

An Update on Game Tree
Research
Akihiro Kishimoto and Martin Mueller

 Presenter:
Akihiro Kishimoto, IBM Research - Ireland

Tutorial 4: Proof-Number Search
 Algorithms

Overview of this Talk

● Techniques to solve games/game positions with AND/OR
tree search algorithms using proof and disproof numbers

● Proof-number search
● Depth-first proof-number search
● Issues and enhancements
● Parallelism
● Multi-valued scenario
● Applications

Proof-Number Search - Motivation

● Some branches are much easier to prove than others

● Good move ordering helps

● Uniform-depth search (as in alpha-beta) is a problem: deep
but mostly forced line may be much easier to prove

● Branching factor is far from uniform in many games
● Chess and shogi: King in check must escape from check –

much reduced branching factor & much increased chance
of finding a checkmate

● Checkers: must capture if possible – reduced branching
factor & helps simplify games

● Life and Death in Go: stones close to life – can compute
small set of relevant attacking moves

Proof-Number Search (1 / 2)
[Allis et al, 1994]

● Builds on earlier ideas of conspiracy numbers [McAllester,
1988]

● Flexible, balanced: can find either proof or disproof

● Grow both a proof and a disproof tree at the same time, one
node at a time

● Some leaf nodes will be (dis-)proven, many others will be
unknown – interior state, game result not known

● Stop as soon as root is proven or disproven

● Given an incomplete (dis-)proof: how far is it from being
complete? What is the most promising way to expand it?

Proof-Number Search (2 / 2)

● Find (dis-)proof set of minimal size: set of leaf nodes that
must be (dis-)proven to (dis-)prove root

● Principle: optimism in face of uncertainty

● Assume cost of proving each unproven node is 1 (this will
be enhanced later)

● Complete proof: reduce size of smallest proof set to 0 (same
for disproof)

● Main idea: always expand nodes from min. proof and
disproof set

Example of Proof and Disproof
Numbers

Proof number Disproof number

1

1

1 0 1 1 1

3

1

1 3

1 0 1 1 1

WIN LOSS

pn pnOR node AND node dn dnOR node AND node

Most-Promising Node
(aka Most Proving Nodes)

Example (C.f. [Kishimoto et al, 2012])

2,2

2,1

1,1 1,2 1,1 1,1 1,1

3,1

pn,dn OR node

AND nodepn, dn

1,1 1,1

MPN

Key Insight of PNS

● There is always a most-promising node (MPN)

● If search space is tree
● Discuss issues for directed acyclic/cyclic graphs later

● Solving MPN will help either a proof or disproof: proving it
reduces min. proof set, while disproving it reduces min.
disproof set of the root

PNS Algorithm Outline (1 / 2)

● Notation: pn(n) = proof number of node n

 dn(n) = disproof number of node n

● Non-terminal leaf: pn(n) = dn(n) = 1

● Terminal node, win: pn(n)=0, dn(n) = INF

● Terminal node, loss: pn(n) = INF, dn(n) = 0

● Interior OR node: pn(n)=min(pn(c1),...,pn(ck))

 dn(n)=dn(c1) + … + dn(ck)

● Interior AND node: pn(n) = pn(c1)+ … + pn(ck)

 dn(n)=min(dn(c1), …,dn(ck))

 c1,...,ck: n's children

(Big) Assumption: solving subtrees are independent tasks

PNS Algorithm Outline (2 / 2)

a)Start from root and find MPN

b)Expand MPN

c) Recompute proof and disproof numbers of the nodes on
the path from root to MPN

d)Repeat until root proven or disproven

Example of PNS (1 / 4)

MPN selection

2,2

2,1

1,1 1,2 1,1 1,1 1,1

3,1

pn,dn OR node

AND nodepn, dn

1,1 1,1

MPN

Example of PNS (2 / 4)

MPN expansion

2,2

2,1

1,1 1,2 1,1 1,1 1,1

3,1

pn,dn OR node

AND nodepn, dn

1,1 1,11,1 1,11,1

Example of PNS (3 / 4)

Back propagation of proof and disproof numbers

2,2

2,1

1,1 1,2 1,1 1,1 1,1

3,1

pn,dn OR node

AND nodepn, dn

1,1 1,11,1 1,11,1

1,3

2,3

2,2

Example of PNS (4 / 4)

MPN selection

2,3

2,2

1,3 1,2 1,1 1,1 1,1

3,1

pn,dn OR node

AND nodepn, dn

1,1 1,11,1 1,11,1

MPN

Comments on PNS

● “Best-first”, great for unbalanced search trees

● Adapts to find deep but narrow proofs

● Memory hog – needs to store all nodes in memory

● Non-negligible Interior node re-expansion (depth-first proof-
number search is better)

