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Overview of this Talk

● Techniques to solve games/game positions with AND/OR 
tree search algorithms using proof and disproof numbers

● Proof-number search
● Depth-first proof-number search
● Issues and enhancements
● Parallelism 
● Multi-valued scenario
● Applications



  

Proof-Number Search - Motivation

● Some branches are much easier to prove than others

● Good move ordering helps

● Uniform-depth search (as in alpha-beta) is a problem: deep 
but mostly forced line may be much easier to prove

● Branching factor is far from uniform in many games
● Chess and shogi: King in check must escape from check – 

much reduced branching factor & much increased chance 
of finding a checkmate

● Checkers: must capture if possible – reduced branching 
factor & helps simplify games

● Life and Death in Go: stones close to life – can compute 
small set of relevant attacking moves



  

Proof-Number Search (1 / 2)
[Allis et al, 1994]

● Builds on earlier ideas of conspiracy numbers [McAllester, 
1988]

● Flexible, balanced: can find either proof or disproof

● Grow both a proof and a disproof tree at the same time, one 
node at a time

● Some leaf nodes will be (dis-)proven, many others will be 
unknown – interior state, game result not known

● Stop as soon as root is proven or disproven

● Given an incomplete (dis-)proof: how far is it from being 
complete? What is the most promising way to expand it?



  

Proof-Number Search (2 / 2)

● Find (dis-)proof set of minimal size: set of leaf nodes that 
must be (dis-)proven to (dis-)prove root

● Principle: optimism in face of uncertainty

● Assume cost of proving each unproven node is 1 (this will 
be enhanced later)

● Complete proof: reduce size of smallest proof set to 0 (same 
for disproof)

● Main idea: always expand nodes from min. proof and 
disproof set 



  

Example of Proof and Disproof 
Numbers

Proof number Disproof number

1

1

1 0 1 1 1

3

1

1 3

1 0 1 1 1

WIN LOSS

pn pnOR node AND node dn dnOR node AND node



  

Most-Promising Node 
(aka Most Proving Nodes)

Example (C.f. [Kishimoto et al, 2012])

2,2

2,1

1,1 1,2 1,1 1,1 1,1

3,1

pn,dn OR node

AND nodepn, dn

1,1 1,1

MPN



  

Key Insight of PNS

● There is always a most-promising node (MPN)

● If search space is tree
● Discuss issues for directed acyclic/cyclic graphs later

● Solving MPN will help either a proof or disproof: proving it 
reduces min. proof set, while disproving it reduces min. 
disproof set of the root



  

PNS Algorithm Outline (1 / 2)

● Notation: pn(n) = proof number of node n

               dn(n) = disproof number of node n

● Non-terminal leaf: pn(n) = dn(n) = 1

● Terminal node, win: pn(n)=0, dn(n) = INF

● Terminal node, loss: pn(n) = INF, dn(n) = 0

● Interior OR node: pn(n)=min(pn(c1),...,pn(ck))

                             dn(n)=dn(c1) + … + dn(ck)

● Interior AND node: pn(n) = pn(c1)+ … + pn(ck)

                               dn(n)=min(dn(c1), …,dn(ck)) 

                               c1,...,ck: n's children

(Big) Assumption: solving subtrees are independent tasks



  

PNS Algorithm Outline (2 / 2)

a)Start from root and find MPN

b)Expand MPN

c) Recompute proof and disproof numbers of the nodes on 
the path from root to MPN

d)Repeat until root proven or disproven



  

Example of PNS (1 / 4)

MPN selection

2,2

2,1

1,1 1,2 1,1 1,1 1,1

3,1

pn,dn OR node

AND nodepn, dn

1,1 1,1

MPN



  

Example of PNS (2 / 4)

MPN expansion

2,2

2,1

1,1 1,2 1,1 1,1 1,1

3,1

pn,dn OR node

AND nodepn, dn

1,1 1,11,1 1,11,1



  

