Selection Search for Mean and Temperature of Multi-Branch Combinatorial Games 157

SELECTION SEARCH FOR MEAN AND TEMPERATURE
OF MULTI-BRANCH COMBINATORIAL GAMES

Kuo-Yuan Kaol, I-Chen Wuz, Yi-Chang Shan’ and Shi-Jim Yen®
Penghu, Taiwanl, Hsinchu, Taiwanz, Hualien, Taiwan®

ABSTRACT

This paper shows a new algorithm to calculate the mean and temperature of multi-branch
combinatorial games. The algorithm expands gradually, one node at a time, the offspring of
a game. After each step of expansion, the lower and upper bounds of the mean and
temperature of the game are re-calculated. As the expanding process continues, the range
between the lower and upper bounds is little by little narrowed. The key feature of the
algorithm 1is its ability to generate a path of which the outcome is most likely to reduce the
distance between the lower and upper bounds.

1. COMBINATORIAL GAMES

Combinatorial game theory studies two-player games with perfect information. The two players are
assumed to take turns alternatively, and a game is considered as a sum of local positions, where each
player can choose one local position to move at each turn. This section introduces a heap game, named
heap-go, for illustrating some key ideas of combinatorial game theory.

Heap-go is played on a number of heaps of counters. Each counter has a weight and is coloured either
blue or red. Figure 1 shows an example of heap-go setup. (Heap A and B are considered to be blue; heap
E is red. Heap C and D are mixed; the top counter of C is red, the two other counters are blue.)

R

A B C D E

Figure 1: An example of heap-go setup.

Two players, L and R, move alternatively and their legal moves are different.

® When it is L's turn to move, he* can choose any one of the heaps and repeatedly removes the top
counter until either he removes a red counter or the heap has become empty.

® When it is R's turn to move, he can choose any one of the heaps and repeatedly removes the top
counter until either he removes a blue counter or the heap has become empty.

! Department of Information Management National Penghu University, Penghu, Taiwan. Email: stone@npu.edu.tw
2 Department of Computer Science and Information Engineering, National Chiao Tung University, Hsinchu, Taiwan.
Email: icwu@csie.nctu.edu.tw, ycshan @java.csie.nctu.edu.tw.

? Department of Computer Science & Information Engineering, National Dong Hwa University, Hualien, Taiwan.
Email: sjyen @mail.ndhu.edu.tw

* For brevity, we use ‘he’ and ‘his’ whenever ‘he or she’ and ‘his or her’ are meant.

158 ICGA Journal September 2012

The game is finished if all the counters in all the heaps are removed. The player who removed more total
weights is the winner.

Heap-go is a two-player game with perfect information. The heaps are the local positions, where each
player can choose one local position to move at each turn. The more heaps in a setup, the more options
each player has. Although the complexity of the complete minimax game tree of a heap-go game may
grow up exponentially with the increase of the total number of heaps, each local position can be
represented as a simpler combinatorial game tree where each node represents the state of the local
position, each left branch represents a L’s move and each right branch a R’s move at the local position.

Figure 2 shows the combinatorial game tree of heap C in Figure 1. The numbers at the terminal nodes are
the net scores of the paths from the root to these nodes. L’s scores are counted positive and R’s negative.
For example, consider the path LR. L gets 8 points for the first move (removed 2 counters); R gets 5
points for the second move (removed 1 counter); the net score is 3.

Figure 2: The game tree of heap C.

To follow the terminology of combinatorial game theory, each local position is called a game. If G is a
game, then G (GR) represents the set of L’s (R’s) options at the game, where each option in G (GR) is a
game after L’s (R’s) move at G. A game G is defined as an ordered pair of sets of games, and expressed
as

G ={G"G"} (1

When G is a terminal node in a game tree, it is represented by a numerical outcome value. For example,
heaps A, B and C can be expressed as

A

{81-8},
{71-7,
{1313} {{1 -9} —13}}.

Note that A" =8, AR = —8, B- =7, BR = —7, C* = {13 | 3}, and C® = {{1| — 9}| — 13}.

In combinatorial game theory, the sum of two games is a game. Let G and H be two games, the sum
G + H is defined as

G+H={G"+H,G+H"|GR+H,G+HR}. 2)
When G is a game and x is a number, the sum can be simplified as

G+x={G'+x|GR+x} 3)

Selection Search for Mean and Temperature of Multi-Branch Combinatorial Games

x+G={x+G|x+GF} 4)
For example, the sumof A = {8 | —8}and B = {7 | — 7} is

A+B={A"+B,A+ B | AR+ B,A + B¥}
={8+{71-7}{8|-8}+7|-8+{7|-7}{8|-8}-7}
={1511},{15| =1} [{~=1| - 15},{1| - 15}}

Figure 3 shows the game trees of A, B and A + B.

A B A+B
8+ O v -8+ [E B8

NN N

1 15 -1 -1 -15 1 -15

Figure 3: The game trees of A, B and A + B.

We use heap-go as the target game to test our new algorithm in this article. Two major reasons are as
follows.

1. The maximum branching factor of a heap-go minimax tree can be controlled. A sum of m heaps
has branching factor m in the minimax tree.

2. The maximum depth of a heap-go minimax tree can be controlled. A sum of heaps with a total of n
counters has maximum depth n in the minimax tree.

