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ABSTRACT

Domingering, also known as crosscram, is a perfect-information, two-player game. We have
created a search program which is able to prove who wins on many different sizes of boards.
Some of the board sizes no one else has ever been able to solve. The main improvement is cur
evaluation funciion which can determine statically a winner at 2 shallower point in the search tree
than was previously possible by other evaluation functions. It allows us to eliminate large portions
of the search space. Along with a few other improvements, the evaluation funciion enabled us to
solve board positions with just a fraction of the number of nodes which previous solvers needed.

1. THE GAME OF DOMINEERING

Domineering, also known as crosscram, is a perfect-information, two-player game. It is played on a board that
is a subset of a square lattice. The game is played by two players who take turns placing 2 x 1 iiles upon the
board. One player is only aliowed to place a tile in a horizontal oricatation and the other is only allowed to
place a tile in a vertical orientation. Tiles are not allowed to overlap. The game ends when one player, the
toser, is unable to place any more tiles onto the board.

Domincering was introduced by Goran Andersson around 1973 {Gardner, 1974). Since then it has been
investigated from both a mathematical and an artificiat-intelligence point of view.

Mathematicians have examined domineering for many years using combinatorial game theory (Berlekamp,
1988). This approach allows them to delermine the combinatorial game value of a board position by taking the
sum of the independent smaller positions in that position. For example if the value of the 2 x 2 board is known,
then the value of two 2 % 2 game boards played together can be determined. 'These results have appeared in 2
number of books on combinatorial game theory (Berlekamp, Conway, and Guy, 1982; Conway, 1986).

Artificial-intelligence researchers have also taken an active role in looking at the game of dominecring. Through
the use of state-of-the-art search engines the game theoretic value of many different sizes of domineering
boards have been determined (Breuker, Uiterwijk, and van den Herik, 2000). In domineering there exist four
possible values for each position.

A vertical win, denoted by ¥, meaning that regardless of who goes first vertical will always win,

e A horizontal win, denoted by H, meaning that regardless of who goes first horizontal will always win.

A first-player win, denoted by 1s#, meaning that regardless of whao goes first the first player will always
win.

A second-player win, dencted by 2nd, meaning that regardless of who goes first the second player will
atways win.

Figure 1 shows an example of a game on a 4 x 5 board with vertical moving first. To refer 1o a move, we specify
gach move by the row and column number of its upper (for vertical) or left square {for horizontal) coordinates.
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Figure 1: Game on a4 x b board with Vertical moving first. (a) First lwo moves are (2.2) and (2.3). {b) Next
lwo moves are (3,4) and (4,2). (¢} Next two moves are (1,1) and {1,4). (d) Last moves are (3,1}, (1,2), and
(2.3). Horizontal cannot move;, Vertical wins.

We [abel the rows from top (o bottom, from 1 o the number of rows on the board, and the columns from lefl
1o right, from 1 to the number of calumns on Lthe board.

1.1 Previous Work

The first published program to solve domineering positions was the program DDOMI authored by Breuker et al.
(2000). The major strengths of DOME are its use of transposition tables and its move-ordering heuristic. These
were instrumental in enabling it to solve dominecring board positions as efficiently as it did.

in 1998 when DOMI’s results were gathered it was able (o calculate the game theoretic values of the m % n
boards where 2 < < 8 and . < n < 0. Since then, DOMI has been improved to the point where it can now
solve 8 x 9 domincering by building a scarch Lree approximately 3 billion nodes in size and 9 x 9 domineering
with 23 billion nodes (Ulterwijk, 2001).

Using search techniques for solving domincering boards obviously finiits the size of the largest board that can
be solved. Lachmann, Moore, and Rapaport (2000} came up with a number of different rules which enable
extending the results on smaller boards to determine the game theoretic values of larger boards. Through the
use ol these rules, Breuker er af.’s (2000) results, and a theoretical result for the 2 x 31 board, Lachmann et
erf. (2000) were able Lo detenmine the winner Tor all boards with 2, 3, 5, and 7 rows. Also they were able 1o
delermine the winners [or all boards with 4, 9, and |t rows, except for a finile number of smaller boards,

For a more in-depth survey of past work in domineering as well as other two-player, perfect-information games
sec van den lHerik, Ulterwijk, and van Rijswijck (2002).
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Figure 2: An example of 2 2 x 3 domineering board where horizontal has placed a tile on position (1.2).

1.2 Overview

in this article we show that one effective way to reduce the size of the proof trees, for different sizes of
domineering boards, is (o come up with a more advanced evaluation function. This improved evaluation
funclion is able to determine the winner of 2 game at a shallower point in the search tree, atlowing us to prune
a polentially large number of positions from the search.

This substantial pruning of positions from the search tree has enabled us to solve the standard domineering
board, 8 x 8, in a matler of seconds where previously it had taken houss. It has also enabled our domineering
solver, OBSEQUI which we describe in this article, (o determine the game theoretic values for a few previously
unsolved pame boards, notably 4 % 19, 4 x 21,6 = 1d, 8 x 10, and 10 x 10, which has filied in a number of
the holes in Lachmann ef al.’s (2000) eriginal results. Figure 16 (sec the Appendix) provides an updated chart
of those boards for which we calculated the game theorelic value,

The source code for OBSEQUI is publicly availuble al www.cs.ualberta.ca/~games/dominecring.

