
Artificial Intelligence 283 (2020) 103262
Contents lists available at ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

On pruning search trees of impartial games

Piotr Beling ∗, Marek Rogalski

Faculty of Mathematics and Computer Science, University of Łódź, Banacha 22, Łódź 90-238, Poland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 16 July 2018
Received in revised form 8 October 2019
Accepted 18 March 2020
Available online 24 March 2020

Keywords:
Combinatorial game theory
Game tree
Sprague-Grundy value
Nimber
Mex function
Impartial game
Nim
Chomp
Cram

In this paper we study computing Sprague-Grundy values for short impartial games under
the normal play convention. We put forward new game-agnostic methods for effective
pruning search trees of impartial games. These algorithms are inspired by the α-β , a well-
known pruning method for minimax trees. However, our algorithms prune trees whose
node values are assigned by the mex function instead of min/max.
We have verified the effectiveness of our algorithms experimentally on instances of some
standard impartial games (that is Nim, Chomp, and Cram). Based on the results of our
experiments we have concluded that: (1) our methods generally perform well, especially
when transposition table can store only a small fraction of all game positions (which is
typical when larger games are concerned); (2) one of our algorithms constitutes a more
universal alternative to the state-of-the-art algorithm proposed by Lemoine and Viennot.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

We wish to present a new algorithm for calculating the Sprague-Grundy values. We calculate this value only for short
impartial games under the normal play convention, that is combinatorial games which are finite (with a finite number of
positions), non-loopy (each run of a game is finite), impartial (both players have the same moves in any position), and with
the normal play convention (the last player able to move is the winner).

A game of this type can be defined as a tuple (S, si, N), where:

• S is a finite set of legal game states (positions);
• si ∈ S is the initial position from which the game begins;
• N : S → 2S is a function which defines the successors of a given position, q ∈ N(p) means that q can be reached from

p in one move.
N must satisfy the condition: There is no sequence of states p0, p1, . . . pn with n > 0, pi ∈ N(pi−1) (for each
i ∈ {1, . . . , n}) and p0 = pn . In other words, there are no “cycles” that return to an identical position.

A game starts at a position si , and players make moves alternately. If the game reaches a position s ∈ S such that
N(s) = ∅, then the game ends and the player to move loses.

* Corresponding author.
E-mail addresses: piotr.beling@wmii.uni.lodz.pl (P. Beling), marek.rogalski@wmii.uni.lodz.pl (M. Rogalski).
https://doi.org/10.1016/j.artint.2020.103262
0004-3702/© 2020 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.artint.2020.103262
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
http://crossmark.crossref.org/dialog/?doi=10.1016/j.artint.2020.103262&domain=pdf
mailto:piotr.beling@wmii.uni.lodz.pl
mailto:marek.rogalski@wmii.uni.lodz.pl
https://doi.org/10.1016/j.artint.2020.103262

2 P. Beling, M. Rogalski / Artificial Intelligence 283 (2020) 103262
1 function is_losing(s):
2 for m ∈ N(s):
3 if is_losing(m): return false
4 return true

Listing 1: Returns true if and only if s is losing.

Many authors (for example [1, page 4]) give an equivalent definition of a game as a set of games, instead of using the
successor function N . Such definition does not differentiate between a game and its initial position. Since this is comfortable
in many contexts, we often equate them in our paper as well.

A more in-depth introduction to impartial games can be found in [2, pages 61–78]. Examples of rules of a few such
games are included in the appendix.

From any given position there exists a winning strategy either for the player to move or for their opponent. If the
winning strategy is for the player to move, we will say that the position is winning. In the other case, we will say that
the position is losing. It is easy to prove, that a position is losing if and only if it does not have any losing successors. The
algorithm in Listing 1 directly implements this idea.

Sprague [3] and Grundy [4] independently developed a theory that allows us to efficiently identify a position as winning
or losing if it is divisible into a set of disjoint positions. The theory divides the set S into equivalence classes by assigning
the so-called Sprague-Grundy value to each position. The Sprague-Grundy value is also called a nimber, since this value for a
Nim-heap of n tokens is n.

For every position s ∈S, the Sprague-Grundy value is defined by:

G(s) = mex({G(t) : t ∈ N(s)}), (1)

where mex(X) is the minimum excluded value from a set X — the least non-negative integer not in X . (The above definition
is adopted from [1, page 54], and the algorithm which is based on it is shown at Listing 3 and discussed in detail in
Section 2.)

Note that calculating this value directly by definition may be computationally intensive. For example, computation tree
for Cram with a board 4 × 4 has 6,257,129 nodes. Increasing the board size to 5 × 4 scales its up nearly 285 times, up to
1,780,847,574 nodes. Since standard techniques such as board symmetry or transposition tables help only up to a certain
point, new methods of pruning the search tree are desirable.

There are two reasons to calculate the Sprague-Grundy value. Firstly, this value correctly identifies the outcome of opti-
mal play. A position is losing if and only if its value is zero.

Secondly, the Sprague-Grundy value of decomposable positions can be computed by combining the values of the disjoint
positions, by the following formula:

G(s) = G(s1) ⊕ G(s2) ⊕ · · · ⊕ G(sk), (2)

where:

• ⊕ is the nim-sum, which operates like an exclusive or (xor) operation on binary integers [5, page 74][4],
• s consists of disjoint positions s1, s2, . . . , sk . To make a move in s, a player first has to chose one of s1, s2, . . . , sk , and

then make a move in it.

Decomposable positions arise naturally in certain games, such as Nim or Cram. The formula (2) gives a way to compute
the Sprague-Grundy value of such a position usually faster than by Definition (1), since smaller components are considered
independently. Authors of [6] prove that even in order to compute only the outcome of a sum of positions, it is always more
efficient to ‘compute separately the nimber of at least one of the independent positions, rather than to develop directly the
game tree of the sum’.

Furthermore, an analysis of components of a decomposable position is useful also in partisan games, which constitute a
superset of impartial games (where each player can have a different set of moves in any position). For instance, an appli-
cation of this approach to Go ‘has demonstrated perfect play in long endgame problems, which far exceed the capabilities
of conventional game tree search methods’ [7,8]. However, in partisan games, the analysis of each component separately is
not always enough to determine optimal move in their sum. Then their combinatorial summation might provide the move,
but it may also lead to a combinatorial explosion, becoming impractical. Even then the analysis of components can be used
in an α − β search to prune moves, order moves or heuristically evaluate positions [9].

Some games (like Nim [10,4] or Kayles [11]) have been solved analytically. Such analyses usually depend on the form of
each game, rather than on general ideas in the whole field of short impartial games. To give an example, Chomp n × n and
2 × n or Cram 2n × 2n can be easily solved through analytical methods, but despite thorough research, a general solution
cannot be found for both games – and finding a solution for Chomp potentially gives us very little insight into Cram (and
vice versa). That is why there are so few game-agnostic results, and why computer analysis is such a popular theme in this
field.

P. Beling, M. Rogalski / Artificial Intelligence 283 (2020) 103262 3
1 function lv(s):
2 for n ← 0, 1, ...:
3 if is_losing(s+〈n〉nim): return n

Listing 2: Returns Sprague-Grundy value of the state s. Algorithm proposed by Lemoine and Viennot.

One of the most important examples is the Glop project [12], authored by Lemoine and Viennot. Glop is a software
developed to compute the winning strategies of combinatorial games. It is able to compute the winning strategies of three
games: Sprouts, Cram, and Dots and Boxes.