● No guarantee on finding short win or small proof tree – ignores
cost of proof so far

● Behaves more like “pure heuristic search” in single-agent search
than like optimal A*

● PN2 Search [Allis, 1994]

● Perform two levels of proof-number search

a)Run one step of PNS

b)Run another, limited PNS to evaluate leaf nodes
● E.g. Limit to where x is the tree size of first

search and a and b are empirically tuned parameters
[Breuker, 98]

c)Throw away the second search (wasteful?)

d)Repeat a)

Reducing Memory Usage (1 / 2)

1
1+e(a−x)/b

Reducing Memory Usage (2 / 2)

● Transposition table + efficient pruning techniques to discard
least useful existing TT entries when TT is filled up

● SmallTreeGC: garbage collect nodes with small subtrees
[Nagai, 1999]

● SmallTreeReplacement: hashing with open addressing, try
multiple entries (e.g. 10), replace one with smallest subtree
[Nagai, 2002]

● Alternative: hashing with chaining – store more than one
entry at one location

● Can run with (incredibly) little memory
● Can be combined with PNS, but typically combined with

depth-first proof-number search (df-pn)

Remains an open question which performs better, PN2 or
TT+SmallTreeGC?

Depth-First Proof-Number Search
[Nagai, 2002]

● Basic PNS always propagates proof and disproof numbers of leaf
all the way back to root

● Incurs high overhead to expand new leaf
● E.g. Expanding only one new leaf that is 100 steps away from root

requires to re-expand 100 internal nodes

● Df-pn significantly reduces node re-expansion overhead
● Uses thresholds of proof and disproof numbers to control search

C.f. Korf's Recursive Best-First Search for single-agent search
● Uses transposition table to save previous search effort
● Empirically ratio of re-expansion is about 30% in Go/shogi

● Df-pn finds MPN as basic PNS does
● If search space is tree

Main Idea of Df-pn's Threshold
Controlling Techniques (1 / 2)

● PNS search often stays in one subtree for a long time

● As long as we can determine MPN, we don't care about
proof and disproof numbers – can delay updates

● Example: pn(n) = min(100,90,20,60,50)=20 at OR node n

● Locally stay in subtree with pn=20 until its proof number
exceeds smallest proof number among other children pn2
(50 in example)

● Globally, must also check if move decision would change
higher up in the tree. Can pass down a condition of such
change from parent as a threshold parameter

● Formula for new threshold: min(pn(parent), pn2+1)

Main Idea of Df-pn's Threshold
Controlling Technique (2 / 2)

● pn(n) = pn(c1) + … + pn(ck) where c1,...,ck are n's children
and n is an AND node

● Assume we have threshold for node n, n.thpn

● Say we are working on cj. How long?

● Answer: until n.pn >= n.thpn, or increase cj exceeds
difference n.thpn – n.pn. So set

cj.thpn = pn(cj) + (n.thpn – n.pn)

● Apply same rules to set threshold for disproof number

Example of Df-pn (1 / 4)

2,2

2,1

1,1 1,2 1,1 1,1 1,1

3,1

pn,dn OR node

AND nodepn, dn

1,1 1,1

MPN

thpn=INF
thdn=INF

thpn=4
thdn=INF-1

thpn=3
thdn=3

Example of PNS (2 / 4)

2,2

2,1

1,1 1,2 1,1 1,1 1,1

3,1

pn,dn OR node

AND nodepn, dn

1,1 1,11,1 1,11,1

thpn=INF
thdn=INF

thpn=4
thdn=INF-1

thpn=3
thdn=3

Example of Df-pn (3 / 4)

2,2

2,1

1,3 1,2 1,1 1,1 1,1

3,1

pn,dn OR node

AND nodepn, dn

1,1 1,11,1 1,11,1

thpn=INF
thdn=INF

thpn=4
thdn=INF-1

thpn=3
thdn=3

Example of Df-pn (4 / 4)