2. DETERMINING WHQO WINS

The number of nodes in a typical search tree grows exponcntially with the depth of the tree. Given this fact it
is easy to sce that il is desirable to determine the winner in a game at the shallowest point possible, sincc this
prevents us from searching a large poriion of the tree.

1n OBSEQUI we determine a lower bound on the number of moves that a player, o, could make, given the
current board position and using a certain straiegy. Then we determine an upper bound on the number of
moves that o’s opponent, 8, could make, given the strategy that «v used (o gel their lower bound. If &’s lower
bound is greater than (or equal Lo, depending on who just moved) £'s upper bound then we can conclude that o
wins. Similarly we can also do this for /4 and determing if they win. In this section we let v denote the player
for whom we are trying 1o delermine a lower bound, or in other words the player for whom we are trying (o
determine if they win given a specific board posilion. We refer to 1 's opposilion as .

2.1 Definitions

We define an unoccupied square as one which is not currently covered by a tile. Conversely an pecupied square
is one which is covered by a tile or which is not part of the board.

An available square is a square which a player can place one of their Liles across. A square is unavailable for
a player if its borders are occupied in such a way that there is no way for that player to place a tile on thal
square, In Figure 2 the square marked by an A is unavailable for the horizontal player while the squares B, 7,
and D are all available.

We can alse look at squares from the perspective of where a player's opponent can play. A profected square is
one which the opponent is unable to play on; from the opponent’s perspective Lhis square would be considered
unavailable. An unprotected square is one which the opponent could place 2 tile upon; the opponent would
consider this square available. In Figure 2 the square marked by A is prolected for the vertical player, while
the squares B, C, and I are all unprotected for the vertical player.
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Iigare 3: Board properties from the perspective of the vertical player. (a) 4, B, C, and D are vulnerable
areas. {b) A, B, and ' are safe areas. {c) A and B are both protective areas. (d) The square outlined with &
dotted line is a protective area, A is where a safe area would be created if Vertical played a tile on position B.

2.2 Board Properties

In order to determine = lower bound on the number of moves a player can make, we define three types of board
properties which we use to calculate this bound. These three properties are: vulnerable areas, safe areas, and
protfective areas. Note that these properties are determined separately for the horizoatal and vertical player.

A wiinerable area for a player, a, is a pair of adjacent squares where o can place a tile (see Figure 3(a)).

A safe area is a vulnerable area where both squares are protecled squares for a, or in other words upavailable
to /3 (sce Figure 3(b)).% I is easy to see that it is impossible for 3 to place a tile which would overlap with one
of a’s safe areas. The concept of a safe arca (or safe move) was also used in Breuker er al. (2000).

A protective area for a player, &, is a 2 % 2 uppccupied region of the board where one of the sides is bordered
by occupied squares in such a way that ¢ is able to place a tile, completely inside this area, in such a way that
the other 2 squares, not covered by o's tile, form a safe area for o afterwards (see Figures 3{c) and 3(d)).

Important: Twe of &'s areas are considered adjacent if a single one of 8’s tiles could overlap both areas.
2.3 Board Cover

In order to use these board properties to get bounds on the number of moves a player has remaining, we need
to determine how many of these properties exist on a given board. The rules for covering the board with these
various properties are:

1. No two areas can overlap. In other words, no square can be contained within two different areas.

2Note that the terms safe and vulnerable may be a poor choice of words since a safe arca is a subset of 2 velnerable area. Nevertheless,
we stil] feel that the terms accurately deseribe the properties of the areas.
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Figure 4: A possible covering of a 6 x 10 board for the vertical player. 1> denoles a protective arca, 172 1
type-2 vulncrable ares, 11 a type-1 vulnerable area, and 5 a safe arca.

2. No two protective areas can be adjacent. For example, the covering of the board in Figure 3(c) would be
invalid for the vertical player since areas A and [ are adjacent.

To improve the lower bound on the number of moves a player has lefl, given a certain board position, we
distinguish two types of vuincrable areas: those which are nol adjacent 1o any board property are type-]
vulnerable areas and those which are adjacent 1o other board properties are type-2 vulnerable areas. This
naming scheme is Lo make il clear that #4, with a single lile, could overlap up to two of «'s lype-2 vulnerable
arcas, but only one ol @’s type-1 vulnerable arcas. For example, A and 12 in Figure 3(a) are type 2 vulnerable
areas, while ¢ and 12 are type- ] vulnerable areas.

An example of a complete covering of a board is shown in Figure 4.

24 Game-Playing Strategy

Given a certain board position, we want to determine a strategy {or o which allows us (o delermine a fower
bound on the number of moves rv can make.

The steategy is Fairly simple. First we assume thal it is currently #'s turn. We will show later that this
assumplion does not really alfect the size of the proof tree. Then we reply (o cach move ¢ makes in the
following way.

e If 3 places a tile over al least one of «’s areas, then v responds by playing in the same type of area as
s tile overlapped. More explicitly:

1. 1f 8 places a lile over one of o's protective arcas, and (his was not o's last protective area, « will
respond by playing in ancther protcctive arca. Nole that this applics even it /s tile overlapped
hoth a protective and a type-2 vuinerable arca.