The authors of Glop [12] have also written several papers on the topic of computing Sprague-Grundy values [6,13], as
well as misère variants of Sprouts [14]. They proposed the algorithm for computing the Sprague-Grundy value, which is
shown in Listing 2. It sequentially tests if a given position s has the value n = 0, 1, Each test consists of checking if a
game s + 〈n〉nim is losing, where s + 〈n〉nim is a game composed of s and a Nim-heap of size n (in this game, player can
move either in s or 〈n〉nim: N(s +〈n〉nim) = {m +〈n〉nim : m ∈ N(s)} ∪ {s +〈i〉nim : i ∈ {0, 1, . . . , n − 1}}). The algorithm is based
on the following:

s + 〈n〉nim is losing ⇔ G(s + 〈n〉nim) = 0

⇔ G(s) ⊕ G(〈n〉nim) = 0 (by (2))

⇔ G(s) = n. (since G(〈n〉nim) = n)

(3)

Note that performance of this algorithm strongly depends on the order in which is_losing iterates over N(s). It is easy
to see that in order to prove that a position is winning, it is enough to find its one losing successor. So, for the algorithm at
Listing 1 to perform well, the losing successor of each winning position needs to be considered as early as possible. But this
algorithm is used by lv to analyze positions of type s + 〈n〉nim. At the same time, a position s + 〈n〉nim is losing only when
G(s) = n, which follows from (3). So heuristically checking if s + 〈n〉nim is losing requires guessing G(s), which is generally
very difficult (harder than guessing if s itself is losing) and require very deep game-specific knowledge. It is also beneficial
(and easier to implement) to consider as first moves which lead to possibly small subtrees (which are generally easier to
compute) in order to increase the chance of pruning larger branches of the search tree.

Just like lv, the algorithms presented in the next section are game-agnostic (and they can use game-specific knowledge
to arrange successors as well). It means that they can be applied to virtually any short impartial game. Other examples
of game agnostic techniques include transposition tables or endgame databases (successfully applied to, for example, Cram
[15–17]). This stands in contrast to game-specific algorithms, for instance using rotational symmetries in Cram to equate
some moves. Most of the work done in this field exploits unique features of games in order to solve it, or at least com-
pute larger boards. Examples of these kinds of papers include calculating the Sprague-Grundy values in: Euclid [18,19],
Wythoff’s game [20], Nimhoff Games [21], Grundy’s game [22,11], two-dimensional generalization of Grundy’s game [23],
and periodicity of nim-values for one-dimensional duotaire [24]. Aside from calculating the Sprague-Grundy values for
games, there are also papers that describe calculating winning or losing positions only: in Chomp [25,26], Raleigh [27],
Nimbi [28], Hexad [29], and Pentominoes [30]. Papers [16,17] present an efficient solver for Cram, which combines combi-
natorial game theory with α − β pruning, a transposition table, and Enhanced Transposition Cutoff (ETC). The solver uses
an endgame database filled with nimbers, and heuristically orders moves to quickly decompose a board and use values from
the database.

Our contributions are presented in the next sections. In Section 2 we put forward several new algorithms for pruning
search trees of impartial games. In Section 3 we show how our algorithms can be extended to use the Sprague-Grundy
theorem for decomposable positions. In Section 4 we discuss some details of implementation of our methods as well as the
one proposed by Lemoine and Viennot. We measured the effectiveness of all these methods. The results are presented and
analyzed in Section 5. Finally, Section 6 contains conclusions and suggestions for further research.

2. The algorithms

In this section we show different algorithms for calculating Sprague-Grundy value of a given position. We present them
in order of increasing complexity. We start from the simplest one (Listing 3), which is based on the definition of Sprague-
Grundy value (1). Next, we discuss new elements introduced by each subsequent version.

In Listing 3, P is a set of potential Sprague-Grundy values of position s given as argument. The algorithm successively
eliminates values from P . Exactly one value is excluded from P after visiting each successor of s in the loop at lines 5–10.
If the value v = def(m) = G(m) (see line 6) of the successor is included in P (see line 7) then, by the definition of mex, the
value excluded is v (see line 8). If v /∈ P , the maximal value is removed from P (at line 10). In such a case, the value of s
cannot be equal to max(P) since not enough successors remain to exclude all values less than max(P) from P .

The size of P is always equal to one plus the number of successors of s remaining to visit. It has exactly |N(s)| + 1
elements at the beginning (at line 4) and 1 element after visiting all |N(s)| successors. This element (see line 11) is the
Sprague-Grundy value of s, and it is returned at line 13.

4 P. Beling, M. Rogalski / Artificial Intelligence 283 (2020) 103262

1
1
1
1

1
1
1
1
1

1
1
1
1
1
1
1
1
1
1

1 function def(s):
2 if (x, v) ∈ TT where x=s:
3 return v
4 P ← {0, 1, ..., |N(s)|}
5 for m ∈ N(s):
6 v ← def(m)
7 if v ∈ P:
8 P ← P \ {v}
9 else:
0 P ← P \ {max(P)}
1 result ← the only one element of P
2 TT[s] ← result
3 return result

Listing 3: Returns Sprague-Grundy value of the state s.

1 function scut(s, R):
2 if (x, v) ∈ TT where x=s:
3 return v
4 P ← {0, 1, ..., |N(s)|}
5 for m ∈ N(s):
6 if P ∩ R = ∅: return −1
7 v ← scut(m, P \ {max(P)})
8 if v ∈ P:
9 P ← P \ {v}
0 else:
1 P ← P \ {max(P)}
2 result ← the only one element of P
3 TT[s] ← result
4 return result

Listing 4: Mex tree search with simplified pruning. Returns the Sprague-Grundy value of the state s, or −1 (only if the value
is not included in R).

1 function cut(s, R):
2 if (x, v) ∈ TT where x=s:
3 return v
4 P ← {0, 1, ..., |N(s)|}
5 exact ← true
6 for m ∈ N(s):
7 if P ∩ R = ∅: return −1
8 v ← cut(m, (P \ {max(P)}) ∩ {0, 1, ..., max(R)})
9 if v ∈ P:
0 P ← P \ {v}
1 else:
2 P ← P \ {max(P)}
3 if v = −1: exact ← false
4 result ← the only one element of P
5 if exact or result ≤ max(R):
6 TT[s] ← result
7 return result
8 else:
9 return −1

Listing 5: Mex tree search with pruning. Returns Sprague-Grundy value of the state s, or −1 (only if the value is not
included in R).

Just before returning, the value of s is added to TT at line 12. TT is a transposition table. It stores Sprague-Grundy values
of positions that have already been evaluated in order to avoid redundant calculations when many different sequences of
moves lead to the same position. The value of position s is immediately returned (at line 3) if it is in TT (see line 2).
Transposition table is an optional part of the algorithms in Listings 3, 4 and 5. It can be dropped by removing lines 2, 3, 12
from Listing 3, lines 2, 3, 13 from Listing 4, and lines 2, 3, 16 from Listing 5.

The modification introduced in Listing 4 (which we called simplified pruning, abbreviated scut) is based on an obser-
vation1 that very often it is unnecessary to know the accurate value v of the considered successor of s. If only v /∈ P , the
algorithm takes the same action (exclude max(P) from P – see line 11 in Listing 4), regardless of the precise value of v .

1 This observation is inspired by α-β pruning [31].

P. Beling, M. Rogalski / Artificial Intelligence 283 (2020) 103262 5
0

1

{0
, 1}

�= 0

1

0

{0
, 1,

2}

2

{1,2}

3

{1}

{0
, 1,

2}

0

{0,2}

{0}

Fig. 1. An example fragment of scut search tree and an illustration of the pruning done by this algorithm. Successors of each position are evaluated
from left to right. The root has two successors, so its P is initialized to {0, 1, 2}. Since P is passed without its maximal element to the evaluation of each
successor, the set {0, 1} is passed to the first call (the sets passed are given above the arrows and, for clarity, the figure does not include the details of this
and some other recursive evaluations). This call returns 1, and since 1 ∈ {0, 1, 2}, 1 is deleted from the set of possible values of the root, leaving {0, 2}. This
set is passed without the maximal element to the calculation of the right successor of the root. To ascertain the value of the root, it is enough to know
whether its right successor has the value of 0 or non-0. The algorithm is applied recursively to all successors of this successor. If any of them has the value
0, the rest can be cut-off, since the value of the right successor of the root cannot be equal to 0 (cannot be a member of the set {0} obtained from the
root). The right successor of the root has three successors. The first has the value 1, and scut has to evaluate its whole subtree to calculate this value. The
second evaluates to 0, and so the third can be pruned.