Example of PNS (3 / 4)

Back propagation of proof and disproof numbers

2,2

2,1

1,1 1,2 1,1 1,1 1,1

3,1

pn,dn OR node

AND nodepn, dn

1,1 1,11,1 1,11,1

1,3

2,3

2,2



  

Example of PNS (4 / 4)

MPN selection

2,3

2,2

1,3 1,2 1,1 1,1 1,1

3,1

pn,dn OR node

AND nodepn, dn

1,1 1,11,1 1,11,1

MPN



  

Comments on PNS

● “Best-first”, great for unbalanced search trees

● Adapts to find deep but narrow proofs

● Memory hog – needs to store all nodes in memory

● Non-negligible Interior node re-expansion (depth-first proof-
number search is better)

● No guarantee on finding short win or small proof tree – ignores 
cost of proof so far

● Behaves more like “pure heuristic search” in single-agent search 
than like optimal A* 



  

● PN2 Search [Allis, 1994]

● Perform two levels of proof-number search 

a)Run one step of PNS

b)Run another, limited PNS to evaluate leaf nodes
● E.g. Limit to                  where x is the tree size of first 

search and a and b are empirically tuned parameters 
[Breuker, 98]

c)Throw away the second search (wasteful?)

d)Repeat a)

Reducing Memory Usage (1 / 2)

1
1+e(a−x )/b



  

Reducing Memory Usage (2 / 2)

● Transposition table + efficient pruning techniques to discard  
least useful existing TT entries when TT is filled up

● SmallTreeGC: garbage collect nodes with small subtrees 
[Nagai, 1999]

● SmallTreeReplacement: hashing with open addressing, try 
multiple entries (e.g. 10), replace one with smallest subtree 
[Nagai, 2002]

● Alternative: hashing with chaining – store more than one 
entry at one location

● Can run with (incredibly) little memory
● Can be combined with PNS, but typically combined with 

depth-first proof-number search (df-pn)

Remains an open question which performs better, PN2 or 
TT+SmallTreeGC?



  

Depth-First Proof-Number Search
[Nagai, 2002]

● Basic PNS always propagates proof and disproof numbers of leaf 
all the way back to root

● Incurs high overhead to expand new leaf
● E.g. Expanding only one new leaf that is 100 steps away from root 

requires to re-expand 100 internal nodes

● Df-pn significantly reduces node re-expansion overhead
● Uses thresholds of proof and disproof numbers to control search

C.f. Korf's Recursive Best-First Search for single-agent search
● Uses transposition table to save previous search effort
● Empirically ratio of re-expansion is about 30% in Go/shogi

● Df-pn finds MPN as basic PNS does
● If search space is tree



  

Main Idea of Df-pn's Threshold 
Controlling Techniques (1 / 2)

● PNS search often stays in one subtree for a long time

● As long as we can determine MPN, we don't care about 
proof and disproof numbers – can delay updates

● Example: pn(n) = min(100,90,20,60,50)=20 at OR node n

● Locally stay in subtree with pn=20 until its proof number 
exceeds smallest proof number among other children pn2 
(50 in example)

● Globally, must also check if move decision would change 
higher up in the tree.  Can pass down a condition of such 
change from parent as a threshold parameter

● Formula for new threshold: min(pn(parent), pn2+1)



  

Main Idea of Df-pn's Threshold 
Controlling Technique (2 / 2)

● pn(n) = pn(c1) + … + pn(ck) where c1,...,ck are n's children 
and n is an AND node

● Assume we have threshold for node n, n.thpn

● Say we are working on cj.  How long?

