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Abstract

The game of Go is one of the most popular games in the world. When playing games
like Go, players usually consider the following two questions at each position:
e How many points ahead is BLACK (WHITE)?

e How big is the next move?

The strength of a Go player depends on his or her ability at answering these ques-
tions. The answers to these two questions, in terms of combinatorial game theory, are
called the mean and temperature of a game and they come from the solution of a nested
min-max equation. This article is intended to describe an algorithm for finding these
values of a subclass of combinatorial games where each player can have only one option
at each local non-terminal position. © 2000 Published by Elsevier Science Inc. All
rights reserved.

1. Introduction

The calculus of Go endgame is an application of combinatorial game theory
[1,3], which deals with sums of positions (or games). We use letters 4, B, C, ...
to denote different positions and the expression 4 + B+ C + - - - to denote the
sum of these positions. Near the end of a typical Go game, the whole board can
be partitioned into several independent regions (i.e., positions). The entire
game is a sum of these positions.
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Let L and R be the two players of the game where player L’s goal is to
maximize and player R’s goal is to minimize the outcome. If G is a position, we
use the notation G*(G®) to denote the set of the positions to which L(R) can
move from G, and the notations LS(G)(RS(G)) to denote the optimal outcome
of the position G when L(R) moves first and each of the players follows al-
ternately. Let G and H be two positions. The following inequality [1] describes
upper and lower bounds of LS(G + H):

LS(G) + RS(H) <LS(G + H) < LS(G) + LS(H).

We use the notation nG, where n is an integer, to denote the sum of n copies
of G. By the previous inequality, we get

LS(nG) < LS((n — 1)G) + LS(G)
and

RS(nG) = LS((n—1)G + G*) = LS((n — 1)G) + RS(G").
Thus

lim (LS(nG) — RS(nG))/n < lim (LS(G) — RS(G*))/n = 0.

The value lim,_.., LS(nG)/n(= lim,_., RS(nG)/n) is called the mean of G,
denoted by M(G). The meaning of this definition is that the mean of a position
is the average outcome of the position, regardless of which player moves first.

Next, we try to define the term temperature, which measures the size of a
move. Unless a position is a terminal position where neither of the players can
gain more points, the player who moves first will gain more points. The idea is
to associate each move with a tax ¢ [2]. If the tax is too low then the first player
will have some advantage. If the tax is high enough then neither of the players
will move first. Let G be a position. For ¢ > 0, define !

LS(G,t) = max{M(G),RS(G",t) —t}, and
RS(G,t) = min{M(G),LS(G" 1) + t}.

Note that LS(G, ) is monotone decreasing and RS(G,¢) is monotone in-
creasing with respect to 7. The minimum solution for ¢ of the equation
LS(G,t) = RS(G,t) is called the temperature of G, denoted by T(G). The
meaning of this definition is that the temperature of a position is the minimum
tax that can eliminate the advantage of the first player.

Fig. 1 illustrates two positions A4, B and their means and temperatures.
BLACK is 8 points ahead at position A(M(4) =8) and 7 points ahead at

! In this paper, all the positions stopped at integers and we follow the convention in [1] that use 0
as the lower bound of the temperature. Since [2], many other authors have been extending the
minimum temperature down to —1. In the later case, numbers have negative temperatures.
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M(A)=8 T(A)=3 M(B)=7,T(B) =4
Fig. 1. Position A and B.
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position B(M(B) = 7). The size of the next move is 3 points at position
A(T(4) = 3) and 4 points at position B(7T(B) = 4). The method for calculating
these values is explained in subsequent sections.

The mean and temperature of a sum have the following property [1]:

M(A+B) =M(4) + M(B) and T(4 + B) < max{T(4),T(B)}.

If a player can calculate the mean of each position then he or she can derive
the mean of the entire game, and, if a player knows the temperature of each
position then he or she can derive an upper bound of the temperature of the
entire game.