The same action is also taken at line 9, when v = max(P). So, accurate value of v is needed only if v ∈ P \ max(P) (to
exclude v from P at line 9). In other cases (to exclude max(P) from P) it is enough to know that v /∈ P \ max(P).

The algorithm passes the set P \ max(P) as the second argument of the recursive call at line 7. This call is obligated to
return an accurate Sprague-Grundy value of the first argument only if this value is included in the set given as the second
argument (denoted as R). In other cases it may return either the accurate value or the special value −1 (which is never
included in any set of Sprague-Grundy values).

The algorithm takes advantage of the argument R to cut the branches of the search tree at line 6. It immediately returns
−1 if it can prove that the Sprague-Grundy value of s is not included in R (when the set of potential values of s is disjoint
from R). An example of such pruning is shown in Fig. 1.

Note that performance of this and the following algorithms depend on the order in which successors are visited. It is
beneficial to visit as first:

• moves which lead to possibly small subtrees (which are generally easier to compute) in order to increase the chance of
pruning larger branches of the search tree,

• moves with nimbers included in P ∩ R , in order to quickly eliminate all members of R from P and perform a cut-off as
a result.

Algorithm in Listing 5 (which we called mex tree search with pruning, abbreviated cut) tries to increase the number of
cut-offs in the search tree. It restricts the set passed to the recursive call (at line 8) to values not greater than max(R), by
intersecting it with the set {0, 1, . . . , max(R)}. This may lead to an increase in the number of cut-offs in subtrees, but also
to inaccuracies in the set P (see Fig. 2). Let’s consider a successor m, such that G(m) ∈ P \ {max(P)} and G(m) > max(R).
Since G(m) /∈ (P \ {max(P)}) ∩ {0, 1, . . . , max(R)}, recursive call at line 8 might return −1 instead of G(m), and therefore
max(P) (at line 12) instead of G(m) (at line 10) may be removed from P . A similar situation would not be possible if
G(m) ≤ max(R). Thus P might be inaccurate, but it is still partially correct – for values lower than or equal to max(R). So,
if result (the only element of P after the loop – see line 14) is less than or equal to max(R) (this is checked at line 15),
then result = G(s). In such a situation, result is added to TT (at line 16) and returned (at line 17). If result > max(R), then
G(s) > max(R). In such a situation, G(s) /∈ R and hence −1 can be safely returned (at line 19).

In order to increase the chance of finding the nimber of s and adding it to TT, the algorithm checks if all recursive calls
at line 8 return exact values (obviously, P and result are accurate in such a situation, even if result > max(R)). To this aim,
it uses exact flag. The flag is initialized to true in line 5, and possibly changed to false (in line 13) after returning −1
by any of the recursive calls. If it remains true until line 15, then result = G(s). Note that above-mentioned usage of exact
flag is optional and can be dropped, especially if TT is not used.

6 P. Beling, M. Rogalski / Artificial Intelligence 283 (2020) 103262

1

0

1

{0
, 1}

�= 0

�= 0

0

{0
}

{0
}

0

{0}

{0}

Fig. 2. An example fragment of cut search tree and an illustration of the pruning done by this algorithm. Successors of each position are evaluated from
left to right. We use the same game tree as in the Fig. 1 to illustrate the additional cut-offs performed by cut. The algorithm operates by limiting the sizes
of sets passed recursively down the tree (these sets are shown above the arrows), by intersecting them with the set {0, 1, . . . , max(R)}, with R being the
set obtained from its parent. In this example, this limits to {0} the sets passed to successors of right successor of the root. Consequently, the algorithm can
stop exploring the first of these successors just after eliminating 0 from its potential values P .

1 M ← ∅
2 for m ∈ N(s):
3 //if P ∩ R = ∅: return −1
4 if (x, v) ∈ TT where x=m:
5 if v ∈ P:
6 P ← P \ {v}
7 else:
8 P ← P \ {max(P)}
9 else:
0 M ← M ∪ {m}

Listing 6: Enhanced Transposition Cutoff (ETC). Can be placed between lines 4 and 5 in Listing 4, or between lines 4 and 5
in Listing 5. In both listings, the loop in line 5 and 6 respectively, should iterate over M instead of N(s).

Listing 6 contains an adaptation of the Enhanced Transposition Cut-off (ETC), which is a well-known improvement of
α-β pruning algorithm, proposed in [32,33]. Our version can be applied to algorithm at Listing 4 as well as 5. Its idea is
to exclude as many values from P as possible, before recursively visiting any of the successors by the main loop (the one
at lines 5 and 6 in Listings 4 and 5 respectively). It searches for the values of subsequent successors in TT, and eliminates
elements of P in the same way as the main loop does. Successors not in TT are stored in set M . Next, the main loop iterates
only over them instead of all the successors.

Code in line 3 is optional. It allows the algorithm to return earlier, but it also prevents the nimber of s from being
determined (when all successors of s are in TT).

Note that ETC typically lowers the number of nodes visited, at the cost of additional TT lookups. Authors of [32,33]
suggest using ETC only near the root of the search tree (where the potential benefits are the greatest), in order to reach an
optimal compromise between the amount of cut-offs and TT lookups.

Algorithms in Listings 4 and 5 can waste some calculations. When they return at line 6 and 7 respectively, before
computing the exact value of a position, then they drop the knowledge encoded in P about the successors visited so far.
Consequently, this knowledge has to be recalculated when the position is visited again.

In Listing 7 we present a version of the algorithm at Listing 5 with an extension, which we called resuming. The new
version avoids aforementioned recalculations, by saving P in TT at line 14. This requires TT to store a set of values for
a position, instead of a single value (which might increase memory usage). Condition at line 13 ensures that only fully
accurate sets are stored in TT.

The sequence M of successors to be visited depends on what is found in TT at line 2. When nothing is found, the
algorithm considers all successors, just as without the modification. When a singleton is found, its only member can be
safely returned, because it represents an exact value of the position stored in TT (this is also similar to the unmodified
version). In the remaining case, we retrieve a partially computed set P , which was constructed after evaluating first |N(s)| −
|P | + 1 successors of s. It is enough for the algorithm to resume the calculation and consider only the remaining |P | − 1
successors. Note that resuming assumes that the successors of each given position are always considered in the same order

P. Beling, M. Rogalski / Artificial Intelligence 283 (2020) 103262 7

1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2

1 function cut_R(s, R):
2 if (x, V) ∈ TT where x=s:
3 if |V| = 1:
4 return the only element of V
5 P ← V
6 M ← last |V|−1 elements of N(s)
7 else:
8 P ← {0, 1, ..., |N(s)|}
9 M ← N(s)
0 exact ← true
1 for m ∈ M:
2 if P ∩ R = ∅:
3 if exact or max(P) ≤ max(R):
4 TT[s] ← P
5 return −1
6 v ← cut_R(m, (P \ {max(P)}) ∩ {0, 1, ..., max(R)})
7 if v ∈ P:
8 P ← P \ {v}
9 else:
0 P ← P \ {max(P)}
1 if v = −1: exact ← false
2 result ← the only one element of P
3 if exact or result ≤ max(R):
4 TT[s] ← P
5 return result
6 else:
7 return −1

Listing 7: Mex tree search with pruning and resuming. Returns Sprague-Grundy value of the state s, or −1 (only if the value
is not included in R).

1 function alg_A(s):
2 for c ← 0, 1, ...:
3 v ← alg(s, {c})
4 if v �= −1: return v

Listing 8: Aspiration sets. Returns Sprague-Grundy value of the state s. alg is any of the presented algorithms which take
two arguments, but we recommend variants of non-simplified cut.

and that the values in TT are computed based on the first few successors. As ETC violates the second assumption, it cannot
be straightforwardly used with resuming.