● Answer: until n.pn >= n.thpn, or increase cj exceeds 
difference n.thpn – n.pn. So set 

cj.thpn = pn(cj) + (n.thpn – n.pn)

● Apply same rules to set threshold for disproof number 



  

Example of Df-pn (1 / 4)

2,2

2,1

1,1 1,2 1,1 1,1 1,1

3,1

pn,dn OR node

AND nodepn, dn

1,1 1,1

MPN

thpn=INF
thdn=INF

thpn=4
thdn=INF-1

thpn=3
thdn=3



  

Example of PNS (2 / 4)

2,2

2,1

1,1 1,2 1,1 1,1 1,1

3,1

pn,dn OR node

AND nodepn, dn

1,1 1,11,1 1,11,1

thpn=INF
thdn=INF

thpn=4
thdn=INF-1

thpn=3
thdn=3



  

Example of Df-pn (3 / 4)

2,2

2,1

1,3 1,2 1,1 1,1 1,1

3,1

pn,dn OR node

AND nodepn, dn

1,1 1,11,1 1,11,1

thpn=INF
thdn=INF

thpn=4
thdn=INF-1

thpn=3
thdn=3



  

Example of Df-pn (4 / 4)

2,2

2,2

1,3 1,2 1,1 1,1 1,1

3,1

pn,dn OR node

AND nodepn, dn

1,1 1,11,1 1,11,1

thpn=INF
thdn=INF

thpn=4
thdn=INF-1

thpn=3
thdn=4

thpn=2
thdn=3

MPN



  

Outline of Df-pn Algorithm

a)Set root.thpn = root.thdn=INF and set n=root

b)Recompute pn(n) and dn(n) by using n's children

c) If n.thpn<= pn(n) or n.thdn <= dn(n) return to n's parent

d)If n is an OR node, select and examine child cj with the 
smallest proof number and set the thresholds to:
 cj.thpn=min(n.thpn,pn2+1), cj.thdn = dn(cj) + (n.thdn – n.dn)

e)If n is an AND node, select and examine cj with the smallest 
disproof number and set the thresholds to:
 cj.thpn = pn(cj) + (n.thpn – n.pn), cj.thdn=min(n.thpn,dn2+1)

f) Repeat until root is solved

pn2, dn2: smallest (dis-)proof numbers of other children than cj



  

PNS Variants in Practice

● Need to incorporate many techniques to make PNS work 
efficiently in practice

● Problems in Directed Acyclic Graph (DAG) and 
Directed Cyclic Graph (DCG)

● Search enhancements
● Parallelization



  

PNS on a DAG – Overcounting 
Proof and Disproof Numbers

● Back to basics: pn, dn count number of leaf nodes that must 
be solved

● In DAG, the same leaf node may be counted along multiple 
paths

● This overcounting can be exponentially bad

● It happens in practice, e.g. tsume-shogi, Go

● NP-hard to compute accurate proof and disproof numbers

● Approximative approaches: Proof-Set Search, WPNS, and 
SNDA



  

Example of Overcounting

Example 1 Example 2 

C

B

D

E

A

   pn(A)=pn(B)=pn(C)+pn(D) 
= pn(E) + pn(E) = 2pn(E)

C

B

D

E

A

H

G

I

J

F

M

L

N

O

K

   pn(A)= 8pn(O)



  

Proof-Set Search
[Mueller, 2003]

• Use proof sets instead of 
proof “numbers”

• (Dis-)proof set of n = a set 
of leaf nodes that must be 
expanded to (dis-)prove

• Open question: How to 
implement time- and 
memory-efficient proof-set 
operations?

Example

C

B

D

F

A

E

pset (B)=pset (C)∪pset (D)∪pset (E)=pset (F)∪pset (F)∪pset (E)
={F }∪{F }∪{E }={E,F }



  

Weak Proof-Number Search
(WPNS) [Ueda et al, 2008]

• Extension of [Okabe, 2005]

• Use standard formula for proof 
numbers at OR nodes and 
disproof numbers at AND nodes

• For AND node n, pn(n) = 
max(pn(c1),..pn(ck)) + k -1  
where c1,...,ck are n's children