2,2

2,2

1,3 1,2 1,1 1,1 1,1

3,1

pn,dn OR node

AND nodepn, dn

1,1 1,11,1 1,11,1

thpn=INF
thdn=INF

thpn=4
thdn=INF-1

thpn=3
thdn=4

thpn=2
thdn=3

MPN

Outline of Df-pn Algorithm

a)Set root.thpn = root.thdn=INF and set n=root

b)Recompute pn(n) and dn(n) by using n's children

c) If n.thpn<= pn(n) or n.thdn <= dn(n) return to n's parent

d)If n is an OR node, select and examine child cj with the
smallest proof number and set the thresholds to:
 cj.thpn=min(n.thpn,pn2+1), cj.thdn = dn(cj) + (n.thdn – n.dn)

e)If n is an AND node, select and examine cj with the smallest
disproof number and set the thresholds to:
 cj.thpn = pn(cj) + (n.thpn – n.pn), cj.thdn=min(n.thpn,dn2+1)

f) Repeat until root is solved

pn2, dn2: smallest (dis-)proof numbers of other children than cj

PNS Variants in Practice

● Need to incorporate many techniques to make PNS work
efficiently in practice

● Problems in Directed Acyclic Graph (DAG) and
Directed Cyclic Graph (DCG)

● Search enhancements
● Parallelization

PNS on a DAG – Overcounting
Proof and Disproof Numbers

● Back to basics: pn, dn count number of leaf nodes that must
be solved

● In DAG, the same leaf node may be counted along multiple
paths

● This overcounting can be exponentially bad

● It happens in practice, e.g. tsume-shogi, Go

● NP-hard to compute accurate proof and disproof numbers

● Approximative approaches: Proof-Set Search, WPNS, and
SNDA

Example of Overcounting

Example 1 Example 2

C

B

D

E

A

 pn(A)=pn(B)=pn(C)+pn(D)
= pn(E) + pn(E) = 2pn(E)

C

B

D

E

A

H

G

I

J

F

M

L

N

O

K

 pn(A)= 8pn(O)

Proof-Set Search
[Mueller, 2003]

• Use proof sets instead of
proof “numbers”

• (Dis-)proof set of n = a set
of leaf nodes that must be
expanded to (dis-)prove

• Open question: How to
implement time- and
memory-efficient proof-set
operations?

Example

C

B

D

F

A

E

pset (B)=pset (C)∪pset (D)∪pset (E)=pset (F)∪pset (F)∪pset (E)
={F }∪{F }∪{E }={E,F }

Weak Proof-Number Search
(WPNS) [Ueda et al, 2008]

• Extension of [Okabe, 2005]

• Use standard formula for proof
numbers at OR nodes and
disproof numbers at AND nodes

• For AND node n, pn(n) =
max(pn(c1),..pn(ck)) + k -1
where c1,...,ck are n's children

• Analogous computation for dn at
OR node

Example

C

B

D

F

A

E

 pn(B)= max(pn(C), pn(D), pn(E)) + 2 = max(pn(F),pn(F),pn(E)) + 2
 = max(pn(E),pn(F))+ 2

Source Node Detection Algorithm
(SNDA) [Kishimoto, 2010]

• Extension of [Nagai,2002]

• Keep a pointer to one
parent p for each node

• Detect a source of DAG

• Take max instead of sum
for nodes that may cause
overcounting

• Take sum for others

Example

C

B

D

F

A

E

 pn(B)= max(pn(C), pn(D)) + pn(E) = max(pn(F),pn(F)) + pn(E)
 = pn(E)+pn(F)

Comments on Solutions to
Overcounting Problem

● There is always a trade-off between speed of search,
accuracy of proof and disproof numbers and available
memory

● Accurate proof and disproof numbers lead to reduction
of node expansion but lead to reduction of node
expansion rate too

● E.g., WPNS tends to expand more nodes than SNDA but
achieves comparable performance except for some very
difficult problem instances in tsume-shogi [Kishimoto, 2010]

PNS Variants on a DCG

● Need to address more issues

● Graph History Interaction Problem
● Infinite loop

Graph-History Interaction (GHI)
Problem [Palay,1983]

● Many games contain repetitions

• Outcome of repetition is
determined by the rule of game

– E.g., move leading to
previous position is illegal in
Go

• Transposition table ignores
history

– Never wants to give up using
TT for performance reason

– May contain incorrect results

Example

B

A

C

D Win or loss?