2. Else, if # places a tile over one or two of «'s type-2 vulnerable areas, and these were not a's fast
type-2 vulnerable areas, ¢ responds by playing in another of (hese areas.

3. Eise, if /4 places a tile over one of a's type-1 vulnerable areas, and this was not «'s last type-!
vulnerable area, o responds by playing in another of these areas.

4. Elge, if there are no areas remaining of the same type as thal which /7 placed their tile upon. «
responds by playing in any available arca type.

o If 's lile does nol overlap any ol 's area types, then o can play a tile in either a safe arca, a vulnerable
ared, or a protective arca.
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By following this strategy « is guaranteed Lo get some fraction of each type of area which they have marked in
their board cover. Furthermore, by looking at the properties of the board and the number of moves o was able
to play, we can determine an upper bound on the number of moves /4 can make. Finally, by comparing these
upper and lower hounds, and taking into account whose turn it is, we can determine if o will win by lollowing
this game-playing strategy.

We have no illusions that this strategy is an oplimal ong, but from the results shown in Subsection 3.1 it
appears 1o be very effective for compuiing bounds. What makes our strategy nice is that it is simple, makes
sense intuilively, and is formulated in a way which makes it easy to prove bounds on the number of moves
each player can still make. The main goual of this approach is to recognize casy wins and losses early in our
search.

2.5 Lower Bound on Number of Moves Remaining

Now thut we have delined a set of board properties, rules {or creating a board cover, and a game strategy, we
can compute a reasonable lower bound on the number of moves a player has left. We refer to the number of
protective areas thal cxist in &'s covering of the board as prof(a), the number of type-2 vulnerable areas as
wudn2(a), the number of type-1 vulnerable areas as vulnl{a), and the number of safe areas as sa fe{a).

Theorem 1 [fif is currently f1's turn, and o plays with the strategy given in Subsection 2.4, then « has af least
mnoves{o) lefi where:

moves(a) = 2- [FTO;(Q)J + {'Uu!?;Q((}e)J + [vul'n; (Q)J + safe(c) + flo)

Where

1 fouln2(a) mod 3 # Dand vulnl(a) mod 2 # 0
flo) = s
(0 otherwise,

A few special caxes can be removed in the case where prot{a) mod 2 = 1, by canceling one of the protective
areus in «'s cover of the board and converting it into two type-2 vulnerable areas. This guaranices that
prot{a) mod 2 = 0, simplifying the above equation and the proof.

Proof: We know {rom our gencral game sirategy, given in Subsection 2.4, thal o attempts to reply to any of
’s moves by playing in the same type of area which 3’s lile overlapped. From this we can guaraniee ¢ will
be able to place their tiles in some fraction of each type of area which has been included in the board cover.

t. Due lo the nature of a safe area, namely the opponent cannot place a tile which will overlap it, c will
be able to play a tile in every one of the safe areas which are marked on the board regardiess of how 8
plays. Thus « is guaranteed sa fefo) moves.

2. Since /4 can only block one of &'s protective areas with each of their tiles and then the very next tun ¢
will place a tile within one of these protective arcas, rx will be able 1o occupy at least %ﬂ of those

areas. Also we know that for each protective area that o places a tile in, « also creates another safe area
for themselves. FTherelore each protective area which « is able to occupy gives themn 2 moves. Hence,

«’s protective areas guarantee o al least 2. [%MJ maoves.

[t is possible for 3 to overlap both a protective area and a type-2 vulnerable area with one tile (see
Figure 5(a)). However in doing this £ covers only onc square in the protective area, Therefore, from the
remaining portion of o’s protective area, another type-2 vulnerable area can be created to make up for
ithe one which was lost (sec Figure 5(b)).

3. Since f# can place a tile over al most twe of «’s type-2 vulnerable areas with each move and o can

respond by placing a tile in another type-2 vulnerable area, a will be able 1o occupy at least [MJ

of their type-2 vulnerable arcas.
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Figure 5: Crossing a protective and type-2 volnerable area. {(a) Opponent places a tile, B, across bath a
prolective area, A, and type-2 vulnerable area, C'. (b) Player canceis both A and € and creaies a new type-2
vulnerable area, D,

4. Similarly, since § can place a tile over at most one of s type-1 vulnerable areas with cach move and
o can respond by placing a tile within another type-1 vulncrable area, « will be able to occupy at least

l_&”zl(f*—}J of their type-1 vulnerable areas.

There is one special case that we should take note of. If vuin2{e) mod 3 # 0 and vuinl{c) mod 2 # 0 then
there will be a point when § will have to place a tile across cither one or (wo remaining type-2 vulnerable
areas or 8 will have to place a tile over a remaining type-1 vulnerable area. In either case o will not be able
to respond by playing on that same type of area, but will have to respond by piacing a tile on the other type of
vulnerable area. Since the number of this other type of area is not evenly divisible by either 3 or 2 respectively,
o will be guaranteed at least one more move of this type. O

A lower bound on the number of moves that ¢ has remaining if it is currently a’s urn {o move can also be
easily caleulated. We can simply place a tile on the board, according to some heuristic, and then calculate the
lower bound after that move,

2.5.1 Example of Lower Bound

Consider the hoard covering given in Figure 4, let o be (he vertical player, and assume that it is Horizontal’s
turn to play. We can use Theorem 1 to determine a tower bound on the number of moves that Vertical can
make.