Fig. 2 exemplifies a position that is equivalent to the sum of the positions 4
and B in Fig. 1. Note how the mean and temperature of 4 4+ B are derived.

Mean and temperature can be used to estimate the optimal outcome of a
game. The following inequalities [1] show upper and lower bounds for LS(G)
and RS(G).

M(G) < LS(G) <M(G) + T(G) and M(G) > RS(G) > M(G) — T(G).

The finding of the optimal outcome of a sum of positions is an NP-hard
problem [4], whereby the above inequalities have already provided very prac-
tical solutions [5] in most games.

The concept of mean and temperature helps players to discover the good
moves of a game. Berlekamp [2] introduced the following simple strategy for
playing a sum of positions:

If the opponent move at a position that raises the local temperature, then
simply respond to it locally. Otherwise move at the position with the high-
est temperature.

Utilizing this strategy, if L moves first then he or she can always produce an
outcome greater than or equal to the mean of the game, assuming R is an
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M(A +B)=15T(A + B) <4

Fig. 2. Position 4 + B.
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optimal player. And, if L moves second then he or she can generate an outcome
greater than or equal to the mean minus the temperature of the game.

2. The stable theorem of mean and temperature

In the remainder of this paper, we will study the algorithm for finding the
mean and temperature of a position. We assume that each player has at most
one option at each position. Each position is represented as a binary tree; each
left branch corresponds to a move by L; each right branch corresponds to a
move by R; each terminal node has a value corresponds to the score of the
position.

If we start from a position G and let the two players move alternately, with L
moving first, the sequence of positions visited will be G-, GER, GERL . .| These
positions are called the left alternating followers of G, denoted by
G*), GM2 G Similarly, GR, GRL, GRR ... are called the right alternating
followers of G, denoted by GX(), GR?) GR®) .. An alternating follower of G is
called odd (even) if it can be reached from G by an odd (even) number of
moves. Fig. 3 shows the complete game tree of position A (note that 4 white
stones have been captured in position A%). AL is an odd left alternating fol-
lower of A; A% is an odd right alternating follower of 4; AR is an even right
alternating follower of 4. Note that, at the terminal nodes of the tree, the
means are known and the temperatures are zero. We will explain how to cal-
culate the means and temperatures of the non-terminal nodes later.

AL (=AL(1)) AR (=AR(1))
L R R ) + 0. R IR IR IR R/ 0.
0.0.0.0. .0 0: O.Q‘0.0.x.Q.O:
M=11, T=0 M=4, T=4
ARL (=AR(2)) ARR
ot 0. L IR IR IR R IR R ) 0.
w 0.0.Q: 0.0.0.0.0.0.0.6:
M=8, T=0 M=0, T=0

Fig. 3. The complete tree of position A.
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The first left (right) alternating follower of G whose temperature is no more
than the temperature of G is called the left (right) first stable alternating fol-
lower of G. For example, in Fig. 3, the left first stable alternating follower of 4
is A*(= 4"V) and the right first stable alternating follower of 4 is AR (= AR®?)).
The importance of the left and right first stable alternating followers is that,
once their means and temperatures have been determined, the mean and
temperature of the root position can be determined.

Let G*™ and GR" be the left and right first stable alternating followers of
position G. That is

T(G")) > T(G), 0<i<m andT(G"")<T(G),
T(G*") > T(G), 0<j<n, andT(G"")<T(G).
If m is an odd number then
M(G) =LS(G,T(G))
=RS(G'V, T(G)) — T(G)

= RS(G'™ T(G)) — T(G)
= M(G"™) — T(G).
If m is an even number then
M(G) = LS(G, T(G))
= RS(G*'V, T(G)) — T(G)

= LS(G"", T(G))
= M(G-™).
Similarly if » is an odd number then
M(G) = M(G*™) + T(G).
And if n is an even number then
M(G) = M(GR™).

