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Outline of this Talk

● Techniques to play games with alpha-beta algorithm
● Alpha-beta search and its variants
● Search enhancements
● Search extension and reduction
● Evaluation and machine learning
● Parallelism



  

Alpha-Beta Algorithm

● Unnecessary to visit every node to compute the true minimax 
score

● E.g. max(20,min(5,X))=20, because min(5,X)<=5 always holds
● Idea: Omit calculating X

● Idea: keep upper and lower bounds (α,β) on the true minimax 
score

● Prune a position if its score v falls outside the window

● If v < α we will avoid it, we have a better-or-equal 
alternative

● If v >= β opponent will avoid it, they have a better 
alternative



  

How Does Alpha-Beta Work? (1 / 2)

● Let v be score of node, v1, v2, ...,vk scores of children

● By definition: in MAX node, v = max(v1, v2,..,vk)

● By definition: in MIN node,  v = min(v1, v2, ..., vk)

● Fully evaluated moves establish lower bound

● E.g., if v1=5, max(5,v2,...,vk)>=5
● Other moves of score <= 5 do not help us, can be pruned



  

How Does Alpha-Beta Work? (2 / 2)

● Similar reasoning at MIN node – move establishes upper 
bound

● E.g., v=2, v=min(2,v2,...,vk)<=2
● If a move leads to position that is too bad for one of the 

players, then cut.



  

Alpha-Beta Algorithm – 
Pseudo Code

int AlphaBeta(GameState state, int alpha, int beta, int depth) {
    if (state.IsTerminal() or depth == 0)
       return state.StaticallyEvaluate()
    score = -INF;
    foreach legal move m from state
       state.Execute(m)
       score  = max(score,-AlphaBeta(state, -beta, -alpha, depth-1))
       alpha = max(score,alpha)
       state.Undo()
       if (alpha >= beta) // Cut-off
          return alpha
    return score
}

This is a negamax formulation.
Initial call: AlphaBeta(root, -INF, INF, depth_to_search)



  

Example of Alpha-Beta Algorithm
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Principal Variation (PV)

● Sequence where both sides play a strongest move

● All nodes along PV have the same value as the root

● Neither player can improve upon PV moves

● There may be many different PV if players have equally 
good move choices

● The term PV is typically used for the first sequence 
discovered. Others are cut off by pruning



  

Properties of Alpha-Beta

● Number of nodes examined
● Best case:                           (see minimal tree, next slide)
● Basic minimax: 

b: branching factor, d: depth 
● Assuming score v is obtained after alpha-beta searches with 

window (α, β) at node n, real score sc is: 
● If v <= α: fail low, sc <= v, 
● if α < v < β: exact, sc = v, and
● if β <= v: fail high, sc >= v

We will keep using this property in this lecture

 

O(bd)
b⌈d /2 ⌉

+b⌊d /2 ⌋
−1



  

Minimal Tree
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Tree generated by alpha-beta with perfect ordering
 - 3 types of nodes (PV, CUT, and ALL)



  

Reducing the Search Window

● Classical alpha-beta starts with window (-INF,INF)

● Cutoffs happen only after first move has been searched

● What if we have a “good guess” where the minimax value 
will be?

● E.g., “Aspiration window” in chess: take score from 
last move, (-one-pawn, +one-pawn) or so

● Gamble: can reduce search effort, but can fail



  

Other Alpha-Beta Based Algorithms

● Idea: smaller windows cause more cutoffs

● Null window (α,α+1) – equivalent to Boolean search
● Answer question whether v <= α or v > α

● With good move ordering, score of first move will allow to 
cut all other branches

● Change search strategy. Speculative, but remain exact by 
re-search if needed

● Scout by Judea Pearl, NegaScout by Reinefeld: use null 
window searches to try to cut all moves but the first

● PVS – principal variation search, equivalent to NegaScout



  

PVS/NegaScout
[Marsland & Campbell, 1982] [Reinefeld, 1983]

