7 of Winning Ways [3, pp. 183-220] proves that determining the value
of a red-blue Hackenbush position is NP-hard.



3.6 Domineering (Crosscram)

Domineering or crosscram [3, pp. 117-124] is a partizan game involving place-
ment of horizontal and vertical dominoes in a grid; a typical starting position
is an m X n rectangle. Left can play only vertical dominoes and Right can play
only horizontal dominoes, and dominoes must remain disjoint. The winner is
determined by normal play.

The complexity of Domineering, computing either the outcome or the value
of a position, remains open. Lachmann, Moore, and Rapaport [31] have shown
that the winner and a winning strategy can be computed in polynomial time
for m € {1,2,3,4,5,7,9,11} and all n. These algorithms do not compute the
value of the game, nor the optimal strategy, only a winning strategy. We omit
discussion of the related game Cram [3, pp. 468-472].

3.7 Dots-and-Boxes and Strings-and-Coins o~ o o o o

Dots-and-Bozes [1], [3, pp. 507-550] is a well-known children’s

game in which players take turns drawing horizontal and vertical T {—.

edges connecting pairs of dots in an m x n subset of the lattice.
Whenever a player makes a move that encloses a unit square
with drawn edges, the player is awarded a point and must then .

. . . Fig. 4.
draw another edge in the same move. The winner is the player A

Dots-
with the most points when the entire grid has been drawn. See and-Boxes
Fig. 4 for an example of a position.

endgame.

A generalization arising from the dual of Dots-and-Boxes is
Strings-and-Coins. This game involves a sort of graph whose ver-
tices are coins and whose edges are strings. The coins may be
tied to each other and to the “ground” by strings; the latter connection can
be modeled as a loop in the graph. Players alternate cutting strings (remov-
ing edges), and if a coin is thereby freed, that player collects the coin and cuts
another string in the same move. The player to collect the most coins wins.
Winning Ways [3, pp. 543-544] describes a proof that Strings-and-Coins
endgames are NP-hard. Eppstein [18] observes that this reduction should also
apply to endgame instances of Dots-and-Boxes.

3.8 Amazons

Amazons is a game invented by Walter Zamkauskas in 1988, containing elements
of Chess and Go. Gameplay takes place on a 10 x 10 board with four amazons of
each color arranged as in Fig. 5 (left). In each turn, Left [Right] moves a black
[white] amazon to any unoccupied square accessible by a Chess queen’s move,
and fires an arrow to any unoccupied square reachable by a Chess queen’s move
from the amazon’s new position. The arrow (drawn as a circle) now occupies its
square; amazons and shots can no longer pass over or land on this square. The
winner is determined by normal play.



Gameplay in Amazons typically split into O
a sum of simpler games because arrows par- W o O
tition the board into multiple components. i
In particular, the endgame begins when each W L O
component of the game contains amazons of 2 |O
only a single color. Then the goal of each [ ™ iy
player is simply to maximize the number of O
moves in each component. Buro [7] proved e 8 &?j

that maximizing the number of moves in a
single component is NP-complete (for n x n
boards). In a general endgame, deciding the
outcome may not be in NP because it is diffi-
cult to prove that the opponent has no better
strategy. However, Buro [7] proved that this
problem is NP-equivalent [24], i.e., the problem can be solved by a polynomial
number of calls to an algorithm for any NP-complete problem, and vice versa.

Fig.5. The initial position in
Amazons (left) and black trap-
ping a white amazon (right).

It remains open whether deciding the outcome of a general Amazons position
is PSPACE-hard. The problem is in PSPACE because the number of moves in
a game is at most the number of squares in the board.

3.9 Phutball jﬁ% | \‘
O gf

Conway’s game of | |/ | OT1~ 1o
Philosopher’s Foot-

ball or Phutball [3, Fig. 6. A single move in Phutball consisting of four jumps.
pp. 688-691] in-

volves white and

black stones on a rectangular grid such as a Go board. Initially, the unique
black stone (the ball) is placed in the middle of the board, and there are no
white stones. Players take turns either placing a white stone in any unoccupied
position, or moving the ball by a sequence of jumps over consecutive sequences
of white stones each arranged horizontally, vertically, or diagonally. See Fig. 6.
A jump causes immediate removal of the white stones jumped over, so those
stones cannot be used for a future jump in the same move. Left and Right have
opposite sides of the grid marked as their goal lines. Left’s goal is to end a move
with the ball on or beyond Right’s goal line, and symmetrically for Right.

Phutball is inherently loopy and it is not clear that either player has a winning
strategy: the game may always be drawn out indefinitely. One counterintuitive
aspect of the game is that white stones placed by one player may be “corrupted”
for better use by the other player. Recently, however, Demaine, Demaine, and
Eppstein [13] found an aspect of Phutball that could be analyzed. Specifically,
they proved that determining whether the current player can win in a single move
(“mate in 1” in Chess) is NP-complete. This result leaves open the complexity
of determining the outcome of a given game position.



4 Algorithms for Puzzles

Many puzzles (one-player games) have short solutions and are NP-complete.
However, several puzzles based on motion-planning problems are harder, al-
though often being in a bounded region, only PSPACE-complete. However, when
generalized to the entire plane and unboundedly many pieces, puzzles often be-
come undecidable.