Therefore, we have
e Case A: both m and n are odd

M(G) = (M(G"™) + M(G*")) /2,
T(G) = (M(G"™) — M(G"™))/2.
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e Case B: m is odd and n is even
M(G) = M(G"™),
T(G) = M(GX™) — M(G*™).

e Case C: mis even and n is odd
M(G) = M(G"™),
7(G) = M(G*™) — M(G*™).

e Case D: both m and n are even
M(G) = M(G"") = M(G"),
T(G) = max{T(G*™), T(G*")}.

The above result is called the stable theorem of mean and temperature [6]. In
Fig. 3, A® is the left first stable alternating follower of A%; AR is the right first
stable alternating follower of 4®. Since both A% and A®F are at odd levels
relative to A%, we have M(4®) = (M(4*) + M(4%*))/2 = (8 +0)/2 = 4, and
T(A%) = (M(AR) — M(ARR))/2 = (8 — 0)/2 = 4. A" is the left first stable al-
ternating follower of A. At first glance, it is not clear which one of A% and A*
is the right first alternating follower of A. Suppose A% is stable in A then
T(4) = (M(A") — M(4®))/2 = (11 — 4)/2 = 3.5 < 4 = T(4A®). This contradicts
the assumption that A% is stable in 4. Hence, A®" is the right first stable al-
ternating follower of A. Since A is odd and AR is even relative to 4, we have
M(A) = M(AR) =8, and T(4) = M(A") — M(ARF) =11 —8 =3.

We suggest the reader use these rules to verify the mean and temperature of
position B in Fig. 1. Fig. 4 shows the complete tree of position B.

We end this section by studying one more example. Fig. 5 shows a position
C and its left and right first alternating followers. CR is the same as the posi-
tion 4 + B in Fig. 2. Suppose C* is unstable in C. Then, T(C) < T(CR) <4,
M(C)=M(Ct)—T(C) >24—4=20. On the other hand, M(C)<
LS(CR,T(CR)) + T(CR) = M(CR) + T(CR)<15+4 =19, a contradiction.
Therefore, we have C® stable in C,T(G) = (M(C*) — M(C®))/2 =4.5 and
M(G) = (M(C*) + M(C®))/2 = 19.5. Note that, we can determine the mean
and temperature of position C without expanding its tree completely. In many
cases, to calculate the mean and temperature of a position, there is no need to
expand the corresponding tree completely. We will discuss this more in the
later sections.

3. Outline of the AM-T search algorithm

The stable theorem in the previous section is very helpful for calculating the
mean and temperature in general cases. Since the temperature is zero and the
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Fig. 4. The complete tree of position B.
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Fig. 5. Position C and its stable followers.

mean is known at each terminal node of the binary tree, by applying the
theorem recursively and calculating the mean and temperature of each non-
terminal node from the bottom up, one can derive the mean and temperature
of the root position. This is a brute force approach; the drawback is that all the
nodes of the tree must be visited and the approach is very time consuming. This
situation is analogous to the pure min—max search [7] where all the nodes are
visited in order to backup the root’s value. A better algorithm should be able to
eliminate some of the unnecessary search.
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The outline of our search algorithm, M-T (Mean and Temperature) search,
is similar to an alpha-beta search [8]. We use the notations M*(G), MY(G) and
TH(G), TY(G) to denote the lower and upper bound of the mean and tem-
perature of a position G. Before the search starts, these variables of all the
positions have the following initial values: M' = —co, MY = 0o, TF =0,
TY = —co. During each run of the search, a new terminal node will be visited
and the values of all the nodes on the path from the root to the terminal node
will be updated. The search process continues until M* = MY and Tt = TY at
the root. Note that the search may terminate while there are still some unvisited
nodes. In the worst case, all terminal nodes will be visited. Obviously, in the
later case, we still will have MY = MV and Tt = TY. The following is the outline
of the M-T search algorithm.