● Idea: search first move fully to establish a lower bound v

● Null window search to try to prove that other moves have 
score <= v

● If fail high, re-search to establish exact score of new, better 
move

● With good move ordering, re-search rarely needed. Savings 
from using null window outweigh cost of re-search 



  

NegaScout Pseudo-Code

int NegaScout(GameState state, int alpha, int beta, int depth) {
  if (state.IsTerminal() || depth = 0)
    return state.Evaluate()
  b = beta
  bestScore = -INF
  foreach legal move mi i=1,2,.. from state
    State.Execute(mi)
    int score = -NegaScout(state, -b, -alpha, depth – 1)
    if (score > alpha && score < beta && i > 1) // re-search
      score = -NegaScout(state, -beta, -score, depth – 1)
    bestScore = max(bestScore,score)
    alpha = max(alpha, score)
    state.Undo()
    if (alpha >= beta)
      return alpha
    b = alpha + 1
  return bestScore
}

Note for experts: A condition to reduce re-search overhead is 
removed here. See [Reinefeld, 1983][Plaat,1996] for details 



  

Search Enhancements

● Basic alpha-beta is simple but limited

● Need many enhancements to create high-performance 
game-playing programs

● General (game-independent, algorithm-independent) and 
specific

● Depends on many things: size, structure of search tree, 
availability of domain knowledge, speed versus quality 
tradeoff, parallel versus sequential

● Look at some of the most important ones in practice 



  

Enhancements to Alpha-Beta

There are several types of enhancements
 Exact (guarantee minimax value) versus inexact

 Improve move ordering (reduce tree size)

 Improve search behavior

 Improve search space (pruning)



  

Iterative Deepening

● Series of depth-limited searches d = (0), 1, 2, 3,....

● Advantages
● Anytime algorithm – first iterations are very fast
● If branching factor is big, small overhead – last search 

dominates
● With transposition table (explain later), store best move from 

previous iteration to improve move ordering
● In practice, usually searches less than without iterative 

deepening
● Some game programs increase d in steps of 2

● E.g. odd/even fluctuations in evaluation, small branching factor



  

Iterative Deepening and 
Time Control

● With fixed time limit, last iteration must usually be 
aborted

● Always store best move from recent completed iteration
● Try to predict if another iteration can be completed
● Can use incomplete last iteration if at least one move 

searched (however, the first move is by far the slowest)



  

Transposition Table (1 / 3)

● Idea: Cache and reuse information about previous search 
by using hash table

● Avoid searching the same subtree twice

● Get best move information from earlier, shallower searches

● Essential in DAGs where many paths to same node exist
● Discuss issues in solving games/game positions

● Help significantly even in trees e.g. with iterative deepening

● Replace existing results with new ones if TT is filled up



  

Transposition Table (2 / 3)

● Typical TT Content
● Hash code of state (usually not one-on-one, but 

astronomically small error of different states with identical 
hash code)

       See http://chessprogramming.wikispaces.com/Zobrist+Hashing

● Evaluation
● Flags – exact value, upper bound, lower bound
● Search depth
● Best move in previous iteration

http://chessprogramming.wikispaces.com/Zobrist+Hashing


  

Transposition Table (3 / 3)
● When n is examined with (α,β), retrieve information TT

● Do not examine n further if TT information indicates
● Node n is examined deep enough and 
● TT contains exact value for n, or
● Upperbound in TT <= α, or
● Lowerbound in TT >= β

● Try best move in TT first if n needs to be examined
● Best move is often stored in previous iterations
● Usually causes more cutoffs than without iterative 

deepening even if search space is tree
● Save evaluation value, search depth, best move etc in TT 

after n is examined



  

Move Ordering

● Good move ordering is essential for efficient search

● Iterative deepening is effective

● Often use game-specific ordering heuristics e.g. mate 
threats

● More general: use game-specific evaluation function



  

History Heuristic
[Schaeffer 1983, 1989]

● Improve move ordering without game-specific knowledge

● Give bonus for moves that lead to cutoff such as

● history_table[color][move] += d2

● history_table[color][move] += 2d (d: remaining depth)