An analogous method of resuming calculation can be applied to the algorithm in Listing 4. The modification is even
simpler, since in this algorithm P is always accurate, and so the condition analogous to one found at line 13 in Listing 7 is
not needed.

In order to find the G(s), one can call alg(s, {0, 1, ..., |N(s)|}), where: alg is any of the presented al-
gorithms which take two arguments. Alternatively, alg can also be called with smaller second argument. For instance,
checking if G(s) ∈ X can be done by testing if alg(s, X) ∈ X . This gives another method for finding the Sprague-Grundy
value of a position, by checking if G(s) is included in successive sets. Algorithm in Listing 8 is based on this method (note
that it can use different sequences of sets instead of {0}, {1}, {2}, . . . , for instance {0}, {1, 2}, {3, 4, 5, 6}, . . .). We called it
aspiration sets (by analogy to α-β aspiration windows). Note that the algorithm works correctly if alg is a variant of scut
or cut, but we strongly recommend using the latter. In the case of using scut, the potential benefits of passing the smaller
sets do not propagate deeper than one level into the search tree.

3. Decomposable positions

Lemoine and Viennot show (in [6]) that their algorithm (presented in Listings 1 and 2) can be extended to use the
Sprague-Grundy theorem for decomposable positions. The extension directly changes the algorithm in Listings 1 and indi-
rectly the algorithm in Listings 2 (as it calls the former).

Let s be a decomposable position which consists of k disjoint positions s1, . . . , sk .
For any n ∈N , we have the following equivalence:

G(s) = n ⇔ G(s1) ⊕ · · · ⊕ G(sk−1) ⊕ G(sk) = n (by (2))

⇔ G(sk) = n ⊕ (G(s1) ⊕ · · · ⊕ G(sk−1))

⇔ G(sk) = n ⊕ r,

(4)

where r = G(s1) ⊕ · · · ⊕ G(sk−1).

8 P. Beling, M. Rogalski / Artificial Intelligence 283 (2020) 103262

1
1
1
1
1
1

1 function is_losing_ETC(s+〈n〉nim):
2 if (x, v) ∈ TT where x=s:
3 return v = n
4 M ← ∅
5 for m ∈ N(s): //ETC
6 if (x, v) ∈ TT where x=m:
7 if v = n: return false
8 else:
9 M ← M ∪ {m}
0 for i ← 0, 1, ..., n−1:
1 if is_losing_ETC(s+〈i〉nim): return false
2 for m ∈ M:
3 if is_losing_ETC(m+〈n〉nim): return false
4 TT[s] ← n
5 return true

Listing 9: Efficient implementation (with TT and ETC) of algorithm in Listing 1. Returns true if and only if s + 〈n〉nim is
losing.

So, in order to check if s + 〈n〉nim is losing (which is equivalent to checking if G(s) = n, as shown in (3)), the extended
version of the algorithm in Listing 1 can check if sk + 〈n ⊕ r〉nim is losing (which is equivalent to checking whether G(sk) =
n ⊕ r). That is, the extension changes the argument of is_losing, from s + 〈n〉nim to sk + 〈n ⊕ r〉nim. To calculate r, the
algorithm has to calculate G(s1), . . . , G(sk−1), which can be done by indirectly extended version of the method in Listing 2
(that algorithm can suppose that its argument is already decomposed and does not have to try to decompose it further).

Analogous extension can be applied to the algorithms presented in Section 2. It can be directly applied to the methods
which take a pair of arguments (and indirectly to the rest): a position s, and a set of nimbers R . Using the same symbols
as above, the pair which consists of decomposable s and any R , can be replaced by: sk and {n ⊕ r : n ∈ R}. Next, if the result
differs from −1, it has to be xored with r.

To prove that the output of the extended algorithm is correct, let us analyze the possible outputs (which we denote as
o) of the call with arguments sk, {n ⊕ r : n ∈ R}:

• If o = −1, we know that G(sk) /∈ {n ⊕ r : n ∈ R}). From this and from G(sk) = G(s) ⊕ r (which follows from (4)) we
conclude that G(s) /∈ R , and finally that −1 is the proper output of the whole algorithm.

• If o �= −1 (which means that o = G(sk)) then the whole algorithm correctly returns o ⊕ r = G(sk) ⊕ (G(s1) ⊕ · · · ⊕
G(sk−1)) = G(s).

To test if a decomposable position is losing, one can call the extended algorithm with R = {0} and check whether the output
is 0.

Thanks to the fact that the nimber of the last component (sk) must be determined precisely only if it is included in a
given set (or equal to a given value in case of the method by Lemoine and Viennot), additional cuts can usually be made in
the search tree of sk . That is why it is generally better to consider the component with the largest search tree at the end.

4. Implementations

The algorithms described in Section 2 operate on sets of nimbers. These sets can be efficiently implemented with bitfields
(i-th bit is set only if a nimber i is a member of a particular set) and bitwise operations. For a game (S, si, N), the bitfields
have to have a length of at least maxs∈S(|N(s)|) + 1.

Lemoine and Viennot proposed an algorithm which is presented in Listings 1 and 2, but their papers do not provide
too many details about the implementation they use. Luckily, we managed to get them from sources of Glop (available at
[12]). Our reimplementation is presented in Listing 9. It constitutes extended and more detailed version of Listing 1 (part
presented in Listing 2 is implemented by us directly, but calls is_losing_ETC instead of is_losing). Loops at lines
10–13 are equivalent to the loop at lines 2–3 in Listing 1. The implementation uses a transposition table (TT) and Enhanced
Transposition Cutoff (ETC). TT stores nimbers of positions (nimbers of their first parts as far as composed positions are
concerned). When nimber of any s ∈ S is known, then outcome of s + 〈n〉nim (for any n) can be easily determined by (3):
s + 〈n〉nim is losing if and only if G(s) = n. That is why the algorithm returns (at line 3) either true (if v = n) or false
(if v �= n), when the value v of s is found in TT at line 2. The same fact is used by ETC (see lines 5–9), in order to find
outcome of all2 successors of s + 〈n〉nim, which are included in TT. Consequently, ETC is able to:

• immediately return (at line 7) when it finds a losing successor (then s + 〈n〉nim is winning),
• skip winning successors (by not adding them to set M , which is considered by the loop at line 12).

2 The loop in lines 5–9 iterates only over successors from set {m + 〈n〉nim : m ∈ N(s)}. Rest are considered in lines 2–3.

P. Beling, M. Rogalski / Artificial Intelligence 283 (2020) 103262 9
The value n of position s is appended to TT (in line 14) just after proving that s + 〈n〉nim is losing (then G(s) = n by (3)).

5. Benchmarks

We implemented3 the aforementioned algorithms, and tested their efficiency against our reimplementation of the
Lemoine and Viennot algorithm, which is probably the best known method so far, in calculating nimbers of well known
impartial games (Nim, Chomp and Cram — the rules of these games can be found in the appendix). In this section we
present the methodology of tests and the most important results. We chose the number of evaluated nodes as measurement
of efficiency of the algorithms, since it is independent of implementation details of test programs. We also distinguished
the amount of nodes actually evaluated, from those which value was simply looked up in a transposition table. Such a
distinction enables a much finer analysis of relation of pruning by ETC to pruning done by presented algorithms.

5.1. Algorithms tested

We tested the following algorithms:

def is based directly on definition, see Listing 3,
scut mex tree search with simplified pruning, see Listing 4,
cut mex tree search with pruning, see Listing 5,
lv reimplementation of algorithm proposed by Lemoine and Viennot, see Listings 1, 2 and 9,

with the following extensions (listed after the “_” symbol):

A aspiration sets, see Listing 8,
E ETC without optional line 3, see Listing 6,
cE ETC with optional line 3, see Listing 6,
R resuming, see Listing 7.