For example, the complete minimax tree of a sum of the heaps in Figure 1 has branching factor 5 and
maximum depth 11, since there are 5 heaps and 11 counters in total.

We end this section by two more observations at the heap-go game.

1. Consider the heaps A and E in Figure 1. Heap E is in favour of L, since L can get 10 points while R
can only get 5 points if they make a move at heap E. In contrast, heap 4 is in favour of neither
players, since both players will get the same score (8 points) if the move is at heap A. An important
issue in combinatorial game theory is: how to measure the favours of a game, because the favours
can help the estimation of the outcome of a game.

2. Consider the heaps A and B in Figure 1. There is only one counter in either heap A or heap B and
the weight of the counter in heap A is heavier than the weight of the counter in heap B. Hence, both
players will prefer a move at heap A over a move at heap B. In other words, the move size of heap
A is larger than the move size of heap B. Both players will get 8 points if they move at heap A, and
7 points if they move at heap B. A second important issue in combinatorial game theory is: how to
measure the move size of a game, because the move size can help the decision of choosing a good
move.

2. MEAN AND TEMPERATURE

For each combinatorial game, there are two important values, mean and temperature. Roughly speaking,
mean is a measure of the average outcome and temperature is a measure of the move size of a game. The
existence of mean values of games was first raised and proved by Milnor (1953) and Hanner (1959). A

159

160 ICGA Journal September 2012

constructive algorithm, named thermograph, for mean and temperature was due to Berlekamp et al.
(1982) and Conway (1976). An approach to calculating mean and temperature with partial information of
a single branch game was proposed by Kao (1998). Miiller et al. (2004) proposed to use a coupon stack
CS with decreasing temperatures to simulate the environment and calculating the temperature of a game
G by tracing the move sequence of the sum G + CS. Lew and Coulom (2010) proposed to estimate the
mean and temperature of a game from its left and right stops and calculating these stops by temporal
difference learning. In this paper, we continue our previous work and extend it to multiple-branch games.

In this paper, the mean and temperature of a game G is denoted as m(G) and t(G). A game G is called
hot provided t(G) > 0.

Let G be a game and ¢ be a number, define

L(G,) = max{yeqy {R (;”(S)_ ,)
R(G,t) = min{yecR} {L(;r,lgfl ¢ (6)

L(G,t) is called the left wall and R(G, t) the right wall of G.

L(G,t) (R(G,t)) is the min-max optimal outcome of the game G when L (R) moves first and subject to
the constraint that L has the right either to accept the mean of G as the outcome or to make a move at G
and pay a tax t. When G is a number (terminal position), both players will accept the number (equals its
mean) as the outcome value and make no more move. Note that, for non-number games, the following
five points hold.

1. When the tax t is low, the players may prefer to make a move and pay the tax t than accept the
mean as the outcome.

2. When the tax t is too high, the players may prefer to accept the mean as the outcome than make a
move and pay the tax t.

3. L(G,t) is monotonically decreasing with respect to t. The higher the tax t, the lower the optimal
outcome value when L moves fist.

4. R(G,t) is monotonically increasing with respect to t. The higher the tax t, the higher the optimal
outcome value when R moves fist.

5. When the tax t is low, we have L(G,t) > m(G) > R(G,t). When the tax t reaches or exceeds
some critical value, we have L(G,t) = m(G) = R(G, t).

Thus, finding the mean and temperature of a game G is indeed a task of solving the min-max equation
below.

MaXyegly R(x,t) —t= ming,eqr, Ly, t)+t @)

There might be more than one solution of t for the above equation. The minimum solution of t is t(G).
When t = t(G), the solution of the min-max equation equals m(G).

Mean and temperature of a game have the following properties. Let G and H be two games. We have
m(G + H) = m(G) + m(H) ®)

t(G + H) = max{t(G), t(H)} &)

Selection Search for Mean and Temperature of Multi-Branch Combinatorial Games 161

Hence, knowing the mean and temperature of games in a sum can help the estimation of the mean and
temperature of the sum. Another important feature of mean and temperature is that they can be used to
estimate the range of the optimal outcome of a game. The inequality below shows the bounds of the
optimal outcomes L(G, t) and R(G, t).

m(G) — t(G) < R(G,t) =m(G) = L(G,t) < m(G) + t(G) (10)

3. THERMOGRAPH

This section reviews the thermograph approach to calculating the mean and temperature of a game.
A function f(t) is called simple max if it can be written as:

f(t) = max{c,, min{c, — t, ... max{cyx_1, min{cy, — t, ... }}}} 11

where ¢y > Copt2,Coi > Corv1 > Cop-1-

Similarly, g(t) is called simple min if it can be written as:
g(t) = min{c;, max{c, + ¢, ... min{cyp_1, max{cy, +t, ... }}}} (12)

where Cap—1 > Cop41 > Cop Cokv2 > Coge

Each simple max (min) function can be represented as a sequence [cy, ... ¢,] of constants. The graph of a
simple max (min) function is a folded line. Figure 4 (a) and (b) show the graph of simple max and min
functions by a black folded line and a grey folded line, respectively. Here black stands for blue, and grey
stands for red. Note that the vertical axis labels t, the horizontal axis labels f(t) and greater f(t) value
grows toward the left (instead of the right). The reason of this unusual convention (Berlekamp et al.
(1982) and Conway (1976)) is to help the visualization of the advantage toward Left (L) or Right (R),
since L prefers a greater value and R a smaller value.