● Prefer those moves at other places in the search

● Will see later in MCTS – all-moves-as-first heuristic, RAVE

● History heuristic might not be as effective as it used to be 
but is effectively combined with late move reduction (later)

● E.g. Chess program Stockfish gives a penalty for “quiet 
moves” that do not cause cut-offs



  

C.f. Figure 8 in 

[Marsland, 1986] 

Performance Comparison of 
Alpha-Beta Enhancements



  

MTD(f) [Plaat et al, 1996]

● PVS, NegaScout: full window search for move 1, null 
window searches for moves 2, 3, …

● Idea: Only null window searches (γ,γ+1) that can check 
either score <=γ or >γ. Compute minimal value by series 
of null window searches.

● Start with score in a previous iteration, then go up or 
down

● Perform better than PVS/NegaScout by a factor of 10%

● PVS/NegaScout are still used in practice because of 
instability of MTD(f)'s behavior 



  

Search Extensions, Reductions, and 
Selective Search

● Ideas: Search promising moves deeper, unpromising ones 
less deep

● Avoid “horizon effect”
● E.g. extend search for check, piece capture in chess

● Shape the search tree

● Both exact and heuristic methods

● Try to perform safe form of pruning in recent approaches

● Look at some of most important approaches



  

Example of Search Extensions and 
Reductions

 Quiescence search

 Null move pruning

 Futility pruning

 Late move reduction

 ProbCut

 Realization probability search

 Singular extension



  

Quiescence Search

● Hard to evaluate chaotic, unstable positions at leaf nodes
● E.g., King in check, hanging pieces

● Idea: evaluate only “stable” positions

● Replace static evaluation by a small “quiescence search”

● Evaluate leaf nodes (stable positions) generated by 
quiescence search

● Highly restricted move generation – just resolve instability

● E.g., generate check, piece exchange, and pass in 
chess/shogi 



  

Null Move Pruning (1 / 2)
[Beal, 1990][Donninger, 1993]

● Almost all searched paths contain at least one terrible move

● Idea: cut-off those subtrees quicker

● Null move: if we pass and can still get a search cut, then 
prune



  

Null Move Pruning (2 / 2)

●  Assume n is examined with window (α, β) with depth d
●  Pass and reduce depth to d-R where R is a tuned value 

(large when remaining depth is large)
● Perform null window search to check if returned score >= 

β or not (from current player's viewpoint)
● If score >= β, perform cutoff – indication that opponent 

may have made a terrible move and n is unlikely to be in 
PV line

● Otherwise, perform normal search
●  Scenarios where null move pruning shouldn't be applied

● E.g., positions in check, chess endgames (avoid 
Zugzwang)



  

Futility Pruning and its Extension
[Schaeffer,1986][Heinz, 1998]

● Idea: discard moves that are unlikely to become best

● Performed at nodes close to leaf nodes e.g. remaining 
depth = 1 or 2

● Assume n is examined with window (α, β) with depth d
● Prepare evaluation function eval0(m) that roughly 

calculates the score for move m and margin F – use larger 
F for deeper search

● If eval0(m)+F <= α, prune m because m has almost no 
chance to be a good move

● Otherwise, perform normal search
● Do not apply futility-pruning for tactical moves because they 

usually have high errors in eval0



  

Late Move Reduction (LMR)

● See http://chessprogramming.wikispaces.com/Late+Move+Reductions

● Similar to history pruning, history reductions, null window 
search for realization probability search

● Idea: in likely fail low nodes, reduce search depth of low-
ranked moves

● Popular in some strong chess/shogi programs

● Assume n is examined with window (α, β)
● Perform null window search with reduced depth to check if 

score <= α for move m ranked low in move ordering
● If score <= α, cutoff, otherwise perform normal search

http://chessprogramming.wikispaces.com/Late+Move+Reductions


  

ProbCut [Buro 1995,2000]

●  Observation: in many games, with good evaluation, search 
outcomes are highly correlated between different depths