procedure MtSearch (root);

begin
ML = —o0;
MY = o;
Tl =0:
TY = —o0;
while (ML < MY) or (Tt < TY)) do
begin

P = SelectNewTerminalNodeOf (root );
TLE(P)=TY(P) = 0;
ME(P) = MY(P) = ValueOfTerminalNode (P);
UpdateMtValueOfAncestorsOf (P);
end;
end;

The following three questions need to be answered when describing the
details of the search process:
1. What order should the nodes of the tree be visited?
2. How do we update the values of the variables of a node after a new terminal
node has been observed?
3. How do we determine which nodes can be eliminated from the search?
We will discuss each of these questions in details in each of the following
sections.

4. Alternating first search
As in an alpha-beta search, the order of the nodes to be visited has a great

impact on the searching efficiency (measured as the total number of nodes
needed to complete the search) of the M-T search. In this section, we introduce
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a new binary tree traversing algorithm, alternating first search, in which the
move sequences with higher alternating frequencies are visited before the ones
with lower alternating frequencies.

We first define the term alternating rank. Let G be a node in a binary tree.
We use the notation 4(G) to denote the collection of the alternating followers
of G and define

A7(6) = {}
A4°(G) = {G} and
A"(G)={x:x€A(y)andy € 4" '(G)}, n>0.

A node x is said to have an alternating rank n, n>0, in G if
x € A"(G) — A" '(G). For example, in G, G'X has an alternating rank of 1 and
G"* has an alternating rank of 2. A sequence of nodes {S;} in a binary tree is
called alternating first if, for each i < j, there is no x such that the alternating
rank of §; is higher than the rank of S; in x. Note that, the definition implies
parent before children in an alternating first sequence. It turns out that, for a
complete binary tree, there is only one alternating first sequence to traverse the
left (right) sub tree. Fig. 6 shows a complete binary tree with depth 3 (assuming
the tree is a right sub tree of its parent). The labels on the nodes are the al-
ternating first orders. We suggest the reader verify the uniqueness of the order.

Alternating first search is well suited for the M-T search. Experience shows
that, while studying a game, players usually look ahead first at those move
sequences with lower alternating ranks. In many cases, the move sequences
with high alternating ranks have little or no effect on the mean and temperature
of the root position. Alternating first search follows this rule of thumb.

/1\
/\ /\
A A A A

Fig. 6. An alternating first search example.
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5. Mean and temperature of an incomplete tree

During the search, the game tree has not been expanded completely.
However, the partial information of the tree still can be used to calculate M*,
MV and T*, TV of the root. One can first construct two game trees Gy and G;
from the original tree G by the following rules:

e Gy is obtained from G by replacing each missing node (or sub tree) with the
number which equals the upper bound of the node’s value.

e (; is obtained from G by replacing each missing node (or sub tree) with the
number which equals the lower bound of the node’s value.

Since Gy and G, are complete game trees, we can calculate their means in
the usual way. The mean of G is between the means of Gy and G;. That is

M*(G) = M(G,) <M(G) < M(Gy) = MY(G).

For example, Fig. 7 shows an incomplete game tree G. Note that G'£, GR®
and G**® are missing.
The corresponding Gy and G; are shown in Figs. 8§ and 9. We have
0<M(G) < 10.
To calculate upper and lower bounds of the temperature of G, one can
construct another two game trees Gy and G. from G, as described below:
e Gy is obtained from G by
o replacing each missing node (or sub tree) in the left sub tree of G with the
number which equals the upper bound of the node’s value, and
o replacing each missing node (or sub tree) in the right sub tree of G with the
number which equals the lower bound of the node’s value.
e G is obtained from G by
o replacing each missing node (or sub tree) in the left sub tree of G with the
number which equals the lower bound of the node’s value, and
o replacing each missing node (or sub tree) in the right sub tree of G with the
number which equals the upper bound of the node’s value.