• Analogous computation for dn at 
OR node

Example

C

B

D

F

A

E

   pn(B)= max(pn(C), pn(D), pn(E)) + 2 = max(pn(F),pn(F),pn(E)) + 2
           = max(pn(E),pn(F))+ 2



  

Source Node Detection Algorithm 
(SNDA) [Kishimoto, 2010]

• Extension of [Nagai,2002]

• Keep a pointer to one 
parent p for each node

• Detect a source of DAG

• Take max instead of sum 
for nodes that may cause 
overcounting

• Take sum for others

Example

C

B

D

F

A

E

   pn(B)= max(pn(C), pn(D)) + pn(E) = max(pn(F),pn(F)) + pn(E)
           = pn(E)+pn(F)



  

Comments on Solutions to 
Overcounting Problem

● There is always a trade-off between speed of search, 
accuracy of proof and disproof numbers and available 
memory

● Accurate proof and disproof numbers lead to reduction 
of node expansion but lead to reduction of node 
expansion rate too 

● E.g., WPNS tends to expand more nodes than SNDA but 
achieves comparable performance except for some very 
difficult problem instances in tsume-shogi [Kishimoto, 2010] 



  

PNS Variants on a DCG

● Need to address more issues

● Graph History Interaction Problem
● Infinite loop



  

Graph-History Interaction (GHI) 
Problem [Palay,1983]

● Many games contain repetitions

• Outcome of repetition is 
determined by the rule of game

– E.g., move leading to 
previous position is illegal in 
Go

• Transposition table ignores 
history

– Never wants to give up using 
TT for performance reason

– May contain incorrect results

Example

B

A

C

D Win or loss?

OR node

AND node



  

General Solution to GHI
[Kishimoto & Mueller, 2004]

• Prepare encoded position 
and encoded path to 
transposition table entry

• Reuse proof and disproof 
numbers for unproven node

• Save win/loss via path if 
repetitions are involved

• Save win/loss with no 
condition if repetitions are 
not involved

Note: Works correctly with TT 
replacement schemes but need 
to reconstruct proof tree (See 
[Kishimoto, 2005])

Example

B

A

C

D

1. D via A->B->D Win
2. D via A->C->D Loss

OR node AND node



  

Infinite Loop Problem in Df-pn
[Kishimoto & Mueller 2003, 2008]

• No new leaf is expanded

– MPN property no longer holds

• Df-pn overcounts (dis-)proof 
numbers due to repetitions

Example (right-hand side)

dn(O)=dn(I) + dn(P) >= thdn(O) 

via A->C->G->J->O

dn(N)=dn(O) >= thdn(N)         

via A->C->F->I->L->N 

Cycle A->C->G->J->O->I->L->N->O 
is never detected

Example A

B C

D E F G

H I J K

L

M N

O

P



  

Df-pn(r) (1 / 2)

● Keep the minimal distance from root
● Normal child: has a larger minimal 

distance than parent
● Old child: not normal child

● Modify computation of (dis-)proof number
● AND node:

          pn(n)=

● Analogous formula for dn(n) for OR node n
● Propagation of minimal distance to parent (see original paper)

1. Ignore proof number of old nodes
(if unproven normal child exists)
2. Largest proof number of old node
(if all normal children are proven)

A

B

C

Old

Normal



  

Df-pn(r) (2 / 2)

• dn(O)=dn(P)

    if P is unproven

• dn(O)=dn(I)

    if P is disproven

A

B C

D E F G

H I J K

L

M N

O

P

md=0

md=1

md=2

md=3

md=4

md=5

md=4

md=5



  

Underestimation Problem of Df-pn(r)
[Kishimoto, 2010]

• Df-pn(r) undercounts (dis-)proof 
number

Example (right-hand side)

• dn(C) must be dn(D)+dn(E)

• Df-pn(r) computes 

    dn(C)=dn(D) (if D is unproven)

A

B

D E

C

md=0

md=1

md=2

md=3 md=1



  

Threshold Controlling Algorithm 
(TCA) [Kishimoto, 2010]