●  Reduce search depth for moves that are probably bad

●  Yields more time to search more promising moves deeper

●  Assume n is about to be examined with window (α, β)
● Perform shallower search for move m and obtain score sc
● Check if a × sc + b – β >= Φ-1(p) × σ, which indicates the 

real score for move m is >=  β with probability p
● Check analogously if real score for m is <= α with 

probability p 
● Up to two null window searches are performed



  

Search Performance of 
Pruning Techniques

C.f. Figure 5 in 

[Hoki et al, 2012]



  

Realization Probability Search
[Tsuruoka et al, 2002]

● One example of fractional search depth extensions and 
reductions

● Define move categories, assign a fractional depth to each 
category

● Set fractional depth by estimating probability that next move 
is in specific category from master game records

● Need to avoid horizon effect caused by moves with large 
fractional depth

● Perform null window search to check if score sc > current 
best score 

● Perform full window search with small fractional depth (i.e. 
deeper search) if sc > current best score



  

Singular Extension
[Anantharaman et al, 1990]

● Observation: One move (singular move) that is much better 
than the others may have some pitfalls

● Idea: Extend the search for a singular move at (expected) 
PV and CUT nodes

● Idea can be extended to binary, trinary [Campbell et al, 
2002]

● Whether a move is singular or not cannot be known 
beforehand

● Perform null window searches for non-singular moves with 
reduced search depths + lowered window values



  

Evaluation Functions

● Returns heuristic value that indicates probability of winning 

● A lot of domain knowledge is added
● E.g. piece values, material balance, mobility etc in chess  

● Trade-off between knowledge and speed

● Most features are linear combination 
● eval(n) = W1 x F1(n) + W2 x F2(n) + … + Wk x Fk(n)

 W1,...,Wk are parameters and F1,..Fk are features
● Parameter tuning – by hand or machine learning

● This tutorial deals with one recent successful approach to 
tune parameters in shogi

● See references for other approaches  e.g., [Buro, 1998]



  

Minimax Tree Optimization (MMTO)
[Hoki and Kaneko, 2014]

●  Earlier version known as “Bonanza method” [Hoki, 2006]

●  Successful for tuning evaluation function with 40 million 
parameters in shogi

●  All of strong computer shogi programs incorporate machine 
learning approaches influenced by this approach

●  Assumption: grandmasters play good moves

● Idea: Prepare many game records of grandmasters and 
learn to increase the number of moves that match between 
alpha-beta and grandmasters



  

MMTO (Cont'd)

JMMTO
P

= (w )=J (P,w )+JC (w )+JR (w )

J (P,w )=∑p∈P∑m∈Mp
T (s (p.dp ,w )−s (p.m,w ) )

: Sigmoid function

: minimax value for move m at position p identified by 
alpha-beta (use score at PV leaf in practice)

JR (w )

: move played by grandmaster at position p

: set of legal moves except d
p
 at position p

: constraint term

: l
1
-regularization term

wi (t+1 )=wi (t )−h⋅sgn(∂ JMMTO
P (w (t ) )

∂w i )

1. Find best w to maximize

where

2. Use grid-adjacent update

P : Set of positions



  

Other Issues on Alpha-Beta in 
Practice

● In some games, specialized search is invoked by main alpha-
beta (previous lecture)

● E.g., in shogi, main alpha-beta cannot often find long 
sequence to mate player even with search extensions

● Specialized search called tsume-shogi solver with limited 
time/node expansions is used to avoid loss that results from 
main alpha-beta failing to find mating sequence

● Tsume-shogi solver cannot always be invoked because of its 
high overhead

● Typical computer shogi programs invoke tsume-shogi solver 
only at important lines

● E.g., PV line, move that improves α value of window (α,β)



  

Parallel Alpha-Beta

●  Known to be notoriously difficult to achieve reasonable 
parallel performance

●  Parallel alpha-beta suffers from performance degradation 
caused by several types of overhead