5.2. Methods

It is obvious that the cut-offs made by algorithms presented may have impacted the efficiency of the search process.
Usually, this effect should be positive, however in the case of algorithms which use the transposition table, we suspected
that it also could be negative. When the exact value of a position is not found and stored in the transposition table, it
might be explored multiple times. On the other hand, for games with large state space, we usually do not have enough
memory to store values for all positions anyway. For this reason, we investigated the performance of our algorithms for
four transposition table capacities which equal: 0 (i.e. without TT), about 1

4 |S|, about 1
2 |S|, and |S| (i.e. TT is effectively

unlimited as it can store nimbers for all positions). When the number of positions stored in TT exceeds capacity, the position
appended earliest is erased from TT (FIFO strategy).

Most algorithms perform a lookup in TT exactly once per node visited. However, ETC can perform additional lookups. It
typically lowers the number of nodes visited, at the cost of possibly increasing in the number of TT searches. That is why
we separately measured both numbers.

As previously mentioned, the performance of algorithms depends on the order in which they visit successors. For that
reason, we tested algorithms with heuristic moves ordering for Nim and Chomp.

Our program does not use any other heuristics, especially game-specific ones like board symmetries.

5.3. Results

Each table presented in this section contains results obtained for a particular variant of game, for all considered com-
binations of algorithms (rows) and capacities of transposition table (columns). Each result is given in two forms: absolute
value, and relative to def. Since absolute values are of different, sometimes very large orders of magnitude, we shown dif-
ferent numbers of significant figures (precision is shown in the units row). The results are divided into two categories: the
numbers of nodes expanded and amounts of searches in transposition table (note that they can differ only for algorithms
that use ETC). In each column, N is put next to the lowest number of nodes expanded, and T is put next to the lowest
number of searches in TT. In both categories, all numbers less or equal than twice the lowest are made bold.

The value in the last cell of the ‘TT size’ row is equal to the number of different positions in the game. The title of each
table contains the nimber of the initial position.

Tables 1, 2, 3 and 4 present results for the game of Nim played with three stacks of sizes either 9, 8, 5 (Tables 1 and 2)
or 9, 7, 7 (Tables 3 and 4).

3 The source code of our benchmark program is available at https://data .mendeley.com /datasets /3j8rzxshgw /draft ?a =7142aedc -68dd -44da -86b2 -
ca52b6b5a96b.

https://data.mendeley.com/datasets/3j8rzxshgw/draft?a=7142aedc-68dd-44da-86b2-ca52b6b5a96b
https://data.mendeley.com/datasets/3j8rzxshgw/draft?a=7142aedc-68dd-44da-86b2-ca52b6b5a96b

10 P. Beling, M. Rogalski / Artificial Intelligence 283 (2020) 103262
Table 1
Nim 9, 8, 5. Nimber: 4.

TT size: 0 135 270 540

units: 109 % 103 % 103 % 103 %

Number of nodes expanded = number of searches in TT:

def 489 100 63 601 100 839 100 6 100
scut 252 52 55 567 87 849 101 7 112
cut 135 28 50 445 79 1 212 144 7 116
cut_A T

N15 3 39 863 63 16 987 2 025 16 412 276 243

scut_R n/a 52 058 82 782 93 T6 100
cut_R n/a 50 440 79 1 119 133 6 102
cut_RA n/a 46 831 74 12 278 1 463 9 446 158 993

Number of nodes expanded:

lv n/a 107 0 5 1 5 76

scut_E n/a 4 900 8 71 8 N1 14
scut_cE n/a 5 325 8 80 10 1 18

cut_E n/a 3 328 5 53 6 1 14
cut_cE n/a 3 534 6 61 7 1 18

cut_EA n/a 212 0 4 1 2 34
cut_cEA n/a N98 0 N3 0 3 52

Number of searches in TT:

lv n/a 705 1 32 4 32 534

scut_E n/a 33 381 52 579 69 8 127
scut_cE n/a 33 606 53 600 72 9 155

cut_E n/a 23 525 37 452 54 8 129
cut_cE n/a 22 422 35 456 54 9 158

cut_EA n/a 1 848 3 50 6 24 406
cut_cEA n/a T676 1 T23 3 23 380

Table 2
Nim 9, 8, 5 with heuristic moves ordering. Nimber: 4.

TT size: 0 135 270 540

units: 109 % 103 % 103 % 103 %

Number of nodes expanded = number of searches in TT:

def 489 100 34 471 100 414 100 6 100
scut 39 8 8 590 25 157 38 7 120
cut 13 3 4 981 14 150 36 7 122
cut_A T

N2 0 1 339 4 1 011 244 1 011 17 014

scut_R n/a 10 224 30 182 44 T6 94
cut_R n/a 5 502 16 161 39 6 96
cut_RA n/a 1 712 5 754 182 677 11 388

Number of nodes expanded:

lv n/a 14 0 4 1 4 62

scut_E n/a 301 1 7 2 N1 9
scut_cE n/a 327 1 8 2 1 14

cut_E n/a 119 0 6 1 N1 9
cut_cE n/a 128 0 6 2 1 15

cut_EA n/a 25 0 N3 1 2 25
cut_cEA n/a N10 0 3 1 3 46

Number of searches in TT:

lv n/a 92 0 25 6 25 416

scut_E n/a 2 494 7 75 18 7 110
scut_cE n/a 2 352 7 69 17 8 138

cut_E n/a 1 012 3 61 15 7 110
cut_cE n/a 906 3 52 12 8 140

cut_EA n/a 247 1 31 7 19 320
cut_cEA n/a T69 0 T18 4 18 305

P. Beling, M. Rogalski / Artificial Intelligence 283 (2020) 103262 11
Table 3
Nim 9, 7, 7. Nimber: 9.

TT size: 0 160 320 640

units: 109 % 103 % 103 % 103 %

Number of nodes expanded = number of searches in TT:

def 2 403 100 137 274 100 1 410 100 7 100
scut 1 226 51 123 683 90 1 427 101 8 111
cut 771 32 120 587 88 1 550 110 8 111
cut_A T

N754 31 223 017 162 33 233 2 357 27 919 379 277

scut_R n/a 115 616 84 1 312 93 T7 100
cut_R n/a 115 759 84 1 407 100 7 100
cut_RA n/a 226 519 165 22 715 1 611 16 135 219 192

Number of nodes expanded:

lv n/a 39 380 29 477 34 11 153

scut_E n/a 10 467 8 115 8 1 13
scut_cE n/a 11 432 8 131 9 1 17

cut_E n/a 8 509 6 101 7 N1 13
cut_cE n/a 9 181 7 117 8 1 17

cut_EA n/a N6 917 5 93 7 3 43
cut_cEA n/a 6 945 5 N90 6 6 78

Number of searches in TT:

lv n/a 261 466 190 3 597 255 87 1 188

scut_E n/a 74 526 54 983 70 9 121
scut_cE n/a 75 035 55 1 019 72 11 150

cut_E n/a 62 358 45 889 63 9 122
cut_cE n/a 60 377 44 907 64 11 151

cut_EA n/a 52 778 38 908 64 41 556
cut_cEA n/a T46 169 34 T719 51 46 620

Table 4
Nim 9, 7, 7 with heuristic moves ordering. Nimber: 9.