<

<&
<«

< H H
f(t) C; C4 Cs Cs5 C3 (g g(t) C; C3 Cs5 Cg C4 C2

() (b)

Figure 4: Thermographs of (a) a simple max function and (b) a simple min function.

It should be clear that the max (min) of two simple max (min) functions is again a simple max (min)
function. If f(t) is a simple max function and c is a number, then min{c, f(t) + t} is a simple min
function. If g(t) is a simple min function and c is a number, then max{c, g(t) —t}is a simple max
function. Thus, the left wall of a game is a simple max function and the right wall is a simple min
function. The thermograph of a game is a combined graph of the left and right walls. Figure 5 illustrates
the thermograph of G = {3|{0| — 2}}. The black (blue) line and grey (red) line coincide to a “black”
(purple) line.

162 ICGA Journal September 2012

HG)=2

A

m 3 mG=1 0

Figure 5: The thermograph of G = {3|{0] — 2}}.
The general procedure to calculate the left wall (LW) and the right wall (RW) of a game Gis as follows.
1. Calculate the walls of all G’s children.
Find the max of the RW's of G’s left children. Store the result as R(t).
Find the min of the LW's of G’s right children. Store the result as L(t).

LW = max{m(G),R(t) — t}

2
3
4. Calculate m(G). That is to solve the equation R(t) —t = L(t) + t.
5
6. RW =min{m(G),L(t) + t}

The above procedure is recursive. To calculate the walls of G, one needs to calculate the walls of all G’s

children first (Step 1). Eventually, the walls of all the offspring of G must be calculated in order to
calculate the walls of G.

4. UPPER AND LOWER WALLS

In order to calculate the walls of a game, the thermograph approach requires visiting all the nodes of the
game. In many applications, the number of a game’s nodes could be a quite huge number, which makes
the thermograph approach infeasible. However, partial information of a game’s nodes could be used to
estimate the lower and upper bounds of the game’s walls (or mean and temperature), based on the
procedure proposed by Kao (2000). For example, consider the game H = {{x|20}|4}. Although H-'has
the unknown value x, it can be shown 12 <m(H) <20 and 8 <t(H) <16, as long as x =20. Sometimes,
partial information of a game’s nodes could be sufficient to determine its mean and temperature. For
example, consider the game = {{{y|20}|4}|0} . Although G“‘‘has the unknown value ¥, it can be shown
m(G) = 4 and t(G) = 4, as long as y =220 .

For a hot combinatorial game G, the temperature is at least 0. It can be deduced that

m(GY) Z2R(G*,0) = L(G,0) 2R(G,0),and (13)

m(GR)<L(GR,0) = R(G,0)<L(G,0) (14)

Equations (13) and (14) can be used to setup the lower or upper bound of a missing left or right child of a
game. The assumptions x =20 and y =20 in the previous examples are reasonable provided the positions
are hot games.

Let mY(G) and m!(G) denote the upper and lower bounds of m(G), and tY(G) and t*(G) denote the
upper and lower bounds of t(G), respectively. We define the upper and lower bounds of the left and
right walls of G as follows.

Selection Search for Mean and Temperature of Multi-Branch Combinatorial Games

mY(G)

196, 6) = maxieeon { ', o) (15)

L4(G,6) = max(eqny { RL’(’;L(t‘);)_ . (16)

RU(G,) = mingycn) {Lu’(”yugl . 17)

RL(G,t) = ming,eqr) {LLGL(G) (18)

y,t) +t

mY(G) can be derived by solving t from the equation,

max{xecL}RU(x, t) =t = ming,eqry Wy, t)+t (19)
and m!(G) can be derived by solving t from the equation,

Max(equR" (x,t) — t = ming,eery L'y, 6) + . (20)
Similarly, tY(G) can be derived by solving t from the equation,

max{xEGL}R”(x, t) =t = ming,eqr LE(y,t) +¢, 21
and t'(G) can be derived by solving ¢ from the equation,

Mmax(yegryR"(x,t) — t = mingeqry LY (v, 1) + ¢. (22)

Figure 6 shows the relation between upper and lower walls and bounds of mean and temperature.

v A
L"(G, 1 t

RYG, 1) LG, 1)

RYG, 1)

A

Figure 6: The relation between upper and lower walls and bounds of mean and temperature.

(Again black lines are blue, grey lines are red; henceforth this holds true.)

163

164 ICGA Journal September 2012

5. MT-SEARCH

This section presents a new algorithm, MT-search, to calculate the mean and temperature of games. The
algorithm gradually, one node at a time, expands the offspring of a game. After each step of expanding,
the lower and upper walls of all the nodes on the path from the new node to the root are re-calculated. As
the expanding process continues, the distance between the lower and upper walls is narrowed. The
algorithm terminates when either the distance between the upper and lower walls becomes O or the
number of visited nodes reaches a given threshold, the maximum number of nodes to be visited. The
choosing of an offspring node to expand is determined by some selection rules. These rules are
introduced in later sections.

The MT-search algorithm is implemented in a game-independent engine named MT-engine. Application
games can communicate with the engine through the MT-engine’s interface procedures.

class MT_engine

{
constructor MT-engine();
destructor ~MT-engine();

)i
]

, float wvalue);

void explore(char pathl]
void add-node (char path]
float mean-UB();

float mean-LB
float temp-UB
float temp-LB

bi

) 4
)i
) .

