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Outline of this Talk

● Techniques to play games with alpha-beta algorithm
● Alpha-beta search and its variants
● Search enhancements
● Search extension and reduction
● Evaluation and machine learning
● Parallelism



  

Alpha-Beta Algorithm

● Unnecessary to visit every node to compute the true minimax 
score

● E.g. max(20,min(5,X))=20, because min(5,X)<=5 always holds
● Idea: Omit calculating X

● Idea: keep upper and lower bounds (α,β) on the true minimax 
score

● Prune a position if its score v falls outside the window

● If v < α we will avoid it, we have a better-or-equal 
alternative

● If v >= β opponent will avoid it, they have a better 
alternative



  

How Does Alpha-Beta Work? (1 / 2)

● Let v be score of node, v1, v2, ...,vk scores of children

● By definition: in MAX node, v = max(v1, v2,..,vk)

● By definition: in MIN node,  v = min(v1, v2, ..., vk)

● Fully evaluated moves establish lower bound

● E.g., if v1=5, max(5,v2,...,vk)>=5
● Other moves of score <= 5 do not help us, can be pruned



  

How Does Alpha-Beta Work? (2 / 2)

● Similar reasoning at MIN node – move establishes upper 
bound

● E.g., v=2, v=min(2,v2,...,vk)<=2
● If a move leads to position that is too bad for one of the 

players, then cut.



  

Alpha-Beta Algorithm – 
Pseudo Code

int AlphaBeta(GameState state, int alpha, int beta, int depth) {
    if (state.IsTerminal() or depth == 0)
       return state.StaticallyEvaluate()
    score = -INF;
    foreach legal move m from state
       state.Execute(m)
       score  = max(score,-AlphaBeta(state, -beta, -alpha, depth-1))
       alpha = max(score,alpha)
       state.Undo()
       if (alpha >= beta) // Cut-off
          return alpha
    return score
}

This is a negamax formulation.
Initial call: AlphaBeta(root, -INF, INF, depth_to_search)



  

Example of Alpha-Beta Algorithm
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Principal Variation (PV)

● Sequence where both sides play a strongest move

● All nodes along PV have the same value as the root

● Neither player can improve upon PV moves

● There may be many different PV if players have equally 
good move choices

● The term PV is typically used for the first sequence 
discovered. Others are cut off by pruning



  

Properties of Alpha-Beta

● Number of nodes examined
● Best case:                           (see minimal tree, next slide)
● Basic minimax: 

b: branching factor, d: depth 
● Assuming score v is obtained after alpha-beta searches with 

window (α, β) at node n, real score sc is: 
● If v <= α: fail low, sc <= v, 
● if α < v < β: exact, sc = v, and
● if β <= v: fail high, sc >= v

We will keep using this property in this lecture

 

O(bd)
b⌈d /2 ⌉

+b⌊d /2 ⌋
−1



  

Minimal Tree
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Tree generated by alpha-beta with perfect ordering
 - 3 types of nodes (PV, CUT, and ALL)



  

Reducing the Search Window

● Classical alpha-beta starts with window (-INF,INF)

● Cutoffs happen only after first move has been searched

● What if we have a “good guess” where the minimax value 
will be?

● E.g., “Aspiration window” in chess: take score from 
last move, (-one-pawn, +one-pawn) or so

● Gamble: can reduce search effort, but can fail



  

Other Alpha-Beta Based Algorithms

● Idea: smaller windows cause more cutoffs

● Null window (α,α+1) – equivalent to Boolean search
● Answer question whether v <= α or v > α

● With good move ordering, score of first move will allow to 
cut all other branches

● Change search strategy. Speculative, but remain exact by 
re-search if needed

● Scout by Judea Pearl, NegaScout by Reinefeld: use null 
window searches to try to cut all moves but the first

● PVS – principal variation search, equivalent to NegaScout



  

PVS/NegaScout
[Marsland & Campbell, 1982] [Reinefeld, 1983]