TT size: 0 160 320 640

units: 109 % 103 % 103 % 103 %

Number of nodes expanded = number of searches in TT:

def 2 403 100 72 332 100 614 100 7 100
scut 293 12 32 994 46 553 90 10 141
cut 141 6 34 634 48 613 100 11 146
cut_A T

N139 6 37 692 52 642 104 71 963

scut_R n/a 36 207 50 562 92 T7 99
cut_R n/a 33 158 46 575 94 8 103
cut_RA n/a 20 585 28 383 62 41 561

Number of nodes expanded:

lv n/a N623 1 N7 1 6 85

scut_E n/a 1 108 2 25 4 N1 9
scut_cE n/a 1 274 2 31 5 1 16

cut_E n/a 815 1 21 3 N1 9
cut_cE n/a 889 1 25 4 1 17

cut_EA n/a 648 1 14 2 1 19
cut_cEA n/a 706 1 15 2 3 35

Number of searches in TT:

lv n/a T4 091 6 T51 8 44 593

scut_E n/a 9 627 13 270 44 8 110
scut_cE n/a 9 472 13 277 45 12 165

cut_E n/a 7 240 10 226 37 8 110
cut_cE n/a 6 529 9 214 35 13 175

cut_EA n/a 5 807 8 152 25 18 247
cut_cEA n/a 5 153 7 129 21 21 288

12 P. Beling, M. Rogalski / Artificial Intelligence 283 (2020) 103262
Table 5
Chomp 6 × 4. Nimber: 16.

TT size: 0 52 105 209

units: 109 % 103 % 103 % 100 %

Number of nodes expanded = number of searches in TT:

def 161 100 275 930 100 5 363 100 T2 312 100
scut 83 51 206 810 75 4 752 89 2 589 112
cut T

N46 28 136 675 50 3 535 66 2 600 112
cut_A 120 75 382 281 139 11 921 222 1 403 634 60 711

scut_R n/a 205 916 75 4 666 87 T2 312 100
cut_R n/a 145 415 53 3 759 70 2 318 100
cut_RA n/a 375 337 136 14 788 276 839 553 36 313

Number of nodes expanded:

lv n/a 1 361 853 494 5 341 100 3 930 170

scut_E n/a 15 276 6 223 4 N360 16
scut_cE n/a 15 886 6 234 4 452 20

cut_E n/a N9 029 3 N145 3 362 16
cut_cE n/a 9 191 3 145 3 455 20

cut_EA n/a 17 402 6 236 4 981 42
cut_cEA n/a 18 161 7 224 4 1 419 61

Number of searches in TT:

lv n/a 8 066 002 2 923 37 244 694 29 990 1 297

scut_E n/a 98 167 36 1 855 35 3 148 136
scut_cE n/a 93 384 34 1 758 33 3 819 165

cut_E n/a 59 664 22 1 235 23 3 169 137
cut_cE n/a T54 269 20 T1 086 20 3 830 166

cut_EA n/a 116 710 42 2 029 38 12 354 534
cut_cEA n/a 107 728 39 1 683 31 11 299 489

Tables 2 and 4 show results for methods which ordered moves heuristically. For each subsequent heap, moves were
considered in the order of increasing number of tokens left. Consequently, moves which lead to possibly small subtrees
(which are generally easier to compute) were visited first and so larger branches of the search tree were more likely to have
been pruned.

In version without this heuristic (Tables 1 and 3), all calculations were done 10 times, using different variants of move
ordering. Each was deterministic, but unpredictable.4 Obtained numbers of nodes visited and TT lookups were independently
averaged over variants, which approximates their expected values for the random move ordering.

Tables 5 and 6 present results for the game of Chomp played on a board with 6 columns and 4 rows. The program used
moves ordering similar to Nim. Version with heuristic moves ordering examined them in the order of increasing number of
fields left, for each subsequent row. Rows were considered from bottom to top.

Tables 7 and 8 present results for the game of Cram played on boards 5 × 4 and 6 × 4 respectively. Here, results are also
averaged over 10 runs. Each run used a different but fixed move order.4

In most cases, the algorithms presented effectively reduced number of nodes visited and TT lookups in comparison to
def, especially when TT capacity was limited.

In more capacious TT, each stored information is available for longer. So the benefits of calculating the value of a position
and then storing it in TT are generally greater. Consequently, cut-offs are less desirable (which is generally confirmed by our
data). Especially the methods which try to prune more aggressively (for example these that use aspiration sets) lose relative
to def even more than others. That is why def is hard to improve on when TT is unlimited, especially in terms of number
of TT lookups. However, games with state spaces small enough to fit in TT are not challenging in practice. Realistically, TT
is very small in relative to |S|.

We have not found a universally best method, as none outperformed all others in all tests. Neither resuming (R) nor
ETC (E) is unambiguously better than the other. We tend to favor E, especially if TT has small capacity or access time. In
remaining cases R might be better, but do not forget that it might use more memory per item stored in TT.

There is no big difference between performances of ETC variants: with (cE) and without (E) optional line 3 in Listing 6.
Benefits of using this line tend to increase as the TT capacity decreases (which was expected since the line increases the
chance for finding an exact value of a position at the cost of extra TT lookups).

4 Our program used C++ std::shuffle algorithm with pseudo-random generator seeded by hash of the given position increased by the variant’s
number.

P. Beling, M. Rogalski / Artificial Intelligence 283 (2020) 103262 13
Table 6
Chomp 6 × 4 with heuristic moves ordering. Nimber: 16.

TT size: 0 52 105 209

units: 109 % 103 % 103 % 100 %

Number of nodes expanded = number of searches in TT:

def 161 100 241 161 100 4 334 100 2 312 100
scut 17 11 55 916 23 1 651 38 3 595 155
cut T

N3 2 10 939 5 443 10 3 665 159
cut_A 9 6 33 915 14 1 692 39 346 819 15 001

scut_R n/a 69 198 29 2 029 47 T2 310 100
cut_R n/a 16 860 7 710 16 2 343 101
cut_RA n/a 53 519 22 2 354 54 228 273 9 873

Number of nodes expanded:

lv n/a 398 544 165 1 536 35 3 625 157

scut_E n/a 2 228 1 63 1 N225 10
scut_cE n/a 2 214 1 64 1 394 17

cut_E n/a 450 0 N16 0 N225 10
cut_cE n/a N430 0 17 0 416 18

cut_EA n/a 1 138 0 41 1 1 025 44
cut_cEA n/a 1 058 0 42 1 1 452 63

Number of searches in TT:

lv n/a 2 410 604 1 000 10 490 242 26 943 1 165

scut_E n/a 16 852 7 612 14 2 769 120
scut_cE n/a 14 769 6 545 13 4 149 179

cut_E n/a 3 564 1 161 4 2 769 120
cut_cE n/a T2 861 1 T139 3 4 302 186

cut_EA n/a 9 068 4 418 10 13 256 573
cut_cEA n/a 7 042 3 352 8 11 779 509

Table 7
Cram 5 × 4. Nimber: 2.

TT size: 0 14 708 29 415 58 830

units: 106 % 103 % 103 % 103 %

Number of nodes expanded = number of searches in TT:

def 1 781 100 2 642 100 1 731 100 424 100
scut 991 56 3 400 129 2 253 130 616 145
cut 938 53 3 360 127 2 222 128 616 145
cut_A T

N15 1 1 133 43 648 37 617 146

scut_R n/a 2 559 97 1 673 97 T422 100
cut_R n/a 2 536 96 1 658 96 423 100
cut_RA n/a 1 030 39 610 35 424 100

Number of nodes expanded:

lv n/a 151 6 141 8 141 33

scut_E n/a 519 20 325 19 76 18
scut_cE n/a 775 29 490 28 141 33

cut_E n/a 513 19 319 18 76 18
cut_cE n/a 764 29 481 28 141 33

cut_EA n/a N119 4 N67 4 N66 16
cut_cEA n/a 123 5 89 5 89 21

Number of searches in TT:

lv n/a 702 27 658 38 658 155

scut_E n/a 3 921 148 2 592 150 673 159
scut_cE n/a 4 889 185 3 257 188 1 035 244

cut_E n/a 3 870 147 2 547 147 674 159
cut_cE n/a 4 799 182 3 186 184 1 032 244

cut_EA n/a 826 31 506 29 503 119
cut_cEA n/a T603 23 T447 26 447 106

14 P. Beling, M. Rogalski / Artificial Intelligence 283 (2020) 103262
Table 8
Cram 6 × 4. Nimber: 0.

TT size: 0 151 938 303 876 607 752

units: 106 % 103 % 103 % 103 %

Number of nodes expanded = number of searches in TT:

def 760 429 100 42 512 100 26 586 100 5 293 100
scut 381 192 50 60 470 142 38 227 144 8 257 156
cut 344 124 45 58 940 139 37 175 140 8 245 156
cut_A T