GL/ G\‘GR
/ \GR 6{0 \A?
Y N\

GH=]0 ?

Fig. 7. An incomplete game tree G.
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Gy (M(Gy)=10)
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Gu (T(Gh)= o)
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Fig. 10. Gy.

87



88 K.-Y. Kao | Information Sciences 122 (2000) 77-90

Gc (T(G)=5)

AN N
10/ \4—«:

Since Gy and G¢ are complete game trees, we can calculate their means in
the usual way. The temperature of G is between the temperature of Gy and G¢.
That is

TH(G) = T(Ge) < T(G) < T(Gy) = TV(G).

Figs. 10 and 11 show the corresponding Gy and G¢ of the incomplete game
tree in Fig. 7 and we have 5 < T(G) < oc.

6. M-cut and T-cut

In general, the search algorithm will visit nodes in the alternating first order
described in the previous section. There are cases where some of the nodes can
be eliminated from the search. We classify the elimination rules into two
classes: M-cut and 7-cut.

M-cut rule:

e If A4 is an odd level left (right) alternating follower of G, and, below A, the
first stable left (right) alternating follower of G is odd in G, then one can cut

the left (right) sub tree of 4.

GL/G\%;R
¥ N ¥ N

G G 0 ?

2

20
Fig. 12. An example of M-cut (G** can be cut).
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o
7N\

GLR

Y N ¥ N

? 90 10 ?
Fig. 13. An example of T-cut (G can be cut).

o If 4 is an even level left (right) alternating follower of G, and, below A, the
first stable left (right) alternating follower of G is even in G, then one can cut
the right (left) sub tree of A.

For example, in Fig. 12, by applying the method introduced in the previous
section, one can get 5< T(G) < 10, and T(G*®) = 15. Hence G*® is not stable in
G. G* is odd and, below G*, the first stable alternating follower of G is G:* £
which is odd also. According to the M-cut rule, one can cut G**. Note that we
have pruned G** even though we do not know whether G* is stable in G or not.
The fact is that, regardless of whether G' is stable in G or not, the first left
alternating follower X (could be G* or G 1) of G will be at odd level and
M(X) = 10.

T-cut rule:

o If A is an unstable odd level left (right) alternating follower of G, then one
can cut the left (right) sub tree of A.

e If A is an unstable even level left (right) alternating follower of G, then one
can cut the right (left) sub tree of A.

Fig. 13 shows an example of 7T-cut. By applying the method introduced in
the previous section, one can get 5< 7(G) < 10, and T(G*) > 40. Hence, G* is
unstable in G.

According to the T-cut rule, one can cut G,

The proof of these rules follows directly from the stable theorem.

7. Conclusion

We have presented a search algorithm for finding the mean and temperature
of a game. Although we used Go in the examples through out this paper, it
should be mentioned that the result could be applied to general hot combi-
natorial games. The cornerstone of the M-T search is the stable theorem of
mean and temperature, which Go players may find is very practical and easy to
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learn. In the worst cases, the algorithm may still need to visit all the nodes to
finish the search. In the optimal cases, the number of visited nodes can be as
few as two times the depth of the binary tree. Although the problem domains
are different, there is some similarity between an M-T search and an alpha-beta
search. The outline of an M-T search is similar to that of an alpha—beta search.
An alpha-beta search can be regarded as a procedure for evaluating the value
of a nested min—-max expression, while M-T search can be regarded as a pro-
cedure for finding the solution to a particular type of nested min—-max equa-
tion. Alpha-cuts and beta-cuts are used to reduce the unnecessary search when
evaluating a nested min-max expression; M-cuts and 7T-cuts are used to reduce
the unnecessary search when solving a nested min—-max equation.

In this article, the assumption that each side has only one dominant option
at each position is quite restrictive. We encourage future researchers to explore
the circumstances and conditions (if any) under which this restrictive hy-
pothesis might be weakened.
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