● Idea: search first move fully to establish a lower bound v

● Null window search to try to prove that other moves have 
score <= v

● If fail high, re-search to establish exact score of new, better 
move

● With good move ordering, re-search rarely needed. Savings 
from using null window outweigh cost of re-search 



  

NegaScout Pseudo-Code

int NegaScout(GameState state, int alpha, int beta, int depth) {
  if (state.IsTerminal() || depth = 0)
    return state.Evaluate()
  b = beta
  bestScore = -INF
  foreach legal move mi i=1,2,.. from state
    State.Execute(mi)
    int score = -NegaScout(state, -b, -alpha, depth – 1)
    if (score > alpha && score < beta && i > 1) // re-search
      score = -NegaScout(state, -beta, -score, depth – 1)
    bestScore = max(bestScore,score)
    alpha = max(alpha, score)
    state.Undo()
    if (alpha >= beta)
      return alpha
    b = alpha + 1
  return bestScore
}

Note for experts: A condition to reduce re-search overhead is 
removed here. See [Reinefeld, 1983][Plaat,1996] for details 



  

Search Enhancements

● Basic alpha-beta is simple but limited

● Need many enhancements to create high-performance 
game-playing programs

● General (game-independent, algorithm-independent) and 
specific

● Depends on many things: size, structure of search tree, 
availability of domain knowledge, speed versus quality 
tradeoff, parallel versus sequential

● Look at some of the most important ones in practice 



  

Enhancements to Alpha-Beta

There are several types of enhancements
 Exact (guarantee minimax value) versus inexact

 Improve move ordering (reduce tree size)

 Improve search behavior

 Improve search space (pruning)



  

Iterative Deepening

● Series of depth-limited searches d = (0), 1, 2, 3,....

● Advantages
● Anytime algorithm – first iterations are very fast
● If branching factor is big, small overhead – last search 

dominates
● With transposition table (explain later), store best move from 

previous iteration to improve move ordering
● In practice, usually searches less than without iterative 

deepening
● Some game programs increase d in steps of 2

● E.g. odd/even fluctuations in evaluation, small branching factor



  

Iterative Deepening and 
Time Control

● With fixed time limit, last iteration must usually be 
aborted

● Always store best move from recent completed iteration
● Try to predict if another iteration can be completed
● Can use incomplete last iteration if at least one move 

searched (however, the first move is by far the slowest)



  

Transposition Table (1 / 3)

● Idea: Cache and reuse information about previous search 
by using hash table

● Avoid searching the same subtree twice

● Get best move information from earlier, shallower searches

● Essential in DAGs where many paths to same node exist
● Discuss issues in solving games/game positions

● Help significantly even in trees e.g. with iterative deepening

● Replace existing results with new ones if TT is filled up



  

Transposition Table (2 / 3)

● Typical TT Content
● Hash code of state (usually not one-on-one, but 

astronomically small error of different states with identical 
hash code)

       See http://chessprogramming.wikispaces.com/Zobrist+Hashing

● Evaluation
● Flags – exact value, upper bound, lower bound
● Search depth
● Best move in previous iteration

http://chessprogramming.wikispaces.com/Zobrist+Hashing


  

Transposition Table (3 / 3)
● When n is examined with (α,β), retrieve information TT

● Do not examine n further if TT information indicates
● Node n is examined deep enough and 
● TT contains exact value for n, or
● Upperbound in TT <= α, or
● Lowerbound in TT >= β

● Try best move in TT first if n needs to be examined
● Best move is often stored in previous iterations
● Usually causes more cutoffs than without iterative 

deepening even if search space is tree
● Save evaluation value, search depth, best move etc in TT 

after n is examined



  

Move Ordering

● Good move ordering is essential for efficient search

● Iterative deepening is effective

● Often use game-specific ordering heuristics e.g. mate 
threats

● More general: use game-specific evaluation function



  

History Heuristic
[Schaeffer 1983, 1989]

● Improve move ordering without game-specific knowledge

● Give bonus for moves that lead to cutoff such as

● history_table[color][move] += d2

● history_table[color][move] += 2d (d: remaining depth)