N81 0 8 433 20 8 433 32 8 433 159

scut_R n/a 41 225 97 25 919 97 5 287 100
cut_R n/a 40 552 95 25 414 96 5 296 100
cut_RA n/a 7 127 17 5 590 21 5 590 106

Number of nodes expanded:

lv n/a 546 1 546 2 546 10

scut_E n/a 7 220 17 4 387 17 820 15
scut_cE n/a 13 332 31 8 543 32 2 084 39

cut_E n/a 6 991 16 4 234 16 821 16
cut_cE n/a 12 818 30 8 184 31 2 071 39

cut_EA n/a N432 1 N432 2 N432 8
cut_cEA n/a 501 1 501 2 501 9

Number of searches in TT:

lv n/a 2 412 6 2 412 9 2 412 46

scut_E n/a 66 433 156 42 348 159 8 587 162
scut_cE n/a 102 126 240 68 302 257 18 033 341

cut_E n/a 64 177 151 40 814 154 8 593 162
cut_cE n/a 97 490 229 65 016 245 17 857 337

cut_EA n/a 3 353 8 3 353 13 3 353 63
cut_cEA n/a T2 317 5 T2 317 9 T2 317 44

Aspiration sets (A) as well as lv can perform very well, especially when the nimber of the initial position is small.
However, these algorithms perform significantly worse when this nimber is large since they have to check more potential
root values (please compare Tables 1 with 3, 2 with 4, and 7 with 8). An example of this poor performance is visible in
Chomp 6 × 4 (Tables 5 and 6) and Nim 9, 7, 7 (Tables 3 and 4), which had the largest values (16 and 9 respectively) of
games tested. Only cut_EA and cut_cEA behaved relatively well, in particular they were often significantly better than
lv. At the same time, they performed similarly to lv in other tests (without significant drawbacks, especially cut_cEA).
That is why, we think that they constitute a more universal alternative to lv.

As expected, heuristic moves ordering significantly increased performance of all methods which perform cut-offs (please
compare Tables 1 with 2, 3 with 4, and 5 with 6).

6. Conclusions

In the paper we put forward new game-agnostic methods for pruning search trees of impartial games. We confirmed that
they are effective, especially when the transposition table has limited capacity. The benchmarks suggest that our cut_cEA
algorithm constitutes a more universal alternative to the method proposed by Lemoine and Viennot (which seems to have
been the only technique other than direct usage of the definition).

We think that pruning search trees of impartial games is a relatively unexplored subject. The promising results strongly
indicate that our methods are definitely worth further investigation. Supplementary research might include an analysis on:

• how to choose aspiration sets (in Listing 8) to speed up the search process;
• possibilities of combining ETC and resuming;
• how to reach an optimal compromise between the number of cut-offs and TT lookups done by ETC;
• how to order moves to maximally reduce the size of the search tree (since successors of Nim positions can be easily

generated in any desired order of nimbers, the issue can be studied empirically);
• interaction with other techniques (especially game-specific), in solving larger games;
• time and memory complexity in relation to size of the game tree.

It might also be interesting to explore variants of the algorithms in which return values meet conditions that are different
from the ones presented. For instance, it can be beneficial to allow the algorithms to return just when they prove that the
nimber of the position visited is a member of the set given as the second parameter.

P. Beling, M. Rogalski / Artificial Intelligence 283 (2020) 103262 15
Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Appendix A. Game rulesets

In our paper we consider short impartial games under normal play only. This means that in all of them, the first person
without a move loses.

A.1. Nim

Nim [10] is an impartial game played on n heaps of items. A move consists of choosing any non-empty heap and
removing any amount of items from the heap. A complete solution for every position can be found in [10,4].

A.2. Chomp

Chomp [34,35] is usually played on a rectangular n × m board with square fields, and the bottom left corner deleted. A
move consists of choosing a field on the board and removing it together with those that are above it and to its right.

A.3. Cram

Cram [36, pages 502–506] is usually played on a rectangular n ×m board with square fields. A move consists of choosing
two horizontally or vertically neighboring fields, and erasing them from further play.

References

[1] J.H. Conway, On Numbers and Games, CRC Press, 2000.
[2] R.K. Guy, Impartial games, in: R.J. Nowakowski (Ed.), Games of No Chance, vol. 29, Cambridge University Press, 1998, pp. 61–78.
[3] R. Sprague, Über mathematische Kampfspiele, Tôhoku Math. J 41 (1935) 438–444.
[4] P.M. Grundy, Mathematics and games, Eureka 2 (5) (1939) 6–8.
[5] E.R. Berlekamp, J.H. Conway, R.K. Guy, Winning Ways for Your Mathematical Plays, vol. 1, AK Peters, 2001.
[6] J. Lemoine, S. Viennot, Nimbers are inevitable, Theor. Comput. Sci. 462 (2012) 70–79, https://doi .org /10 .1016 /j .tcs .2012 .09 .002.
[7] M. Müller, Decomposition search: a combinatorial games approach to game tree search, with applications to solving go endgames, in: IJCAI, 1999.
[8] M. Müller, Global and local game tree search, in: Heuristic Search and Computer Game Playing, Inf. Sci. 135 (3) (2001) 187–206, https://doi .org /10 .

1016 /S0020 -0255(01)00136 -0, http://www.sciencedirect .com /science /article /pii /S0020025501001360.
[9] M. Müller, Z. Li, Locally informed global search for sums of combinatorial games, in: H.J. van den Herik, Y. Björnsson, N.S. Netanyahu (Eds.), Computers

and Games, Springer Berlin Heidelberg, Berlin, Heidelberg, 2006, pp. 273–284.
[10] C.L. Bouton, Nim, a game with a complete mathematical theory, Ann. Math. 3 (1/4) (1901) 35–39, http://www.jstor.org /stable /1967631.
[11] R.K. Guy, C.A. Smith, The G-values of various games, in: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 52, Cambridge Univ

Press, 1956, pp. 514–526.
[12] J. Lemoine, S. Viennot, Glop project homepage, a solver for combinatorial games, http://sprouts .tuxfamily.org/, 2011.
[13] J. Lemoine, S. Viennot, Computer analysis of Sprouts with nimbers, in: R.J. Nowakowski (Ed.), Games of No Chance 4, Cambridge University Press, 2015,

pp. 161–183.
[14] J. Lemoine, S. Viennot, Analysis of misere Sprouts game with reduced canonical trees, preprint, arXiv:0908 .4407.
[15] J.W.H.M. Uiterwijk, Construction and investigation of Cram endgame databases, ICGA J. 40 (4) (2018) 425–437, https://doi .org /10 .3233 /ICG -180064.
[16] J.W.H.M. Uiterwijk, Solving Cram using Combinatorial Game Theory, in: Proceedings of the 16th Advances in Computer Games Conference (ACG2019),

ICGA, submitted for publication, https://cris .maastrichtuniversity.nl /en /publications /solving -cram -using -combinatorial -game -theory.
[17] J.W.H.M. Uiterwijk, L. Kroes, Combining combinatorial game theory with an alpha-beta solver for cram, in: M. Atzmueller, W. Duivesteijn (Eds.), BNAIC

2018: 30th Benelux Conference on Artificial Intelligence, Jheronimus Academy of Data Science, Netherlands, 2018, pp. 267–280.
[18] G. Cairns, N.B. Ho, T. Lengyel, The Sprague–Grundy function of the real game Euclid, Discrete Math. 311 (6) (2011) 457–462, https://doi .org /10 .1016 /j .

disc .2010 .12 .011.
[19] G. Nivasch, The Sprague–Grundy function of the game Euclid, Discrete Math. 306 (21) (2006) 2798–2800, https://doi .org /10 .1016 /j .disc .2006 .04 .020.
[20] U. Blass, A.S. Fraenkel, The Sprague-Grundy function for Wythoff’s game, Theor. Comput. Sci. 75 (3) (1990) 311–333, https://doi .org /10 .1016 /0304 -