OR node

AND node

General Solution to GHI
[Kishimoto & Mueller, 2004]

• Prepare encoded position
and encoded path to
transposition table entry

• Reuse proof and disproof
numbers for unproven node

• Save win/loss via path if
repetitions are involved

• Save win/loss with no
condition if repetitions are
not involved

Note: Works correctly with TT
replacement schemes but need
to reconstruct proof tree (See
[Kishimoto, 2005])

Example

B

A

C

D

1. D via A->B->D Win
2. D via A->C->D Loss

OR node AND node

Infinite Loop Problem in Df-pn
[Kishimoto & Mueller 2003, 2008]

• No new leaf is expanded

– MPN property no longer holds

• Df-pn overcounts (dis-)proof
numbers due to repetitions

Example (right-hand side)

dn(O)=dn(I) + dn(P) >= thdn(O)

via A->C->G->J->O

dn(N)=dn(O) >= thdn(N)

via A->C->F->I->L->N

Cycle A->C->G->J->O->I->L->N->O
is never detected

Example A

B C

D E F G

H I J K

L

M N

O

P

Df-pn(r) (1 / 2)

● Keep the minimal distance from root
● Normal child: has a larger minimal

distance than parent
● Old child: not normal child

● Modify computation of (dis-)proof number
● AND node:

 pn(n)=

● Analogous formula for dn(n) for OR node n
● Propagation of minimal distance to parent (see original paper)

1. Ignore proof number of old nodes
(if unproven normal child exists)
2. Largest proof number of old node
(if all normal children are proven)

A

B

C

Old

Normal

Df-pn(r) (2 / 2)

• dn(O)=dn(P)

 if P is unproven

• dn(O)=dn(I)

 if P is disproven

A

B C

D E F G

H I J K

L

M N

O

P

md=0

md=1

md=2

md=3

md=4

md=5

md=4

md=5

Underestimation Problem of Df-pn(r)
[Kishimoto, 2010]

• Df-pn(r) undercounts (dis-)proof
number

Example (right-hand side)

• dn(C) must be dn(D)+dn(E)

• Df-pn(r) computes

 dn(C)=dn(D) (if D is unproven)

A

B

D E

C

md=0

md=1

md=2

md=3 md=1

Threshold Controlling Algorithm
(TCA) [Kishimoto, 2010]

• Don't change the way of
computing (dis-)proof number

• Increase threshold if n has old
child

Example (right-hand side)

dn(C)=dn(D)+dn(E)

thdn(C)=max(thdn(C), dn(C)+1)

 =max(thdn(C), dn(D) + dn(E) + 1)

A

B

D E

C

md=0

md=1

md=2

md=3 md=1

Search Enhancements
for PNS Variants

● Heuristic initialization

● Modification to calculation of proof and disproof numbers

● Threshold control of df-pn

● Refining heuristic proofs

● Kawano's tree simulation

● Adding shallow depth-first search

● Early win/loss detection

Heuristic Initialization

● Basics: pn, dn is lower bound on cost of solving node

● Initializing them with 1 is naïve

● Maybe we can find better estimates? e.g. depend on
features of positions.

● Use domain-dependent evaluation functions evalpn(n),
evaldn(n)

● Manually tuned (e.g., df-pn+ [Nagai, 2002], [Kishimoto &
Mueller, 2003], [Winands et al, 2011])

● Machine learning such as support vector machine
[Miwa et al,2005]

● Set pn(n)=evalpn(n) and dn(n) = evaldn(n) for leaf node n

● Large improvement in practice

Modification to Calculation of Proof
and Disproof Numbers

● Proof and disproof numbers often do not reflect the actual
difficulty of solving a position

● The number of legal moves is large and doesn't dramatically
change between current and child nodes (e.g., Go and Hex)

● Values of siblings are highly correlated, e.g. interposing piece
drops in tsume-shogi, sacrificing pieces

● Many ways to modify pn & dn calculation schemes to reflect real
difficulty of positions

● Consider only a smaller number of best children [Yoshizoe,
2008][Arneson et al, 2011]

● Detect “threats” [Nagai, 2002][Soeda et al, 2006][Yoshizoe
et al, 2007]

● Define domain-dependent rule (e.g., [Seo, 1995])

Threshold Control of Df-pn

● Df-pn + heuristic initialization (called df-pn+ [Nagai, 2002])
increases overhead of re-expanding interior nodes

● Df-pn suffers from thrashing TT if more than one sibling
exists and search space does not fit into TT

● Df-pn (or df-pn+) increments thresholds by the minimum
possible amount

● Increase threshold increments over those of original df-pn
● n.thpn = min(n.thpn(n), pn2 + δ) where δ > 1

Constant δ [Nagai,2002], variable δ [Kishimoto & Mueller,
2005]

● n.thpn = min(n.thpn(n),) [Pawlewicz & Lew,
2007]

⌈pn2⋅(1+ϵ)⌉

Refining Heuristic Proofs
[Schaeffer et al, 2005, 2007]

● Checkers solution by Schaeffer et al

● Evaluation of position is accurate – high-performance alpha-
beta search with depth of 17-23

● Pseudo-proofs: assume everything with evaluation > 150 is
win, < -150 is loss. Create proof tree.