(
(
(
)7
An application game can start an instance game by invoking the constructor of MT-engine. At the
beginning, there is no visited node of the instance game. At each run, the application game calls the
explore () procedure of MT-engine to get a path to be explored, and calls the add_node () procedure
to add a node to the instance game of MT-engine. The MT-engine will update the upper and lower
bounds of the mean and temperature each time after a new node has been added to the instance game. At

any time, the procedures mean_UB, mean_LB, temp_UB, and temp_UB return the upper and lower
bounds of the mean and temperature of the instance game.

The application game must provide a procedure outcome (char path[]), which returns the outcome
of the specified path. The path is a string in the format D;n,D,n, ... Dyny ... Dyyn,,, where D € {L, R} is
the direction of the child and r, is an integer indicating the branching order of the child. For example L3
indicates the 3™ left child of the root, L3R2 indicates the 2™ right child of the 3™ left child of the root. If
the specified path does not exist in the application, then outcome() returns a special value
NOT_EXISTS. Otherwise, when the given path is not ending with a terminal node, the
outcome () procedure automatically extends the path until it reaches a terminal node. The extended path
must be in alternating directions and always selects the first child. For example, if the path L/L2R3 is not
a terminal node, then the path will be extended to L/L2R3LI1, LIL2R3LIRI1, or LIL2R3LIRILI ..., until
it ends with a terminal node. Finally, the outcome procedure returns the expanded path.

Below is an example of feeding the MT-engine with 8 paths of a game with 10 or more nodes. The paths
are generated by the engine. The application game inputs the values of the paths. With partial
information of the game, the engine still can estimate the ranges of the mean and temperature of the
game. After input 8 paths, the engine concludes the mean and temperature of the game. Figure 7 shows
known paths of the game.

Selection Search for Mean and Temperature of Multi-Branch Combinatorial Games 165

(1) LIRIL1=8

m = [-INF, 8.00] t = [0.00, INF]
(2) RIL1=2

m=[-2.00,8.00] t=[5.00, INF]
(3) R2L1=2

m=1[-2.00,8.00] t=[5.00, INF]
(4) RIRILI1=-10

m=[-1.00,8.00] t=[7.00, INF]
(5) L2R1=-2

m=[-1.00,8.00] t=[7.00, INF]
(6) LIL1=16

m=[-1.00,3.00] t=[7.00, 11.00]
(7) RIRIR1=-16

m = [0.25, 2.25] t=[7.75, 10.00]
(8) LIRIR1=2

m = [1.50, 1.50] t = [9.00, 9.00]

Figure 7: A game with incomplete information.

In the above calculation, there are two assumptions.

1. When the left (right) option of a game G is empty, the MT-Engine assumes there is a left (right) branch
with values ranging between R(G, 0) and INF (L(G, 0) and —INF).

2. When there is at least one left (right) option, the MT-Engine assumes no more extra left options.

Note that when the MT-Engine explores more extra left options, the upper and lower bounds may be

overridden.

6. UNCERTAINTY AND STABILITY

The MT-engine has no specific domain knowledge about the application games. The key feature of the MT-
engine is its ability to generate a path whose outcome is most likely to reduce the distance between the lower
and upper walls.

The first task of the MT-engine is to decide the direction, left or right, to explore. The decision is based on
the uncertainties of the walls and the stability of the current node.

We define left and right uncertainty of G as:

Luncertainty (6) = /(m7% = mIY? £ (€7F = €117 + | (m?¥ —mi0)? + (€70 —)2 (23)

Runcertainty (6) = /(7T =mP0)? + (€7 — (007 + [(miT —mi)? + (¢ —070)7 (24)

166 ICGA Journal September 2012

where (mUY, tY), (mLL, tiL), (mYL, tUL) and (m™Y, t1V) are the solutions of equations (19) to (22).

Figure 8 and Figure 9 show the uncertainty values in a thermograph. Lyncertainty (Runcertainty) measures
the distance between the lower and upper left (right) walls. The higher the uncertainty value is, the more
likely a path in that direction will return useful information. Thus, the MT-engine tends to select the
direction with greater uncertainty value. In Figure 8, Lyncertainty 18 less than Rypcertainey - The
uncertainty value will reduce to O once the upper wall matches the lower wall. Note that the line
segments in the walls are either vertical or with + 1 slope as shown in Figure 9. Hence, the two square-
root terms in (23) or (24) may not be equal.

Luncerminry

Runcertainty LU(G’ t)
LG, 1)

RYG, 1)

UL
(m™",

UU’ tUU)

RY(G, 1)

A

Flgure 8: Luncertainty and Runcertainty.

Luncerm inty t

Runcerrainry

G5 LXG, 1)

RLE'G,)

R’IJ(G, 1)

<
<

m

Figure 9: The line segments in the walls are either vertical or with * 1 slope.

We say a game G is stable under t provided t(G) <t, and unstable provided t(G)=t. In our
implementation, the value t is the minimum of the temperatures of G’s ancestors. Consider game G as a
right child of its parent as shown in Figure 10.

® When t(G) < t,L(G,t) = m(G), the value of G® will impact the value of m(G), hence, it is still
necessary to visit the nodes in GF.