3975(90)90098 -3.
[21] A.S. Fraenkel, M. Lorberbom, Nimhoff games, J. Comb. Theory, Ser. A 58 (1) (1991) 1–25, https://doi .org /10 .1016 /0097 -3165(91)90070 -W.
[22] A. Flammenkamp, Grundy’s game, http://wwwhomes .uni -bielefeld .de /achim /grundy.html, 2002.
[23] G. Schrage, A two-dimensional generalization of Grundy’s game, Fibonacci Q. 23 (4) (1985) 325–329.
[24] J. Grossman, Periodicity in one-dimensional peg duotaire, Theor. Comput. Sci. 313 (3) (2004) 417–425, https://doi .org /10 .1016 /j .tcs .2002 .11.003.
[25] X. Sun, Improvements on Chomp, Integers 2 (G01) (2002) 8.
[26] D. Zeilberger, Three-rowed Chomp, Adv. Appl. Math. 26 (2) (2001) 168–179, https://doi .org /10 .1006 /aama .2000 .0714.
[27] A.S. Fraenkel, The Raleigh game, Integers 7 (2) (2007) A13.
[28] H.H. Aviezri, S. Fraenkel, Never rush to be first in playing Nimbi, Math. Mag. 53 (1) (1980) 21–26, https://doi .org /10 .1080 /0025570X .1980 .11976820.
[29] J. Kahane, A.J. Ryba, The hexad game, Electron. J. Comb. 8 (2) (2001) R11.
[30] H.K. Orman, Pentominoes: a first player win, in: R.J. Nowakowski (Ed.), Games of No Chance, vol. 29, Cambridge University Press, 1998, pp. 339–344.
[31] D.E. Knuth, R.W. Moore, An analysis of alpha-beta pruning, Artif. Intell. 6 (4) (1976) 293–326, https://doi .org /10 .1016 /0004 -3702(75)90019 -3.
[32] A. Plaat, J. Schaeffer, W. Pijls, A. de Bruin, Nearly optimal minimax tree search?, Tech. rep., Department of Computing Science, The University of Alberta,

Edmonton, Alberta, Canada, dec 1994.

http://refhub.elsevier.com/S0004-3702(18)30348-5/bibBE451FFB13A16CBE4D085423818671E6s1
http://refhub.elsevier.com/S0004-3702(18)30348-5/bibEAB3475D7960E72EC7A0A8E868E148DBs1
http://refhub.elsevier.com/S0004-3702(18)30348-5/bibF302CA75AC352474D4C7869A8171729Fs1
http://refhub.elsevier.com/S0004-3702(18)30348-5/bib658DAB83753067408420461845FF7420s1
http://refhub.elsevier.com/S0004-3702(18)30348-5/bib88CF2D9A9BAD9E506A2CF4D19CF57A3As1
https://doi.org/10.1016/j.tcs.2012.09.002
http://refhub.elsevier.com/S0004-3702(18)30348-5/bib23E2576FE81F21235D93F1E5EB05C6BCs1
https://doi.org/10.1016/S0020-0255(01)00136-0
https://doi.org/10.1016/S0020-0255(01)00136-0
http://www.sciencedirect.com/science/article/pii/S0020025501001360
http://refhub.elsevier.com/S0004-3702(18)30348-5/bibD90E555567E655A7AC70D59C15C79D88s1
http://refhub.elsevier.com/S0004-3702(18)30348-5/bibD90E555567E655A7AC70D59C15C79D88s1
http://www.jstor.org/stable/1967631
http://refhub.elsevier.com/S0004-3702(18)30348-5/bib5445248F71FE3A33D7B087DA3394CDA8s1
http://refhub.elsevier.com/S0004-3702(18)30348-5/bib5445248F71FE3A33D7B087DA3394CDA8s1
http://sprouts.tuxfamily.org/
http://refhub.elsevier.com/S0004-3702(18)30348-5/bib5BE16E31D51C92E6675A6FFB25B715B3s1
http://refhub.elsevier.com/S0004-3702(18)30348-5/bib5BE16E31D51C92E6675A6FFB25B715B3s1
http://refhub.elsevier.com/S0004-3702(18)30348-5/bib0B86A40EFE12374F66781D5DD30FF4F0s1
https://doi.org/10.3233/ICG-180064
https://cris.maastrichtuniversity.nl/en/publications/solving-cram-using-combinatorial-game-theory
http://refhub.elsevier.com/S0004-3702(18)30348-5/bibA5A4F225BEDAB992F3CB0952FDAC210Cs1
http://refhub.elsevier.com/S0004-3702(18)30348-5/bibA5A4F225BEDAB992F3CB0952FDAC210Cs1
https://doi.org/10.1016/j.disc.2010.12.011
https://doi.org/10.1016/j.disc.2010.12.011
https://doi.org/10.1016/j.disc.2006.04.020
https://doi.org/10.1016/0304-3975(90)90098-3
https://doi.org/10.1016/0304-3975(90)90098-3
https://doi.org/10.1016/0097-3165(91)90070-W
http://wwwhomes.uni-bielefeld.de/achim/grundy.html
http://refhub.elsevier.com/S0004-3702(18)30348-5/bibE6D463463BE66AF904E65F1913091651s1
https://doi.org/10.1016/j.tcs.2002.11.003
http://refhub.elsevier.com/S0004-3702(18)30348-5/bib744D4C35D895A64A3B203EBE432EBF01s1
https://doi.org/10.1006/aama.2000.0714
http://refhub.elsevier.com/S0004-3702(18)30348-5/bib69DDA4C54265246B30902CB8BBF3A89Es1
https://doi.org/10.1080/0025570X.1980.11976820
http://refhub.elsevier.com/S0004-3702(18)30348-5/bibC9B7916042AA43904CA2F01608A10308s1
http://refhub.elsevier.com/S0004-3702(18)30348-5/bibC047D2AB4B4468F26F38A62CCE88155Cs1
https://doi.org/10.1016/0004-3702(75)90019-3
http://refhub.elsevier.com/S0004-3702(18)30348-5/bibD3B542CA123F81E9C4E6C803B0EF9252s1
http://refhub.elsevier.com/S0004-3702(18)30348-5/bibD3B542CA123F81E9C4E6C803B0EF9252s1

16 P. Beling, M. Rogalski / Artificial Intelligence 283 (2020) 103262
[33] A. Plaat, J. Schaeffer, W. Pijls, A. de Bruin, Exploiting graph properties of game trees, in: W.J. Clancey, D.S. Weld (Eds.), Proceedings of the Thirteenth
National Conference on Artificial Intelligence and Eighth Innovative Applications of Artificial Intelligence Conference, vol. 1, AAAI 96, IAAI 96, AAAI
Press/The MIT Press, Portland, Oregon, 1996, pp. 234–239, http://www.aaai .org /Library /AAAI /1996 /aaai96 -035 .php.

[34] F. Schuh, Spel van delers (the game of divisors), Nieuw Tijdschrift voor Wiskunde, vol. 39, 1952, pp. 299–304.
[35] D. Gale, A curious Nim-type game, Am. Math. Mon. 81 (8) (1974) 876–879.
[36] E.R. Berlekamp, J.H. Conway, R.K. Guy, Winning Ways for Your Mathematical Plays, vol. 3, AK Peters, 2001.

http://www.aaai.org/Library/AAAI/1996/aaai96-035.php
http://refhub.elsevier.com/S0004-3702(18)30348-5/bib91363606B7BA8995D6385675E47D2CB2s1
http://refhub.elsevier.com/S0004-3702(18)30348-5/bib9738E9190CB184415D55697E95A8F2CDs1
http://refhub.elsevier.com/S0004-3702(18)30348-5/bib2DA058B7A40C1F7ABC4E3376CAEE8004s1

	On pruning search trees of impartial games
	1 Introduction
	2 The algorithms
	3 Decomposable positions
	4 Implementations
	5 Benchmarks
	5.1 Algorithms tested
	5.2 Methods
	5.3 Results

	6 Conclusions
	Appendix A Game rulesets
	A.1 Nim
	A.2 Chomp
	A.3 Cram

	References