● Prefer those moves at other places in the search

● Will see later in MCTS – all-moves-as-first heuristic, RAVE

● History heuristic might not be as effective as it used to be 
but is effectively combined with late move reduction (later)

● E.g. Chess program Stockfish gives a penalty for “quiet 
moves” that do not cause cut-offs



  

C.f. Figure 8 in 

[Marsland, 1986] 

Performance Comparison of 
Alpha-Beta Enhancements



  

MTD(f) [Plaat et al, 1996]

● PVS, NegaScout: full window search for move 1, null 
window searches for moves 2, 3, …

● Idea: Only null window searches (γ,γ+1) that can check 
either score <=γ or >γ. Compute minimal value by series 
of null window searches.

● Start with score in a previous iteration, then go up or 
down

● Perform better than PVS/NegaScout by a factor of 10%

● PVS/NegaScout are still used in practice because of 
instability of MTD(f)'s behavior 



  

Search Extensions, Reductions, and 
Selective Search

● Ideas: Search promising moves deeper, unpromising ones 
less deep

● Avoid “horizon effect”
● E.g. extend search for check, piece capture in chess

● Shape the search tree

● Both exact and heuristic methods

● Try to perform safe form of pruning in recent approaches

● Look at some of most important approaches



  

Example of Search Extensions and 
Reductions

 Quiescence search

 Null move pruning

 Futility pruning

 Late move reduction

 ProbCut

 Realization probability search

 Singular extension



  

Quiescence Search

● Hard to evaluate chaotic, unstable positions at leaf nodes
● E.g., King in check, hanging pieces

● Idea: evaluate only “stable” positions

● Replace static evaluation by a small “quiescence search”

● Evaluate leaf nodes (stable positions) generated by 
quiescence search

● Highly restricted move generation – just resolve instability

● E.g., generate check, piece exchange, and pass in 
chess/shogi 



  

Null Move Pruning (1 / 2)
[Beal, 1990][Donninger, 1993]

● Almost all searched paths contain at least one terrible move

● Idea: cut-off those subtrees quicker

● Null move: if we pass and can still get a search cut, then 
prune



  

Null Move Pruning (2 / 2)

●  Assume n is examined with window (α, β) with depth d
●  Pass and reduce depth to d-R where R is a tuned value 

(large when remaining depth is large)
● Perform null window search to check if returned score >= 

β or not (from current player's viewpoint)
● If score >= β, perform cutoff – indication that opponent 

may have made a terrible move and n is unlikely to be in 
PV line

● Otherwise, perform normal search
●  Scenarios where null move pruning shouldn't be applied

● E.g., positions in check, chess endgames (avoid 
Zugzwang)



  

Futility Pruning and its Extension
[Schaeffer,1986][Heinz, 1998]

● Idea: discard moves that are unlikely to become best

● Performed at nodes close to leaf nodes e.g. remaining 
depth = 1 or 2

● Assume n is examined with window (α, β) with depth d
● Prepare evaluation function eval0(m) that roughly 

calculates the score for move m and margin F – use larger 
F for deeper search

● If eval0(m)+F <= α, prune m because m has almost no 
chance to be a good move

● Otherwise, perform normal search
● Do not apply futility-pruning for tactical moves because they 

usually have high errors in eval0



  

Late Move Reduction (LMR)

● See http://chessprogramming.wikispaces.com/Late+Move+Reductions

● Similar to history pruning, history reductions, null window 
search for realization probability search

● Idea: in likely fail low nodes, reduce search depth of low-
ranked moves

● Popular in some strong chess/shogi programs

● Assume n is examined with window (α, β)
● Perform null window search with reduced depth to check if 

score <= α for move m ranked low in move ordering
● If score <= α, cutoff, otherwise perform normal search

http://chessprogramming.wikispaces.com/Late+Move+Reductions


  

ProbCut [Buro 1995,2000]

●  Observation: in many games, with good evaluation, search 
outcomes are highly correlated between different depths