® When t(G)2t, L(G,t) = max R(G, t) — t, the value of GF will not impact the left wall of G, and
thus the right wall of G’s parent. When this happens, there is no need to visit the nodes in G¥.

Selection Search for Mean and Temperature of Multi-Branch Combinatorial Games 167

G

.o
<
N

SN

Figure 10: Exploring an unstable node.

N

Similarly, if G is an unstable left child of its parent, there is no need to visit the nodes in G*.

In general, one may not be able to determine whether a node is stable or not during the search. We define
the stability of G under t is defined as:

0, if th(G) =t
pstable(G» t) = { 1, if tU(G) <t 25)
t—tL(6)/Y(G) —t(G)) otherwise

Stability and uncertainty can be combined together to determine the direction of exploration.
If G is a right child then explore its left children when

Luncertainty (G) = Runcertainty (G) X Dstable (G, t) (26)
Otherwise, explore right children.

If G is a left child then explore its right children when

Runcertainty(c) = Luncertainty(G) X Dstabte (G, t) 27
Otherwise, explore its left children.
Note that the values of uncertainty and stability depend on the bounds of m(G) and t(G). In real
implementation, the bounds of m(G) and t(G) may not be accurate during the search. Especially, when

either uncertainty or stability becomes 0, the search algorithm will block one direction to explore. To
avoid this problem, one can introduce some noise to both sides of (26) and (27).

7. MINIMUM NUMBER OF PROVING NODES

MT-search can produce an estimation of the mean and temperature of a game even if there are only a few
visited nodes. But how good is the estimation? In this section, we discuss the number of nodes required
to produce a meaningful estimation.

Let G be a game with branching factor m (each player has m options at any non-terminal node) and
depth n. The total number of nodes T'(m, n) of G is

T(m,n) =(2m)",m > 0,n > 0. (28)
Define f(m, n) as the least number of nodes required to prove the optimal left outcome, L(G, 0). Then

fm,0) =1,

fm 1) =m,

168 ICGA Journal September 2012

fmn) =fmn-1D+m-1DXfmn-2),n>1 29)

A node H is called primary if it is the best child of its parent node, otherwise it is called secondary. The
least number of nodes occurs when the first branches are always the primary branches. The primary
branch of a tree with branching factor m and depth n requires at least f(m,n — 1) nodes, all other

branches require at least f(m,n — 2) nodes whethernan a or a f cut is applied, as shown in Figure 11.
When n approaches infinity, f (m,n) approaches vm .

fimn)

fomn-1) < ' o
i
A

Sean
.,
-

Figure 11: Scenario of deriving f(m, n).

Define s(m,n) as the least number of nodes required to prove G to be stable and determine the values of
m(G) and t(G), u(m, n) as the least number of nodes required to prove G to be unstable, p(m, n) as the
least number of nodes required to prove node G to be primary. For each primary node G, one either

determines the value of m(G) and t(G) (when G is stable) or proves G unstable. Assume the odds for a
primary node been stable and unstable is even, then

p(m,n) = [s(m,n) + u(m,n)]/2,n > 0. (30)

To determine the mean and temperature of a stable node, one needs to visit all left and right branches.
Both the left and right primary branches need at least p(m,n — 1) nodes, while all other secondary
branches need at least f(m,n — 2) nodes due to an a or a 8 cut as shown in Figure 12.

s(m0)=1

s(m,1) =2m

s(mn)=2x[pmn—-1)+mM-1)Xxf(mn—-2)],n>1 (31)

Selection Search for Mean and Temperature of Multi-Branch Combinatorial Games 169

s(mn) {7} stable

N . Y
7N AN T
] [

N

5/ m-1 L _
;// ;){ A

O fimn2) 0 fomn-2) 3

-
.

——
LT
-

Figure 12: Scenario of deriving s(m,n)).

To prove an unstable node, one needs to show one of the right primary (or left) branches has a sufficient
small (big) value and visit all the left (or right) branches among which one is primary and all others are
secondary. The primary right (or left) branch requires at least f(m,n — 1) nodes; the primary left (or
right) branch requires at least p(m,n — 1) nodes, the secondary branches require at least f(m,n —

2) nodes as shown in Figure 13.
u(m,0)=1
uim,)=m+1

umn) = fmn—1D)+m-1) x f(m,n—2) +p(m,n—1)
=f(mn) + p(myn—1),n>1

N

{) unstable

(32)

f 4 fimn2) 7 fimn2) N i

v v
i 1

v \
H [PR Y i H
7 \ i\ Y h
H L] h Y H
H [I Y ’ il H
H L] 7 Y i v i

H L
H 1Y

.
=

Figure 13: Scenario of deriving u(m, n).

Table 1 shows the values of the ratios c(m,n) = s(m,n)/,/T(m,n) for selected ranges of m and n.
When m is between 2 and 5, and n is less than 10, s(m,n) is about of the same order of /T (m, n). In
general, c(m, n) decreases as n increases. This result indicates that, to produce an accurate output of
mean and temperature, any algorithm needs to visit at least c,/T (m, n) ,with ¢ > 1, when m, n are in the

ranges in Table 1.