In Figure 4, prot{e) = 3, vuln2{a) = 4, vuinl{e) = 2, and safe{a) = 5. Since prot(a) mod 2 =1
we converl one protective area into two type-2 vulnerable areas, leading to prot(a) = 2, vuln2(a) = 6,
vulnl{n) = 2, and sa fe{a) = 5. Now we can use our formula:

moves(a) - 9. pra;’{rz)J + 1111&1;‘2((1) ¥ ‘_uuh;l(rx)J +.‘:‘Gf6!(£l’)+f(a’)
= 2. [2]+|¢]+]|4[+®+0
= 10

No matter how A plays, & can play at least 10 more tiles. Note that Breuker ef af, (2000) would obtain a lower
bound of 5.

2.6 Upper Bound on Number of Moves Remaining

We now would like to place an upper bound on the number of moves that 5 could play, given a specific board
position and assuming that o will play according to the strategy given in Subscction 2.4,
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Figure 6: The square, A, is not covered by Vertical’s board covering and is not available to Horizontal. (The
dotted rectangles denote Vertical’s board covering.)

In the previous subsection we determined that « is guaranteed, regardless of how (3 plays, to be able to play
at least mnoves(a) more tiles onto the board. Therefore, this enables us to look at what properties the game
board will have after « has placed all of these tiles, realizing of course that & must follow the strategy given in
Subsection 2.4 and that we do not know how 3 will play.

Since « has at least moves(«) turns, 3 has at least 2 - 1noves(«) fewer unoccupied squares available to play
their tiles on. Let squares(i3) denote the number of squares which are still unoccupied after o has placed their
tiles upon the board.

Further there can be squares on the board which are not covered by a’s board cover, and are yet unavailable to
3. Let unavail(3) denote the number of squares which fit this description (see Figure 6). These squares will
never be played on since /7 is unable to and «’s strategy does not take them into consideration.

Finally, there are a number of squares which are included in a’s covering of the board but which, due to the
properties of these squares and of what we know of how « will play their tiles, o will not actually cover with
a tile and /3 will be unable to play on. Let unplayable(;3) denote the number of these types of squares. We
describe them in more detail below.

2.6.1 Unplayable Squares

To determine the number of squares which are included in a’s board cover but which neither o will cover with
a tile nor which 3 will be able to play on, we define two more types of board properties.

An option area for « is an unprotected, unoccupied square which is appended to an already existing safe area,
in such a way as to create a 1 x 3 rectangle (see Figure 7(a)). To include an option area in a board cover, it
cannot be adjacent to any other board properties contained in the board cover (see Figure 7(b)).

There are three types of option areas, type 1, 2, and 3, corresponding to the number of squares which they make
unavailable for 3 if the option is played (see Figure 7(c)). We note that the set of type-3 options is a subset of
the set of type-2 option since it makes at least 2 squares unavailable to 3. Similarly the set of type-2 options is
a subset of the set of type-1 option. We refer to the number of each of these different areas as opl(a), op2(a),
and op3 () respectively.

A vulnerable area with a protected square for « is a type-1 or type-2 vulnerable area in which one of the
squares is unavailable to 3. The importance of these vulnerable areas with protected squares is that for each

of these types of areas which a does not place a tile within unplayable(3) can be increased by one. We refer
to the number of each of these different areas as vulnl_p(«) and vuln2_p(«).

Important: The squares which these areas cover are the only ones which will be counted twice in our board
cover, each of these areas will be counted as both a vulnerable area and a vulnerable area with a protected
square.

To account for these new properties we refine the strategy given in Subsection 2.4 a little bit. First, if « has
the choice of playing in a type-1 vulnerable area which does not contain a protected square and one which
does, o will choose to play in the one which does not. Same thing for the type-2 vulnerable areas. Since we
are still playing in type-1 or type-2 vulnerable areas when we are supposed to, this does not affect the proof
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Figure 7: Option Area for vertical. (a) B marks a type 3 option area for the safe area A. (b) If C'is in the board
cover, B couldn’t be added. (c) All of the squares denoted by an X would be unavailable for the opponent if
vertical took the option.

of Theorem 1. Second, to any move made by 5 which overlaps one of a’s option areas, o will respond by
taking one of its options which is of the same value as what 3 covered. This also does not affect the proof of
Theorem 1 since 3’s move would not overlap any of a’s other areas.

Theorem 2 If it is currently (3’s turn, and « plays with the strategy given in Subsection 2.4, then there are at
least unplayable(3) squares which are covered in o’s covering of the board, which will not be used by any of
a’s moves(q) tiles and which will not be available to 3 where:

vuln2(a) vuln2(a) vuln2.p(a)

unplayable(f) = (vuln2_p(a) ([ 3
n (vulnl_p(a) ( vuanl(oc)J {vuznl(a) ;ulnl_p(a) ))
+3- [%J +2- OPQQ(“)J + LOPE(“)J + f(a) + g(a)

and
1 ifvuln2(a) mod 3 # 0 and vulnl(a) mod 2 # 0
fla)= and one of vuln2_p(a) > 0 or vulnl p(a) > 0.
0 otherwise.
and

if vuln2(a) mod 3 # 0 and vulnl(a) mod 2 # 0.
else if vuln2(a) mod 3 = 0 and vulnl(e) mod 2 = 0.
else if op3(a) mod 2 = 1.

else if op2(a) mod 2 = 1.

else if opl(a) mod 2 = 1.

otherwise.