• Don't change the way of 
computing (dis-)proof number

• Increase threshold if n has old 
child

Example (right-hand side)

dn(C)=dn(D)+dn(E)

thdn(C)=max(thdn(C), dn(C)+1)

            =max(thdn(C), dn(D) + dn(E) + 1)

A

B

D E

C

md=0

md=1

md=2

md=3 md=1



  

Search Enhancements 
for PNS Variants

● Heuristic initialization

● Modification to calculation of proof and disproof numbers

● Threshold control of df-pn

● Refining heuristic proofs

● Kawano's tree simulation

● Adding shallow depth-first search

● Early win/loss detection



  

Heuristic Initialization

● Basics: pn, dn is lower bound on cost of solving node

● Initializing them with 1 is naïve

● Maybe we can find better estimates? e.g. depend on 
features of positions.

● Use domain-dependent evaluation functions evalpn(n), 
evaldn(n)

● Manually tuned (e.g., df-pn+ [Nagai, 2002], [Kishimoto & 
Mueller, 2003], [Winands et al, 2011])

● Machine learning such as support vector machine        
[Miwa et al,2005]

● Set pn(n)=evalpn(n) and dn(n) = evaldn(n) for leaf node n

● Large improvement in practice



  

Modification to Calculation of Proof 
and Disproof Numbers

● Proof and disproof numbers often do not reflect the actual 
difficulty of solving a position

● The number of legal moves is large and doesn't dramatically 
change between current and child nodes (e.g., Go and Hex)

● Values of siblings are highly correlated, e.g. interposing piece 
drops in tsume-shogi, sacrificing pieces

● Many ways to modify pn & dn calculation schemes to reflect real 
difficulty of positions

● Consider only a smaller number of best children [Yoshizoe, 
2008][Arneson et al, 2011]

● Detect “threats” [Nagai, 2002][Soeda et al, 2006][Yoshizoe 
et al, 2007]

● Define domain-dependent rule (e.g., [Seo, 1995])



  

Threshold Control of Df-pn

● Df-pn + heuristic initialization (called df-pn+ [Nagai, 2002]) 
increases overhead of re-expanding interior nodes

● Df-pn suffers from thrashing TT if more than one sibling 
exists and search space does not fit into TT

● Df-pn (or df-pn+) increments thresholds by the minimum 
possible amount

● Increase threshold increments over those of original df-pn
● n.thpn = min(n.thpn(n), pn2 + δ) where δ > 1

Constant δ [Nagai,2002], variable δ [Kishimoto & Mueller, 
2005]

● n.thpn = min(n.thpn(n),                   ) [Pawlewicz & Lew, 
2007]

⌈pn2⋅(1+ϵ)⌉



  

Refining Heuristic Proofs
[Schaeffer et al, 2005, 2007] 

● Checkers solution by Schaeffer et al

● Evaluation of position is accurate – high-performance alpha-
beta search with depth of 17-23

● Pseudo-proofs: assume everything with evaluation > 150 is 
win, < -150 is loss. Create proof tree.

● After 150 is proven, change bound to 200/-200. Then 250/-
250, etc. Once bound reaches INF/-INF, proof is complete



  

Other Search Enhancements

● Tree simulation [Kawano, 1996]

● Try to construct (dis-)proof tree if “similar” positions are 
(dis-)proven

● Shallow depth-first iterative deepening search at leaf nodes

● Pseudo one move look ahead, e.g. [Allis et al, 1994]
[Breuker et al, 1998][Winands, 2004] 

● 3-ply search at non-terminal OR leaf in tsume-shogi 
[Kaneko et al, 2005]

● Early win/loss detection

● E.g., retrograde analysis, domain-dependent, static 
analysis of positions, dominance relations



  

Parallel PNS Variants (1 / 3)

● Achieving reasonable parallel performance is difficult as in 
parallel alpha-beta