170 ICGA Journal September 2012

n\m 2 3 4 5
1 2.00 245 2.83 3.16
2 2.25 2.33 2.38 2.40
3 2.44 2.45 2.50 2.56
4 2.39 2.19 2.09 2.02
5 2.26 1.97 1.84 1.79
6 2.07 1.69 1.52 1.43
7 1.86 1.44 1.28 1.19
8 1.64 1.21 1.05 0.96
9 1.43 1.01 0.86 0.79
10 1.23 0.84 0.71 0.64

Table 1: The ratios c(m, n).
8. EXPLORATION AND EXPLOITATION

Once one determined the direction to explore, the next step of the MT-engine is to select a child in this
direction to explore. The general principle is selecting moves in the tree such that good moves are
searched more often than moves that appear to be bad. One way of doing this is defining the weighted
frequency as below, and selecting the child with minimum weighted frequency for exploration according
to

if (b_primary(child)) child.freq = child.visits;
else child.freq=child.visits*K;

In our implementation, K depends on the stability of the primary child, the branching factor m and depth
n of the primary child. When the primary child is stable,

_ s(mn)
K, = D (33)
When the primary child is unstable,
_ u(mn)
K, = T (34)
The general formula is
K = (Ks X pstable) + (Ku X (1 - pstable))- (35)

Table 2 and Table 3 show the values of K and K,, for a selected range of m and n. Note that in the first
place for a given m and n, K, is about 50% greater than K, , and secondly that both K; and K,, increase
as the depth n increases.

In practice, the branching factor and depth of a game G may not be available. These parameters may be
estimated by statistics of the visited nodes of G. The default value can be K; =9 and K, = 6.

Selection Search for Mean and Temperature of Multi-Branch Combinatorial Games

n\m 2 3 4 5
1 4.00 6.00 8.00 10.00
2 4.50 4.67 4.75 4.80
3 6.50 7.20 8.07 9.00
4 7.90 7.36 7.18 7.10
5 9.63 8.67 8.68 8.98
6 11.19 9.07 8.46 8.24
7 12.83 9.75 9.06 8.99
8 14.44 10.12 9.05 8.71
9 16.06 10.52 9.29 9.00
10 17.68 10.78 9.32 8.90
Table 2: K;(m, n).

n\m 2 3 4 5
1 3.00 4.00 5.00 6.00
2 3.25 3.33 3.38 3.40
3 4.67 5.00 5.43 5.89
4 5.50 5.18 5.08 5.03
5 6.56 5.90 5.84 5.95
6 7.54 6.21 5.81 5.66
7 8.55 6.60 6.12 6.02
8 9.54 6.84 6.15 5.92
9 10.55 7.08 6.28 6.06
10 11.54 7.25 6.31 6.02

Table 3: K,,(m, n).

9. EXPERIMENTAL RESULTS

We use heap-go as the target game to test the MT-search algorithm. The calculation of the mean and
temperature of a single heap is not a difficult task, because there are only n distinct states in the game
tree of a heap with n counters and there is only one option for each player at every non-terminal position
of the game tree. An efficient algorithm is provided by Kao (2000) to calculate the mean and temperature
of a single heap.

Our goal here is not to solve or analyze heap-go, but to use it as a sample space for testing the
performance of the MT-search algorithm at multi-branch combinatorial games. There are at least three
reasons to use heap-go as a sample space.

1. The maximum branching factor of a sample game can be controlled. A sum of m heaps has
branching factor m.

2. The maximum depth of a sample game can be controlled. A sum of heaps with total n counters has
maximum depth n.

3. The range of the temperature of a sample game can be controlled. A sum of heaps with counter
weights ranging from 1 to w has a temperature range from 1 to 2w.

Note that the MT-search algorithm is not aware of the split of a sample game into subgames.

Table 4 shows the classes of sums of heaps used as sample space in our experiments. The branching
factor ranges from 2 to 5; the maximum depth ranges from 6 to 14; the temperatures range from 1 to 20.
These ranges are chosen to resemble the branching factor, depth and temperature of endgame positions
of 19x19 go. For each class, 1,000 sample games are randomly generated. The colours of the counters
are uniformly distributed among blue and red. The weights of the counters are uniformly distributed
among 1 to 10. The rightmost 3 columns in Table 4 are the average number of nodes (7), average
temperature (¢_avg) and standard derivation of the temperature (¢_stddev) of the sample games. For the

171

172 ICGA Journal September 2012

overall sample games, the average number of nodes is 58,445, the average temperature is 11.52 with a
standard derivation 2.61.

Class (heap sizes T(average number of node) | ¢ avg | t_stddev
313 198 | 11.29 3.00
414 1,092 | 11.77 3.28

AlS5]5 6,215 | 12.02 3.48
6|6 35,720 | 12.18 3.38
717 205,590 | 12.23 3.53
21212 1,158 | 11.00 2.24
3122 3,281 | 11.53 241

B|3[3]2 10,166 | 11.99 2.50
31313 34,533 | 1242 2.51
41313 103,745 | 12.63 2.59
212|101 3,936 | 10.49 2.18

Cl2]2]2]1 65,304 | 11.17 2.13
31321 167,055 | 12.02 2.47
211 [1]1 13,440 | 9.85 1.96

D[22]|1[1]1 52,800 | 10.63 2.08
212]2]1]1 230,880 | 11.12 1.98

Average 58,445 | 11.52 2.61

Table 4: Classes of sums of heaps.