O H N WOO

To remove a few special cases from the proof:

o Ifprot(a) mod 2 = 1, cancel one of the protective areas in ’s cover of the board and convert it into
two type-2 vulnerable areas. Hence, prot(a) mod 2 = 0.

e [f neither of the first two cases in g(«) apply, make it so that all of op3(c), op2(«x), and opl(c) have an
even value, except one, by converting option areas to smaller types as needed. For example, if you had
one of each of the different types of option areas, and since a type 2 is a subset of a type I, you could
label the type-2 option area as a type I leaving one type-3 option area and two type-1 option areas.

o If one of the first two cases in g(«) apply, make it so that all of op3(a), op2(a), and opl(a) have an
even value by converting option areas to smaller types as needed. For example, if you had one of each
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of the different types of option areas, and since o type 3 is a subsel of a type 2, you could label the 1type-3
option area as a type 2 and completely remove the [ype-1 option area feaving rwo type-2 option areds.

Prouf:

I. By the stratcgy given in Subsection 2.4, and our slight refinements given above, a will be able to place
a tile in at least \ -5"-‘@“—’}—-:-;’-'--”—"1'2‘—”‘9—) of their type-2 vulnerable areas which do not have a protected
square before they could possibly run out of these types of areas. Therclore (hey will not have to
play in (-u-u.l'u‘z__p((r) ({ﬂfﬂ%’_@_J Lﬂ’.ﬂ?!ﬂ.%ﬁ@ﬁln) of their type-2 vulnerable areas which
contain a protecicd square, each of which leaves one square which ;7 cannot use.

2. An identical argument can be used to determine the number of type-1 vulnerable areas which conlain a
protected square that ¢ will not have to place a tile within.

3, For the option areas, each time # blocks one of ¢'s option areas, o will be able to respond immediately
by placing a tile within one of their other option areas of an equal value to what ¢ just blocked. There-

fore, we can sce that we will be able Lo use at Jeast i i“.gi”—)- of each option type. We can also see that for

each type-3 option we use it makes three squares unavailable for A, two for type-2 options, and one for
type-1 options.

Finatly, there are (wo special cases which nced 1o be taken care of. The first one is just an extension of the
special case in the previous prool, where puin2{a) mod 3 # 0 and vuinl{a) mod 2 # 0. In Theorem 1 we
were able 1o show thal this special case enabled o to place one more tile on one of the iwo types of vulnerable
areas, This means that unless both vuln2_p(a) and vuinl _p{x) equal zero, this exira move that o plays could
possibly occupy oue more of their vulncrable areas which contain a protected square. This would mean that
we over-calcultated the number ol squares in o’s cover which will be unavailable to 4 by one.

The second special case is when « has only one of wmedn2{c) mod 3 # 0 or vulnl{ca) mod 2 # 0and an
uneven number of one of their option types, This will mean that al some point in the game 3 will have to play
across one of these lwo types of areas, and o will be able to respond in the other. This will give e cither one
more option or one more vulnerable move. If they receive the extra oplion then this removes up to 3 squares
from /3 (the vatue of the option arca). I they receive the extra vulnerable move this removes two squares from
# (the arca of the extra tile ¢ can play) and 3 will necd two more sguares than they did before since v will
aow be able to play moses(n} -+ 1 tiles. Since no options arc worth more than 4 squares it is always in §'s
interest to count the vailue of the option and forget about giving ov an extra move. O

2.6.2  Available Sguarcs for Opponent

We have now determined the number of unoccupied squares  will have remaining after « has played their
moves{e) tiles, the number ol these squares which were not contained in o’s board cover which are not
avaituble to i, and the number of squarcs within «'s cover which will not be available for f#, From alt of this

anail{jd}

we can conchude that /3 can play a maximum of { J moves, where

anail(;3) == squrres(dy  wneeail() unplayable(f3).

2.6.3 Example of Upper Bound

Consider the example given in Subsection 2.5.1 and the augmented board covering given in Figure 8. I‘rom
(hese and Theorem 2 we determine an upper bound on the number of moves thal Horizontal can make.

In Subsection 2.5.1 we already showed that v, the vertical player, can still play at least 10 Liles, with prot(c} =
2. pudn2(ar) = G, vulnl{n) = 2, and safe{a) = 5. In Figure 8 we can also sce squares(fd) = 22,
wnernail{{3) = O, epl{a) = 2, op2{e) = 1, opi3(er) = O, vuln2.p(e) = 0, and vuinl ploy=1.
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o
i

L

L.

Figure 8: A possible covering of a 6 x 10 board for the vertical player. The squares denoted by 01 and 02
are option arcas and the underlined V1 denotes a type-1 vulnerable area with a protecied square.