● Search overhead: extra nodes examined only by parallel 
alpha-beta

● Synchronization overhead: idle time for other processors to 
finish work

● Communication overhead: communication latency in the 
network

● Load balance: metric on how evenly work is distributed



  

Young Brothers Wait Concept
(YBWC) [Feldmann, 1993]

● Generalization to PVSplit [Marsland & Popowich, 1985] and 
many variants exist

● Observation: High-performance alpha-beta achieves good 
move ordering

● First move to try has a high probability of causing 
cutoffs/narrowing windows at PV nodes

● Idea: recursively apply the rule that the “left-most” branch at 
a node must be examined before the others are examined

● Achieves reasonable parallelism with small search 
overhead

● Global synchronization point at each iteration – work 
starvation in the beginning and end of iterations



  

Issues in Distributed Memory 
Environments

● High-performance alpha-beta uses transposition tables

● Search space of many games are DAG or DCG

● Identical states can be reached via different paths

● Sequential alpha-beta effectively uses information saved in 
transposition table

● Shared-memory parallel alpha-beta can still share TT among 
threads

● How to effectively share TT in distributed memory 
environments?

● See approaches e.g. [Brockington & Schaeffer,2000][Feldmann, 
1993][Romein, 2001][Kishimoto & Schaeffer, 2002]



  

Partitioned Transposition Table
[Feldmann,1993] 

● Each processor preserves part of TT disjointly

● Distribute work and use work stealing for load balance

● Ask corresponding processor for TT information

● Incur communication & synchronization overhead for TT 
accesses, and additional search overhead for DAG

A

C

E

B

D

F

Processor P Processor Q

Partitioned TT

P Q

Duplicate search

 A

B C E

 D  D

Q



  

TDSAB 
[Kishimoto & Schaeffer, 2002]

● Apply Transposition-table driven scheduling (TDS) [Romein et 
al, 1999] to alpha-beta

● Can remove synchronization overhead to access TT and some 
search overhead for DAG

● See MCTS part as successful example of TDS

A

C

E

B

D

F

Processor P Processor Q

Partitioned TT

Q P

 A

B C E

 D

P

P

Q



  

Massively Parallel Alpha-Beta in 
GPSShogi [Kaneko & Tanaka 2012,2013]

● Very recent method that might be less efficient but is 
much simpler than previous approaches

● Won against Miura (professional 8-dan player) with 679 
computers (> 2700 cores, mostly iMac 2.5GHz) 

● Uses one master and many slaves

● Master manages a tree from root and generates work 
assigned to slaves

● Slave independently examines states assigned by 
master

● Master updates its tree when slave reports new 
scores 



  

Master's Algorithm in GPSShogi

● Assign more slaves to 
promising subtrees

● Perform quick alpha-beta 
search to select k promising 
children (e.g., 1 sec)

● Repeat recursively until all 
slaves have work

● Effectively reuse master's 
tree when opponent's move 
matches predicted move 
[Himstedit 2012]

S1 S2 S3 S4

S5 S6
S7

S8



  

Comments on Alpha-Beta (1 / 2)

● Time: node evaluation, execute/undo moves, alpha-
beta logic – low overhead

● Memory: depth-first search, need only path from root to 
current node – very low overhead

● Memory(2): can take advantage of extra use of 
transposition table

●  Very good overall



  

Comments on Alpha-Beta (2 / 2)

● Evaluation function: must be reasonably accurate, trade-off 
between speed and accuracy

● Solving games/game positions
● Fixed-depth search nature is a problem even with search 

extensions+fractional depth
● Rules of repetition depends on rules, e.g. draw in chess, 

illegal in Go
● Repetitions must be handled correctly
● Practical “solutions” ignore history – leads to graph history 

interaction problem
● Issues about repetitions are handled in the lectures in the 

afternoon



  

Conclusions

●  Gave an overview of alpha-beta algorithms and 
enhancements

● Alpha-beta variants
● Search enhancements
● Search extension and reductions
● Evaluation function and machine learning
● Parallel alpha-beta
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