Since the colours and weights of the counters in the sample games are uniformly distributed, the average mean
of the sample games is close to 0. On the other hand, since the walls in the thermograph have slops +/- 1, the
error of mean is about the same order as the error of temperature. Thus we only focus on the error of temperature of
the games in our experiments.

There are two types of sample games: the first type has random branches, while the second type has ordered
branches. When the branches are ordered, they are ordered by the heap temperatures. For each sample game,
the MT-engine visits a set of predefined numbers of nodes. The set of predefined numbers of nodes are in the
form:

2Vm X T , (36)

where m is the number of heaps in the sample game, T is the total nodes of the sample game and d ranges from
0.5 to 0.75. The parameters are chosen to guarantee the number of visited nodes no less than the minimum
proving nodes as discussed in section 6.

The output temperature of MT-search is compared with the exact temperature of each game, and the square
errors of all sample games in the same class are summed. Finally, the mean square error and the standard error
are calculated for each class.

Table 5 shows the standard error for each class, where sample games have random branches. The results are
summarized as follows.

® When d = 0.5, the number of visited nodes is about the order of the number of minimum proving nodes,
the output of MT-search has a standard error of 0.93 in average.
® When the value of d increased by 0.05, the standard error is decreased by about 20 to 25%.

Selection Search for Mean and Temperature of Multi-Branch Combinatorial Games 173

Class 0.50 | 0.55 | 0.60 | 0.65 | 0.70 | 0.75
33 1.08 | 0.88 | 0.56 | 0.43 | 0.30 | 0.08
44 0.95] 0.83 | 0.50 | 0.47 | 0.25 | 0.23
A |55 0.81 | 0.74 1042 |0.25|0.18 | 0.10
66 0.76 | 0.63 | 0.46 | 0.34 | 0.18 | 0.18
77 0.68 | 0.64 | 0.22 | 0.12] 0.11 | 0.07
222 1.05 | 0.67 | 046 | 0.39 | 0.16 | 0.14
322 0.93 | 0.81 [0.53 | 0.30 | 0.20 | 0.18
B |[332 0.99 | 0.69 | 047 | 0.26 | 0.25 | 0.07
333 0.77 | 0.66 | 0.28 | 0.23 | 0.20 | 0.19
433 0.89 | 0.70 | 0.45 | 0.24 | 0.19 | 0.13
2211 | 1.06 | 0.84 | 0.68 | 0.38 | 0.21 | 0.21
C [2221 [090]0.62]|0.54]0.35]|0.29|0.17
3321 | 1.1810.75]0.44 | 0.34 | 0.24 | 0.19
21111 | 1.04 | 0.58 | 0.32 | 0.33 | 0.20 | 0.08
D [22111]0.97 |0.66 | 049 | 0.31 | 0.26 | 0.08
22211 | 0.78 1 0.59 | 0.42 | 0.27 | 0.22 | 0.17
Average 0.93]0.71 | 045 | 0.31 | 0.22 | 0.14

Table 5: Standard error for each class (random branches).

With sample space temperature ranging from 1 to 20, a standard error of less than 1.0 is a quite
promising result.

Tables 6 shows the standard error for each class, where branches of sample games are ordered by
temperature. The result indicates that branch ordering can significantly improve the accuracy (or
efficiency) of the algorithm.

d

Class 0.50 | 0.55 | 0.60 | 0.65 | 0.70 | 0.75
33 0.92 | 0.55]0.32 | 0.15 | 0.05 | 0.01
44 0.58 | 0.39 | 0.30 | 0.14 | 0.04 | 0.00
A |55 0.450.26 | 0.15 | 0.09 | 0.02 | 0.00
66 0.39 |1 0.17 | 0.16 | 0.03 | 0.01 | 0.00
77 0.24 | 0.12 | 0.03 | 0.01 | 0.00 | 0.00
222 0.58 | 0.47 | 0.20 | 0.09 | 0.02 | 0.00
322 0.58 | 0.31 | 0.21 | 0.06 | 0.04 | 0.00
B | 332 0.43 1 0.29 | 0.15 | 0.08 | 0.01 | 0.00
333 0.50 | 0.23 | 0.11 | 0.03 | 0.04 | 0.00
433 0.35 | 0.20 | 0.07 | 0.07 | 0.02 | 0.00
2211 | 0.63] 0.38 | 0.19 | 0.10 | 0.04 | 0.00
C 2221 044]0.26 | 0.18 | 0.06 | 0.05 | 0.00
3321] 0.340.19 | 0.05 | 0.04 | 0.02 | 0.00
21111 | 0.48 | 0.29 | 0.24 | 0.16 | 0.09 | 0.00
D | 22111 | 0.31|0.24 | 0.16 | 0.09 | 0.06 | 0.00
22211 | 0.30 | 0.20 | 0.11 | 0.07 | 0.04 | 0.00
Average 0.47 | 0.28 | 0.16 | 0.08 | 0.03 | 0.00

Table 6: Standard error for each class (ordered branches).

We summarize the key features of MT-search below.
(1) Branch ordering is critical in MT-search. Good move should be explored earlier before bad moves.
Figure 14 shows comparison of the standard error between sorted and unsorted branches.
(2) The value of uncertainty and stability of a game can help the performance of MT-search. Figure 15
shows comparison of the standard error between MT-search with and without applying uncertainty
and stability of a game to guide the search direction (left or right).