Now we can use our formula:

unployable(d) = ('t.!‘f.tlﬁ,2-£‘7(ﬂ') Tmmsz = nupele), ;”Enz )
+ (UU{R]H}J((\") ( 5 uh:i((})J i 1{e) vl m:Enl plee) ))
[r}pi!n)J op22(rx) + <Jp| (r) + f((? (]((P)

- ((0) Q{J m ((

o, ([

To determine the upper bound on the number of squares 3 can place a tile on we use the formula from Sub-
section 2.6.2:

avail{f) = squares(d) wnoevail(3) wnplayable(3)
— ) © 0
= 21

Therefore we can determine that S can play at most [%—J = }0 tiles. Note that Breuker ef . (2000) would
obtain an upper bound of 15,

2.7 The WinnerlIs...

In a given board position « can still make at fcast moves{e) moves, no matter what «’s opponent does,
provided thal « plays according to our given strategy. We also know that «’s opponeni can place at most
Lﬂ%@J tiles. If it is currently /s turn and moves{a) > opp.moves{a), then o can win. Similarly. if it is

currently o's turn and moves(e) > opp.moves{a}, then o can win.

From our examples in Subsection 2.5.1 and Subseclion 2.6.3 we know « can play at least 10 more tiles and 7
can play at most 10 tiles. Therefore, since it is currently (s turn we can deduce that o has a winning move in
this position. Breuker ef al.’s (2000) bounds do not allow them to be able o solve this position statically and
therefore they arc forced to build a large search tree to delermine the same result,
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Board Size | Safe Moves No Safe Moves
7 %8 1,030,221 949,209
7x9 1472487 6,052,516
8x8 2,272,909 2,023,301

Figure 9; Proof-tree sizes for various boards with safe moves either being generated or not.

3. SEARCH ENHANCEMENTS

All search programs, when oplimized for & specific search task, will use a number of different enhancements
to the normal alpba-beta search algorithm. These enhancements could include iterative decpening, transposi-
tion tables, move-ordering heuristics, specialized local searches, and many other general as well as problem-
specific ideas.

One enhancement which we investigated was proving that one type of move is always inferior 10 some other
type of move (called: dominance). This allowed us to prune these moves from the search.

3.1 Ignoring Safe Moves
OBSEQUI is able to take advantage of the idea that as long as there exists a vulnerable arca for the current
player there is no need to place a tile in a safe area,

Theorem 3 Given a domineering board which contains at least one safe area and one vulnerable area for o
and it is oo's tirn to play. Then there exists a vulnerable area which is as good or better a move for « than to
play in any of the safe areas.

Proof: Assume that mi(a), m)(8), mala), ma(3),... is the optimal move sequence for o and B until the
end of the game and that r; («) was placed in a safe arca. There are two cases we need to look at.

Case 1. At least onc of «’s moves was placed in a vulnerable area. et mz(c) be the first vulnerable

move o played. Since mg{a) is the first vulnerable move, ms (e}, m2(a),...,m; 1(e) are all played in
safe arcas. « achicves the same results by playing m, () first, then m; (@}, ma{a), ..., m: 1{a), since
myle), maf{ex), ...,y {c) are all safe areas and therefore 2 could not interfere with them.

Case 2. None of «’s moves were placed in a vulnerable area. Let m; {a) be replaced with an existing vulnerable
move. Since this vulnerable move can disrupt at most one of a’s safe areas, and it can only decrease the amount
of space 3 has to pluce their moves, it can not negatively affect . O

3.2 Analysis

This enhancement is a very simple idea to help reduce the branching factor in the game of domineering.
Figure 9 shows a number of tests which show that this enhancement does have a small effect on the size of the
proof (rees for various sizes of boards. Node expansion also becomes more efficient since there are fewer child
positions Lo examine and evaluate. We will refer to these types of relationships, where one move is guaranteed
to always be at least as good or betlter than another, as a dominance relationship.

As more dominance relations are discovered the branching factor of domineering will continue to be reduced.
This could be a very promising area for further research, which would lead to further reductions in the size of
the proof wrees for various domineering boards.

4. SOLVING 10 x 10 DOMINEERING

One of the goals we wanied to reach in doing research on domineering was to sofve targer boards than had ever
been solved before. The pinnacie is the 10 x 10 board - the smallest interesting-sized unresolved problem.
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Branching Nodesat  Ellective
Depth Factor Current Depih ~ Branching Factor |
0 90 I 25
l 86 25 7
2 83 1944 41
3 79 81609 43
4 17 3520539 43
3 74 169944142 -

Figure 16: Growth of 10 x 1) Scarch Tiee.

Previous to our research, 8 x 8 domineering as well as many other smaller board sizes, had heen solved by
various people. The game of ) x 9 domineering was reported Lo have been solved by DOMI in Van den Heril,
Uiterwijk, and Van Rijswijck (2002). We wanted 1o try the next step: 10 x 11 domineering.