This section briefly surveys some of these results, following the structure of
the previous section. Again, because of space constraints, we omit discussion
of several puzzles: Instant Insanity, Cryptarithms, Peg Solitaire, and Shanghai.
For details on these and other puzzles, please refer to the full version of this
paper [12].

4.1 Sliding Blocks

The Fifteen Puzzle [3, p. 756] is a classic puzzle consisting of 15 numbered square
blocks in a 4 x 4 grid; one square in the grid is a hole which permits blocks to
slide. The goal is to order the blocks as increasing in English reading order.
See [29] for the history of this puzzle.

A natural generalization of the Fifteen Puzzle is the n? —1 puzzle on an n xn
grid. It is easy to determine whether a configuration of the n? —1 puzzle can reach
another: the two permutations of the block numbers (in reading order) simply
need to match in parity, that is, whether the number of inversions (out-of-order
pairs) is even or odd. However, to find a solution using the fewest slides is NP-
complete [34]. It is also NP-hard to approximate within an additive constant,
but there is a polynomial-time constant-factor approximation [34].

A harder sliding-block puzzle is Rush Hour, distributed by Binary Arts, Inc.
Several 1 x 2, 1 x 3, 2 x 1, and 3 x 1 rectangles are arranged in an m x n
grid. Horizontally oriented blocks can slide left and right, and vertically oriented
blocks can slide up and down, provided the blocks remain disjoint. The goal is
to remove a particular block from the puzzle via an opening in the bounding
rectangle. Recently, Flake and Baum [20] proved that this formulation of Rush
Hour is PSPACE-complete.

A classic reference on a wide class of sliding-block puzzles is by Hordern [29].
One general form of these puzzles is that rectangular blocks are placed in a rect-
angular box, and each block can be moved horizontally and vertically, provided
the blocks remain disjoint. The goal is to re-arrange one configuration into an-
other. To my knowledge, the complexity of deciding whether such puzzles are
solvable remains open. A simple observation is that, as with Rush Hour, they
are all in PSPACE.

4.2 Minesweeper

Minesweeper is a well-known imperfect-information computer puzzle popularized
by its inclusion in Microsoft Windows. Gameplay takes place on an n x n board,
and the player does not know which squares contain mines. A move consists



of uncovering a square; if that square contains a mine, the player loses, and
otherwise the player is revealed the number of mines in the 8 adjacent squares.
The player also knows the total number of mines.

There are several problems of interest in Minesweeper. For example, given a
configuration of partially uncovered squares (each marked with the number of
adjacent mines), is there a position that can be safely uncovered? More generally,
what is the probability that a given square contains a mine, assuming a uniform
distribution of remaining mines? A different generalization of the first question
is whether a given configuration is consistent, i.e., can be realized by a collection
of mines. A consistency checker would allow testing whether a square can be
guaranteed to be free of mines, thus answering the first question. A final problem
is to decide whether a given configuration has a unique realization.

Kaye [30] proved that testing consistency is NP-complete. This result leaves
open the complexity of the other questions mentioned above.

4.3 Pushing Blocks

Similar in spirit to the sliding-block puzzles in Section 4.1 are pushing-block
puzzles. In sliding-block puzzles, an exterior agent can move arbitrary blocks
around, whereas pushing-block puzzles embed a robot that can only move adja-
cent blocks but can also move itself within unoccupied space. The study of this
type of puzzle was initiated by Wilfong [40], who proved that deciding whether
the robot can reach a desired target is NP-hard when the robot can push and
pull L-shaped blocks.

Since Wilfong’s work, research has concentrated on the simpler model in
which the robot can only push blocks and the blocks are unit squares. Types of
puzzles are further distinguished by how many blocks can be pushed at once,
whether blocks can additionally be defined to be unpushable or fized (tied to
the board), how far blocks move when pushed, and the goal (usually for the
robot to reach a particular location). Dhagat and O’Rourke [17] initiated the
exploration of square-block puzzles by proving that PUSH-*, in which arbitrarily
many blocks can be pushed at once, is NP-hard with fixed blocks. Bremner,
O’Rourke, and Shermer [6] strengthened this result to PSPACE-completeness.
Recently, Hoffmann [28] proved that PUsH-* is NP-hard even without fixed
blocks, but it remains open whether it is in NP or PSPACE-complete.

Several other results allow only a single block to be pushed at once. In this
context, fixed blocks are less crucial because a 2 x 2 cluster of blocks can never
be disturbed. A well-known computer puzzle in this context is Sokoban, where
the goal is to place each block onto any one of the designated target squares.
This puzzle was proved PSPACE-complete by Culberson [10]. A simpler puzzle,
called PusH-1, arises when the goal is simply for the robot to reach a particular
position. Demaine, Demaine, and O’Rourke [14] have proved that this puzzle is
NP-hard, but it remains open whether it is in NP or PSPACE-complete.