174 ICGA Journal September 2012

(3) A good balance between exploration and exploitation can help the performance of MT-search.
Figure 16 shows comparison of the standard error between MT-search with and without applying
the weighted frequency (cf. section 8).

In the experiments of Figure 14, Figure 15 and Figure 16, 1000 games are taken from the 3-3-2 class with an
average number of nodes greater than 10,000. Compared with the nodes in the complete tree, the number of
simulations (visited node) is relatively small. After 100 simulations (or less than 1% of the total nodes), MT-
search already obtains a temperature with standard error less than 1.0.

Branch ordering in MT-search
3.00
% 250
8 200
g 1.50 —8— MT-search
g 1.00 —a— without branch sort
B 050
0.00
0 50 100 150 200 250 300 350 400 450 500
number of simulations
Figure 14: Branch ordering in MT-search.
Uncertainty and stability in MT-search
3.00
[
35 250
I
2 2.00
£ s " MT-serch
e —° without uncertainty
g L0 —*— without stehility
3 0.50
0.00
0 50 100 150 200 250 300 350 400 450 500
number of simulations

Figure 15: Uncertainty and stability in MT-search.

Selection Search for Mean and Temperature of Multi-Branch Combinatorial Games 175

Weighted visit frequency in MT-search

3.00
2.50
2.00

—8— MT-search

1.50
1.00

—e— without weighted visit
frequency

std error of temperature

0.50
0.00

0 50 100 150 200 250 300 350 400 450 500

number of simulations

Figure 16: Weighted visit frequency in MT-search.

The weighted frequency scheme of MT-search follows the idea of Monte Carlo tree search (MCTS) by Coulom
(2006), namely good moves are searched more often than bad moves. In MCTS, moves with greater expected
action values are considered as better moves, while, in MT-search, moves (options) with greater expected walls
(functions of t) are considered as better moves. Various MCTS schemes apply different formulas to determine
the ratio of the frequencies between exploration of new possibilities and the exploitation of old certainties. In
this paper is that the ratio is derived from the estimated minimum numbers of proving nodes for the primary
and the secondary moves (see section 8). Although Figure 16 shows significant improvement, compared with
random paths, has been obtained by applying the weighted frequency scheme of the minimum numbers of
proving nodes, other weighted frequency schemes are still open for further research.

10. CONCLUSIONS

Since the 1970s, combinatorial game theory has become the common fundamental mathematical model
for the analysis of many intelligent games. Mean and temperature are the most important concepts for hot
combinatorial games.

In this paper, we presented an efficient algorithm to calculate the mean and temperature of multi-branch
hot games. Moreover, we implemented the search algorithm in a game-independent search engine. The
search engine has a straightforward interface; computer game programs can apply the engine easily. The
key feature of the MT-engine is its ability to generate a path of which the outcome is most likely to reduce
the distance between the lower and upper walls.

MT-search can output high quality outcomes by searching a portion of the game tree. Given a game G
with T nodes, the algorithm can output (1) an answer with standard error less than 5% of the range of the
sample space temperature, after visiting 4 X VT nodes. Our experimental results also indicate (2) the
importance of the branch ordering, (3) the importance of uncertainty and stability of games, and (4) the
importance of weighted visit frequency in MT-search.

ACKNOWLEDGEMENTS

The authors would like to thank the National Science Council of the Republic of China (Taiwan) for
financial support of this research under contract number NSC 99-2221-E-009-102-MY3 and NSC 100-
2221-E-346-007.

176 ICGA Journal September 2012

11. REFERENCES

Berlekamp, E. R., Conwai, J. H., and Guy, R. K. (1982). Winning Ways for your Mathematical Plays,
Academic Press, New York, Chapter 6.

Conway, J. H. (1976). On Numbers and Games, Academic Press, New York, Chapter 9.

Coulom, R. (2006). Efficient selectivity and backup operators in Monte-Carlo tree search, 5th
International Conference on Computer and Games, Volume 4630 of Lecture Notes in Computer Science
(LNCS), pages 72-83. Springer, Heidelberg, Germany.

Hanner, O. (1959). Mean Play for Sums of Positional Games, Pacific J. Math. 9, pp. 81-99.

§§§,3I§.2-Y. (1998). Mean and Temperature Search for Combinatorial Games, JCIS Proceedings, Vol. 1, pp.

Kao, K.-Y. (2000). Mean and Temperature Search for Go Endgames, Information Science 122, pp. 77-90.

Kao, K-Y, Wu, I-C, and Shan Y-C. (2012). XT Domineering: A New Combinatorial Game, to appear in
Knowledge-Based Systems.

Milnor, J. (1953). Sums of Positional Games, in Kuhn and Tucker (eds.) Contributions to the Theory of
Games, Ann. Math. Studies #28, Princeton, pp. 291-301.

Lew, L., and Coulom, R. (2010). Simulation-based Search of Combinatorial Games, in ICML Workshop
on Machine Learning and Games, Israel.

Miiller, M., Enzenberger, M., and Schaeffer, J., (2004). Temperature discovery search, In AAAI
Proceedings, pp. 658—663, San Jose, CA.

Silver, D. (2009). Reinforcement Learning and Simulation-Based Search in Computer Go. Doctoral
dissertation, Department of Computing Science, University of Alberta, Canada.