4.1 Estimation of Difficultly

We can gel an estimate of the total size of the scarch space for 10 x 10 domincering by estimating the total
number of dilferent board positions which are reachable, To estimate this we looked at the fiest 5 ply of the
search space {see Figure 10). We note that on average the number of moves available decreases by about 3
with euch ply of the search. This would mean that to search 1o the end of the gume a depth of at least 30 would
need to be reached. Also it can be noted that [or the first five ply the effective branching lacior ranges from 25
to 77. Therefore a conservative cstimaie of the cffective branching factor at cach ply would be a factor of 25,
This data suggests (hat the size of the search space is approximately 25% = 8.6 10"

Another method to determine the difficully of the probien: is 1o look at the number of nodes which it ook to
solve smaller boards and then just extend (hose numbers to the larger board. For example in the published
results by Breuker ef af. {2000) 7 x 7 domineering look about 4 - [0 nodes, 8 x 8 took - 107 nodes, and 8 x 9
took 7 - 1019 nodes. At this rate of growth we estimated (hat § x 9 could easily need more than -1+ 10! nodes
and 10 x 10 domincering may take upwards of 5 - 10' nodes 1o solve. This is a number which is probably
beyond pur current compultational resources.

The good news is that if we use (his same method of estimation with the number ol nodes which OBSEQUI
necded to solve 8 x 8 domincering, 2 - 109, and 9 x 9 domineering. 2.5 - [07 nedes, we get a much smaller
estimate of around 3 - 1012 nodes to solve 10 x [0 domincering.

4.2 Splitting up the Work

Examining 3 trillion nodes is obviously much betler than 500 trillion. but with only one processor we estimate
that it would have taken upwards of 1350 days, probably more since the transposition table would nol have been
sufficiently large to be cffective. Therefore the work necded to be split up.

Our initial assumption was that 10 x 10 domineering was a first-player win. Therefore we ran our solver with
the condition thal every node al the eighth ply of the scarch was a first-player win, 1f our assumption ol the
values of these nodes was correct then this would be (he first 8 ply, with transpositions removed, of the prool
tree for 10 % 10 domineering. (See Figure 1). We then had the program wriie all the leal nodes of this tree 1o
a large file. Subsequently, the 650,531 nodes which were generated were split into a number of different work
files, and cach file was assigned to a dificrent processor. Bach of these processors worked on verifying that in
[act all of these nodes were first-player wins.

Obviously, il any losses were found we would nced to re-run our solver with the added knowiedge of which
cases were second-player wins, fram which a new sel of nodes would be generated. The process wonld Herate
from there until we were able 1o find a set of leal nodes which were all firsi-player wins. At this point we
would have 1 correct proof for 1) x 10 domincering.
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Figure 11: Minimal Alpha-3eta Tree of Depth 4 {assuming first-player win). Since we are assuming a first-
player win, the first ptayer only needs to make one move at each of his turns, while all of the second player’s
possible moves need to be examined. The small triangles at the bottom of the tree represent the independent
searches that can be divided among many different processors to validate that the values of the nodes at the
fourth ply of the tree are all wins for the first player.

4.3 10 x 10 is a First-Player Win

The computers which we used to solve this problem varied from 600 MHz Pentium 3 machines to 900 MHz
Pentium 3 muchines. Transposition-table sizes varied from 1 million to & million entries, depending on the
amount of memory available on the given machine. The number of nodes which they could examine per
second ranged from 140,000 to 210,000,

3,541,685,253,370 (3.5 trillion} nodes later the results were in: 10 x 10 dominecring is indeed a first-player
win. If Vertical is the first player then a winning move is position (1,2), OBSEQUI’s original move ordering
had been good enough that there was no need for a second Heration of the solving process: all 8-ply positions
in the tree were proven to be wins.

4.4 Correctness

Computer programs may have subtle programming errors, therefore we would like to give a couple of reasons
why we [eel that the results can be trusled.

First, we have examined hundreds of random positions in the search trees. These positions have been examined
to make sure that the right set of moves were generated, to make sure that the evaluation function returned the
correct value for the given position, and to make sure the correct board positions were generated when we
applied these moves to the current board position. Second, we ran OBSEQUI on all of the boards which have
been previously solved by other researchers, and verified that OBSEQUI returns the same values for cach of
these boards. Third, in solving 10 x 10 domineering, we tried to make our method of breaking the problem
up into smaller sub-problems as simple as possible, so as not to introduce new complexities which may have
errors attached to them.

One final point we would like to address is the fact that OBSEQUI did not make any mistakes for the first player
in any of their first four moves. This may seem surprising, but for example in 8 x 8 domineering, OBSEQUI
did not make any mistakes until the sixth ply of the search, and then only made 2 mistakes out of 9862 moves.
Therefore given the fact that the search space for 10 x 10 is considerably bigger, it is completely believable
that OBSEQUI was able to extend its perfect accuracy to the eighth pty of the search.

For all of the reasons stated above we are very confident in our resulls. But as always independent confirmation
of our 10 x 10 results would definitely be welcome and lend even greater credibility to the resnits.
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5. CONCLUSIONS

The improvements made in the evaluation function and the use of Lhe dominance relation have made an enor-
mous impact on the size of domineering posilions we are able to solve. (We also made some improvements to
the move-ordering scheme and the transposition-table replacement scheme, see Bullock (2002)).