● Search, communication and synchronization overhead
● Sharing TT information among processors in distributed 

memory environments
● Moreover, PNS variants construct more unbalanced trees 

than alpha-beta

● Unbalanced trees often make PNS variants explore different 
but still promising portions of search space 



  

PNS Variants (2 / 3)

● Shared-memory parallel df-pn [Kaneko, 2010]
● Share transposition table among threads
● Use virtual proof and disproof numbers, vpn(n), vdn(n) (c.f., 

Coulom's virtual loss in MCTS) 
● For OR node n, vpn(n) = pn(n) + k where pn(n) is proof 

number for n and k is the number of threads that enter n
● Define analogously vdn(n) for AND node n
● Select child with best child ci with smallest vpn(ci) at OR 

node n (and analogously at AND node n)
● Similar idea (but slightly different calculation scheme) is 

used to solve Hex [Pawlewicz et al, 2013]



  

Parallel PNS Variants (3 / 3)

● Master-slave framework in distributed memory 
environments, e.g., [Schaeffer et al, 2007][Wu et al, 
2011][Saffidine et al, 2012]

● One master manages a subtree of the root node and 
coordinates work to slaves

● Master preserves the most important search results
● Slaves independently examine assigned work until 

condition determined by master is satisfied
● Several strategies to initiate parallelism are proposed

E.g., virtual loss, semi-automatic selection of candidates



  

Extension to Multi-Valued Cases

● Series of Boolean searches, e.g., binary search for 
sequential search

● Each search uses a bound on leaf value as in null-window 
search

● How to reuse search results from previous searches

● Previous (dis-)proof was with harder bound than 
current one – can just take old result [Moldenhauer, 
2009]

● Unproven (dis-)proof numbers from previous search, 
e.g., proving “win by Ko”/seki in Go  [Kishimoto & 
Mueller, 2003] [Niu et al, 2006]

● Multi-Outcome Proof-Number Search determines multi-
valued case with one search [Saffidine & Cazenave, 2012]



  

Comments on PNS Variants

● Good cases
● Uneven branching factor
● Early wins/losses found in some branches
● Number of moves correlated with winning chance

● Bad cases

● “Everything looks the same”
● Uniform branching factor, no early wins/losses

● Really bad cases

● Proof numbers actively misleading
● Lots of “forcing moves”, but they don't work. Only a 

“quiet” move works



  

Applications (1 / 3)

● PNS variants are used to solve games/game positions
● Checkers [Schaeffer et al, 2007], tsume-shogi (e.g. [Seo et al, 

 2001][Nagai, 2002]), tsume-Go [Kishimoto & Mueller, 2005] etc 
● PNS variants are recently applied to other kinds of game

● Multi-player games [Saito & Winands, 2010], two-player 
game with imperfect information [Sakuta, 2001], moving 
target search [Moldenhauer, 2009] 

● Proof numbers were applied to theorem proving in 80s 
[Elkan, 1989]



  

Applications (2 / 3)

● The problem of chemical synthesis from given simpler 
molecules was formulated as AND/OR graph search and 
solved by PNS [Heifets & Jurisica, 2012]

OR node

AND node

Aspirin

C.f. Figure 3 in 
[Heifets & Jurisica, 2012]



  

Application (3 / 3)

● Optimally solving Maximum a Posteriori (MAP) task 
defined over graphical model can be modeled as 
AND/OR graph search [Dechter & Mateescu, 2007]

● OR node: Assign value to variable
● AND node: Select one variable

● RBFOO, which has commonalities with PNS but includes 
several modifications, is empirically shown to be efficient 
(See [Kishimoto & Marinescu, 2014] for details)



  

Conclusions

● Gave an overview about PNS variants that are commonly 
used to solve games/game positions

● Basic ideas of PNS and df-pn
● Issues to be resolved, e.g. memory, DAG, DCG
● Search enhancements
● Parallelism
● Multi-valued scenario
● Applications
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