● After 150 is proven, change bound to 200/-200. Then 250/-
250, etc. Once bound reaches INF/-INF, proof is complete

Other Search Enhancements

● Tree simulation [Kawano, 1996]

● Try to construct (dis-)proof tree if “similar” positions are
(dis-)proven

● Shallow depth-first iterative deepening search at leaf nodes

● Pseudo one move look ahead, e.g. [Allis et al, 1994]
[Breuker et al, 1998][Winands, 2004]

● 3-ply search at non-terminal OR leaf in tsume-shogi
[Kaneko et al, 2005]

● Early win/loss detection

● E.g., retrograde analysis, domain-dependent, static
analysis of positions, dominance relations

Parallel PNS Variants (1 / 3)

● Achieving reasonable parallel performance is difficult as in
parallel alpha-beta

● Search, communication and synchronization overhead
● Sharing TT information among processors in distributed

memory environments
● Moreover, PNS variants construct more unbalanced trees

than alpha-beta

● Unbalanced trees often make PNS variants explore different
but still promising portions of search space

PNS Variants (2 / 3)

● Shared-memory parallel df-pn [Kaneko, 2010]
● Share transposition table among threads
● Use virtual proof and disproof numbers, vpn(n), vdn(n) (c.f.,

Coulom's virtual loss in MCTS)
● For OR node n, vpn(n) = pn(n) + k where pn(n) is proof

number for n and k is the number of threads that enter n
● Define analogously vdn(n) for AND node n
● Select child with best child ci with smallest vpn(ci) at OR

node n (and analogously at AND node n)
● Similar idea (but slightly different calculation scheme) is

used to solve Hex [Pawlewicz et al, 2013]

Parallel PNS Variants (3 / 3)

● Master-slave framework in distributed memory
environments, e.g., [Schaeffer et al, 2007][Wu et al,
2011][Saffidine et al, 2012]

● One master manages a subtree of the root node and
coordinates work to slaves

● Master preserves the most important search results
● Slaves independently examine assigned work until

condition determined by master is satisfied
● Several strategies to initiate parallelism are proposed

E.g., virtual loss, semi-automatic selection of candidates

Extension to Multi-Valued Cases

● Series of Boolean searches, e.g., binary search for
sequential search

● Each search uses a bound on leaf value as in null-window
search

● How to reuse search results from previous searches

● Previous (dis-)proof was with harder bound than
current one – can just take old result [Moldenhauer,
2009]

● Unproven (dis-)proof numbers from previous search,
e.g., proving “win by Ko”/seki in Go [Kishimoto &
Mueller, 2003] [Niu et al, 2006]

● Multi-Outcome Proof-Number Search determines multi-
valued case with one search [Saffidine & Cazenave, 2012]

Comments on PNS Variants

● Good cases
● Uneven branching factor
● Early wins/losses found in some branches
● Number of moves correlated with winning chance

● Bad cases

● “Everything looks the same”
● Uniform branching factor, no early wins/losses

● Really bad cases

● Proof numbers actively misleading
● Lots of “forcing moves”, but they don't work. Only a

“quiet” move works

Applications (1 / 3)

● PNS variants are used to solve games/game positions
● Checkers [Schaeffer et al, 2007], tsume-shogi (e.g. [Seo et al,

 2001][Nagai, 2002]), tsume-Go [Kishimoto & Mueller, 2005] etc
● PNS variants are recently applied to other kinds of game

● Multi-player games [Saito & Winands, 2010], two-player
game with imperfect information [Sakuta, 2001], moving
target search [Moldenhauer, 2009]

● Proof numbers were applied to theorem proving in 80s
[Elkan, 1989]

Applications (2 / 3)

● The problem of chemical synthesis from given simpler
molecules was formulated as AND/OR graph search and
solved by PNS [Heifets & Jurisica, 2012]

OR node

AND node

Aspirin

C.f. Figure 3 in
[Heifets & Jurisica, 2012]

Application (3 / 3)

● Optimally solving Maximum a Posteriori (MAP) task
defined over graphical model can be modeled as
AND/OR graph search [Dechter & Mateescu, 2007]

● OR node: Assign value to variable
● AND node: Select one variable

● RBFOO, which has commonalities with PNS but includes
several modifications, is empirically shown to be efficient
(See [Kishimoto & Marinescu, 2014] for details)

Conclusions

● Gave an overview about PNS variants that are commonly
used to solve games/game positions

● Basic ideas of PNS and df-pn
● Issues to be resolved, e.g. memory, DAG, DCG
● Search enhancements
● Parallelism
● Multi-valued scenario
● Applications

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