A variation on the PUSH series of puzzles, called PUSHPUSH, is when a block
always slides as far as possible when pushed. The NP-hardness of these ver-
sions follow from [14, 28]. Another variation, called PUSH-X, disallows the robot



from revisiting a square (the robot’s path cannot cross). This direction was sug-
gested in [14] because it immediately places the puzzles in NP. Recently, Demaine
and Hoffmann [16] proved that PUSH-1X and PUSHPUSH-1X are NP-complete.
Hoffmann’s reduction for PUSH-* also establishes NP-completeness of PUSH-*X
without fixed blocks.

4.4 Clickomania (Same Game) !
Clickomania or Same Game [4] is a E E Eﬂ m
computer puzzle consisting of a rect- ||

angular grid of square blocks each

colored one of k colors. Horizontally Fig.7. The falling rules for removing a
and vertically adjacent blocks of the group in Clickomania. Can you remove all
same color are considered part of the remaining blocks?

same group. A move selects a group

containing at least two blocks and

removes those blocks, followed by two “falling” rules; see Fig. 7 (top). First,
any blocks remaining above created holes fall down in each column. Second, any
empty columns are removed by sliding the succeeding columns left.

The main goal in Clickomania is to remove all the blocks. Biedl et al. [4]
proved that deciding whether this is possible is NP-complete. This complexity
result holds even for puzzles with two columns and five colors, and for puzzles
with five columns and three colors. On the other hand, for puzzles with one
column (or, equivalently, one row) and arbitrarily many colors, they show that
the maximum number of blocks can be removed in polynomial time. In partic-
ular, the puzzles whose blocks can all be removed are given by the context-free
grammar S — A ]SS5 |cSc|eSeSe where ¢ ranges over all colors.

Various cases of Clickomania remain open, for example, puzzles with two
colors, and puzzles with O(1) rows. Richard Nowakowski suggested a two-player
version of Clickomania, described in [4], in which players take turns removing
groups and normal play determines the winner; the complexity of this game
remains open.

4.5 Moving Coins

Several coin-sliding and coin-moving puzzles fall into the following general frame-
work: re-arrange one configuration of unit disks in the plane into another config-
uration by a sequence of moves, each repositioning a coin in an empty position
that touches at least two other coins. Examples of such puzzles are shown in
Fig. 8. This framework can be further generalized to nongeometric puzzles in-
volving movement of tokens on graphs with adjacency restrictions.

Coin-moving puzzles are analyzed by Demaine, Demaine, and Verrill [15]. In
particular, they study puzzles as in Fig. 8 in which the coins’ centers remain on
either the triangular lattice or the square lattice. Surprisingly, their results for
deciding solvability of puzzles are positive.



For the triangular

lattice, nearly all puzzles
are solvable, and there - é%% — 000000

is a  polynomial-time

algorithm characterizing (a) Turn (b) Re-arrange the
them. For the square the  pyramid pyramid into a line
lattice, there are more upside-down in seven moves
stringent constraints. For in three moves.

example, the bounding

box cannot increase by ey S

moves; more generally, the 77{L O R ars )}77
set of positions reachable . % — tsg
by moves given an infinite H —H ST mrGItinE

supply of extra coins (the
span) cannot increase.
Demaine, Demaine, and
Verrill show that, subject
to this constraint, there
is a polynomial-time
algorithm to solve all
puzzles with at least two
extra coins past what is
required to achieve the
span. (In particular, all
such puzzles are solvable.)

(c) Flip the diagonal (d) Invert the V in 24
in 18 moves. moves.

Fig.8. Coin-moving puzzles in which each move
places a coin adjacent to two other coins; in the
bottom two puzzles, the coins must also remain on
the square lattice. The top two puzzles are clas-
sic, whereas the bottom two puzzles were designed
in [15].

5 Cellular Automata and Life

Conway’s Game of Life is a zero-player cellular automaton played on the square
tiling of the plane. Initially, certain cells (squares) are marked alive or dead.
Each move globally evolves the cells: a live cell remains alive if it between 2 and
3 of its 8 neighbors were alive, and a dead cell becomes alive if it had precisely
3 live neighbors. Chapter 25 of Winning Ways [3, pp. 817-850] proves that no
algorithm can decide whether an initial configuration of Life will ever completely
die out. In particular, the same question about Life restricted within a polyno-
mially bounded region is PSPACE-complete. Several other cellular automata,
with different survival and birth rules, have been studied; see e.g. [42].

6 Open Problems

Many open problems remain in combinatorial game theory. Guy [26] has com-
piled a list of such problems (some of which have since been solved). An example
of a difficult unsolved problem is Conway’s angel-devil game [9].



Many open problems also remain on the algorithmic side, and have been
mentioned throughout this paper. Examples of games and puzzles whose com-
plexities remain completely open, to my knowledge, are Toads and Frogs [19], [3,
pp. 14-15], Domineering (Section 3.6), and rectangular sliding-block puzzles
(Section 4.1). For many other games and puzzles, such as Dots and Boxes (Sec-
tion 3.7) and pushing-block puzzles (Section 4.3), some hardness results are
known, but the exact complexity remains unresolved. More generally, an inter-
esting direction for future research is to build a more comprehensive theory for
analyzing combinatorial puzzles.
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