●  Reduce search depth for moves that are probably bad

●  Yields more time to search more promising moves deeper

●  Assume n is about to be examined with window (α, β)
● Perform shallower search for move m and obtain score sc
● Check if a × sc + b – β >= Φ-1(p) × σ, which indicates the 

real score for move m is >=  β with probability p
● Check analogously if real score for m is <= α with 

probability p 
● Up to two null window searches are performed



  

Search Performance of 
Pruning Techniques

C.f. Figure 5 in 

[Hoki et al, 2012]



  

Realization Probability Search
[Tsuruoka et al, 2002]

● One example of fractional search depth extensions and 
reductions

● Define move categories, assign a fractional depth to each 
category

● Set fractional depth by estimating probability that next move 
is in specific category from master game records

● Need to avoid horizon effect caused by moves with large 
fractional depth

● Perform null window search to check if score sc > current 
best score 

● Perform full window search with small fractional depth (i.e. 
deeper search) if sc > current best score



  

Singular Extension
[Anantharaman et al, 1990]

● Observation: One move (singular move) that is much better 
than the others may have some pitfalls

● Idea: Extend the search for a singular move at (expected) 
PV and CUT nodes

● Idea can be extended to binary, trinary [Campbell et al, 
2002]

● Whether a move is singular or not cannot be known 
beforehand

● Perform null window searches for non-singular moves with 
reduced search depths + lowered window values



  

Evaluation Functions

● Returns heuristic value that indicates probability of winning 

● A lot of domain knowledge is added
● E.g. piece values, material balance, mobility etc in chess  

● Trade-off between knowledge and speed

● Most features are linear combination 
● eval(n) = W1 x F1(n) + W2 x F2(n) + … + Wk x Fk(n)

 W1,...,Wk are parameters and F1,..Fk are features
● Parameter tuning – by hand or machine learning

● This tutorial deals with one recent successful approach to 
tune parameters in shogi

● See references for other approaches  e.g., [Buro, 1998]



  

Minimax Tree Optimization (MMTO)
[Hoki and Kaneko, 2014]

●  Earlier version known as “Bonanza method” [Hoki, 2006]

●  Successful for tuning evaluation function with 40 million 
parameters in shogi

●  All of strong computer shogi programs incorporate machine 
learning approaches influenced by this approach

●  Assumption: grandmasters play good moves

● Idea: Prepare many game records of grandmasters and 
learn to increase the number of moves that match between 
alpha-beta and grandmasters



  

MMTO (Cont'd)

JMMTO
P

= (w )=J (P,w )+JC (w )+JR (w )

J (P,w )=∑p∈P∑m∈Mp
T (s (p.dp ,w )−s (p.m,w ) )

: Sigmoid function

: minimax value for move m at position p identified by 
alpha-beta (use score at PV leaf in practice)

JR (w )

: move played by grandmaster at position p

: set of legal moves except d
p
 at position p

: constraint term

: l
1
-regularization term

wi (t+1 )=wi (t )−h⋅sgn(∂ JMMTO
P (w (t ) )

∂w i )

1. Find best w to maximize

where

2. Use grid-adjacent update

P : Set of positions



  

Other Issues on Alpha-Beta in 
Practice

● In some games, specialized search is invoked by main alpha-
beta (previous lecture)

● E.g., in shogi, main alpha-beta cannot often find long 
sequence to mate player even with search extensions

● Specialized search called tsume-shogi solver with limited 
time/node expansions is used to avoid loss that results from 
main alpha-beta failing to find mating sequence

● Tsume-shogi solver cannot always be invoked because of its 
high overhead

● Typical computer shogi programs invoke tsume-shogi solver 
only at important lines

● E.g., PV line, move that improves α value of window (α,β)



  

Parallel Alpha-Beta

●  Known to be notoriously difficult to achieve reasonable 
parallel performance

●  Parallel alpha-beta suffers from performance degradation 
caused by several types of overhead