One measure of how far we have progressed is the length of time it takes to solve a specific board position.
In “Solving 8 % 8 Domineering” by Breuker et af. (2000), submitled in 1998, it was mentioned that it took
them 600 hours and almost 71 billion nodes to determine that 8 x 9 domineering was a win for the vertical
player. OBSEQUI is able to tell us the same result in less than twenty minutes and needs o examine fewer than
260 million nodes (See Figure 12). This is a huge improvement in a time span of approximately 4 years, and
represents a difference which is (ar larger than just the improvements in computer hardware.

A second measure of the progress which has been made is the number of new board positions which OBSEQU)
can solve (See Figure 13).

Board Size  Resuit Nodes | Board Size Result Nodes
2x2 I I 4x7 A 802
2x3 1 2 4% 8 H 2,570
Z2x4 H 7 4 %9 v 13,570
2x b v 4] Ax5 2 259
2x6 1 8 X8 H 324
2x7 1 2 57 H 2,210
2x%x8 H 26 Ax8 H 2,467
2x9 V 65 5x 6 H 11,669
3x3 i I 686 t 908
3x4 H 3 6x7 v 24,227
3xh H i4 G x8 H 204,813
Ix6 H 16 6x9 v 1,374,535
IxT H 43 Tx7 1 31440
3x8 H 33 Tx8 H 949,209
3x9 H 180 Tx8 H 6,052,516
4% 4 i 23 8x8 1 2,023,301
4 x5 A% 42 ax5 v 259,064,428
dxG6 H 583 9% 9 1 1,657,032,906

Figure 12: Game-theoretic vatues for various sizes of domineering boards and the number of nodes OBSEQUI
needed to calculate the values. (We used a transposition table with 222 entries.)

Board Size Result Nodes
4 %1% H 314,148,901
4x21 H 3,390,074,758
6x 14 H 1,864,870,370
8 x 10 H 4,125,516,739
10 x 10 ] 3,541,685,253,370

Figure 13; New game-theoretic values which have been determined by OBSEQUI for varicus interesting board
positions, as well as the number of nodes needed Lo calculate the values, To solve the above positions we used
a transposition table with 2%¢ entries except for 10 x 10 which was solved as described in Section 4.

5.1 Evaluzation Funclion

The most significant improvement in our solver was our evaluation function. This enabled OBSEQUI to prunc
lines of search from its proof trees far faster than previous programs. This means that when a Josing move
is made our enhancements are able to determine this much sooner and therefore prune the subiree of that
position,
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In the 8 x & proof (ree this cnables our progran: to examine 40 times fewer nodes than it would without hese
cithancements, For example, with all of OBSEQUCs enhancements turned on it takes 2,023,301 nodes Lo prove
[8x 8] - £ {[nr = 0] denotes the game theoretic value of the 1 x 72 board). 1T we turn off all the enhancéments
to the evaluation function it takes 84,034,856 nodes. Sec Figure 14 and Figure 15 for a more delaiied Jook ut
how individual enhancements affect the size of the proofl uee (or 8 x 8 domineering.
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Figure 14: Comparison ol different evaluation functions (number of nodes at cach ply of the scarch). The

axis is the depth or ply of the scarch, the ¥ axis is the fog ol the number of nodes which were examined at that
depth of the search. AN - 4™ denotes that we used all of the enhancenients except /.

I Enhancemeonls Size of Proof Tree (nodes) |

[ All Enhancements 7 2,023,301
Adl - protective areas 6,610,775
Al - unavailable squares 2.566,004
All - vulnerable arcas w/ protected sguares 4,045,384
All - vulnerable (ype | areas 2,972,216
All - oplion areas 4,525,704
No Enhancements (o Evaluation Function 84.034.856

Figure 15: Comparison ol the size of the proef trees for 8 x 8 domineering given a certain evaluation function.
“AlL- A™ denoles that we used all of the enhancements cxeept A,

5.2  Extending To All Rectangular Boards

Even with alf the progress which has been made in solving the game of dominecring we are still only able to
sobve @ fairly small mumber of domineering boards. Thanks to the results of Lachmann er af. (2000) we are
able Lo extend the results obtained through search techniques to much larger boards.

‘The new results which we have compuled, in conjuction with the rules discovered by Fachmann er af. (2000),
have enabled us to determine the values lor a number of more board positions. Some of the more interesting
vitlues which we have obtained and which were not previously known, are:
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[4 x 19] = [4 x 21] = H. Wilh these two results we now arc able Lo determinc whe wins on all 4 X @
boards. [4 x ] = H forall values of z, where zz > 14.

[6 % 14] = H. With this new result we can now determine [G % x| = IT for all even valucs of z, where
x> 20,

[8 x 10] = H. This is the first 8 X z board which has been determined 1o have a value of f1.

[10 x 10] = 1. This is the largest square board ever solved.

Sec Figure 16 in the Appendix, for an updated table of who wins on rectangular boards.
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8. APPENDIX

Below we provide an updated table of who wins on rectangular boards.
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Figure 16: Updated chart of what we know about who wins Domineering on rectangular boards. New results
which we have obtained from OBSEQUI are shaded. The y axis is the number of rows, x axis is the number of
columns. A value such as 1h means the position is either a first-player or horizontal win (further work needs
to be done to determine the exact value).