● Search overhead: extra nodes examined only by parallel 
alpha-beta

● Synchronization overhead: idle time for other processors to 
finish work

● Communication overhead: communication latency in the 
network

● Load balance: metric on how evenly work is distributed



  

Young Brothers Wait Concept
(YBWC) [Feldmann, 1993]

● Generalization to PVSplit [Marsland & Popowich, 1985] and 
many variants exist

● Observation: High-performance alpha-beta achieves good 
move ordering

● First move to try has a high probability of causing 
cutoffs/narrowing windows at PV nodes

● Idea: recursively apply the rule that the “left-most” branch at 
a node must be examined before the others are examined

● Achieves reasonable parallelism with small search 
overhead

● Global synchronization point at each iteration – work 
starvation in the beginning and end of iterations



  

Issues in Distributed Memory 
Environments

● High-performance alpha-beta uses transposition tables

● Search space of many games are DAG or DCG

● Identical states can be reached via different paths

● Sequential alpha-beta effectively uses information saved in 
transposition table

● Shared-memory parallel alpha-beta can still share TT among 
threads

● How to effectively share TT in distributed memory 
environments?

● See approaches e.g. [Brockington & Schaeffer,2000][Feldmann, 
1993][Romein, 2001][Kishimoto & Schaeffer, 2002]



  

Partitioned Transposition Table
[Feldmann,1993] 

● Each processor preserves part of TT disjointly

● Distribute work and use work stealing for load balance

● Ask corresponding processor for TT information

● Incur communication & synchronization overhead for TT 
accesses, and additional search overhead for DAG

A

C

E

B

D

F

Processor P Processor Q

Partitioned TT

P Q

Duplicate search

 A

B C E

 D  D

Q



  

TDSAB 
[Kishimoto & Schaeffer, 2002]

● Apply Transposition-table driven scheduling (TDS) [Romein et 
al, 1999] to alpha-beta

● Can remove synchronization overhead to access TT and some 
search overhead for DAG

● See MCTS part as successful example of TDS

A

C

E

B

D

F

Processor P Processor Q

Partitioned TT

Q P

 A

B C E

 D

P

P

Q



  

Massively Parallel Alpha-Beta in 
GPSShogi [Kaneko & Tanaka 2012,2013]

● Very recent method that might be less efficient but is 
much simpler than previous approaches

● Won against Miura (professional 8-dan player) with 679 
computers (> 2700 cores, mostly iMac 2.5GHz) 

● Uses one master and many slaves

● Master manages a tree from root and generates work 
assigned to slaves

● Slave independently examines states assigned by 
master

● Master updates its tree when slave reports new 
scores 



  

Master's Algorithm in GPSShogi

● Assign more slaves to 
promising subtrees

● Perform quick alpha-beta 
search to select k promising 
children (e.g., 1 sec)

● Repeat recursively until all 
slaves have work

● Effectively reuse master's 
tree when opponent's move 
matches predicted move 
[Himstedit 2012]

S1 S2 S3 S4

S5 S6
S7

S8



  

Comments on Alpha-Beta (1 / 2)

● Time: node evaluation, execute/undo moves, alpha-
beta logic – low overhead

● Memory: depth-first search, need only path from root to 
current node – very low overhead

● Memory(2): can take advantage of extra use of 
transposition table

●  Very good overall



  

Comments on Alpha-Beta (2 / 2)

● Evaluation function: must be reasonably accurate, trade-off 
between speed and accuracy

● Solving games/game positions
● Fixed-depth search nature is a problem even with search 

extensions+fractional depth
● Rules of repetition depends on rules, e.g. draw in chess, 

illegal in Go
● Repetitions must be handled correctly
● Practical “solutions” ignore history – leads to graph history 

interaction problem
● Issues about repetitions are handled in the lectures in the 

afternoon



  

Conclusions

●  Gave an overview of alpha-beta algorithms and 
enhancements

● Alpha-beta variants
● Search enhancements
● Search extension and reductions
● Evaluation function and machine learning
● Parallel alpha-beta
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