

An Update on Game Tree
Research
Akihiro Kishimoto and Martin Mueller

 Presenter:
Akihiro Kishimoto, IBM Research - Ireland

Tutorial 3: Alpha-Beta Search
and Enhancements

Outline of this Talk

● Techniques to play games with alpha-beta algorithm
● Alpha-beta search and its variants
● Search enhancements
● Search extension and reduction
● Evaluation and machine learning
● Parallelism

Alpha-Beta Algorithm

● Unnecessary to visit every node to compute the true minimax
score

● E.g. max(20,min(5,X))=20, because min(5,X)<=5 always holds
● Idea: Omit calculating X

● Idea: keep upper and lower bounds (α,β) on the true minimax
score

● Prune a position if its score v falls outside the window

● If v < α we will avoid it, we have a better-or-equal
alternative

● If v >= β opponent will avoid it, they have a better
alternative

How Does Alpha-Beta Work? (1 / 2)

● Let v be score of node, v1, v2, ...,vk scores of children

● By definition: in MAX node, v = max(v1, v2,..,vk)

● By definition: in MIN node, v = min(v1, v2, ..., vk)

● Fully evaluated moves establish lower bound

● E.g., if v1=5, max(5,v2,...,vk)>=5
● Other moves of score <= 5 do not help us, can be pruned

How Does Alpha-Beta Work? (2 / 2)

● Similar reasoning at MIN node – move establishes upper
bound

● E.g., v=2, v=min(2,v2,...,vk)<=2
● If a move leads to position that is too bad for one of the

players, then cut.

Alpha-Beta Algorithm –
Pseudo Code

int AlphaBeta(GameState state, int alpha, int beta, int depth) {
 if (state.IsTerminal() or depth == 0)
 return state.StaticallyEvaluate()
 score = -INF;
 foreach legal move m from state
 state.Execute(m)
 score = max(score,-AlphaBeta(state, -beta, -alpha, depth-1))
 alpha = max(score,alpha)
 state.Undo()
 if (alpha >= beta) // Cut-off
 return alpha
 return score
}

This is a negamax formulation.
Initial call: AlphaBeta(root, -INF, INF, depth_to_search)

Example of Alpha-Beta Algorithm
30

-30

60 30 25

-60 -35 -30 -20 -15 -25

(-INF,INF)

(-INF,INF)

(-INF,INF)

(-INF,INF)

(-INF,60)

(-INF,-60) (-60,INF) (-60,-30)

(-INF,-30)

(30,INF)

(-INF,-30) (-INF,-30)

Cutoff

>= -25

Principal Variation

Principal Variation (PV)

● Sequence where both sides play a strongest move

● All nodes along PV have the same value as the root

● Neither player can improve upon PV moves

● There may be many different PV if players have equally
good move choices

● The term PV is typically used for the first sequence
discovered. Others are cut off by pruning

Properties of Alpha-Beta

● Number of nodes examined
● Best case: (see minimal tree, next slide)
● Basic minimax:

b: branching factor, d: depth
● Assuming score v is obtained after alpha-beta searches with

window (α, β) at node n, real score sc is:
● If v <= α: fail low, sc <= v,
● if α < v < β: exact, sc = v, and
● if β <= v: fail high, sc >= v

We will keep using this property in this lecture

O(bd)
b⌈d /2 ⌉

+b⌊d /2 ⌋
−1

Minimal Tree

PV

PV

PV

PV

CUT ALL ALL

CUT CUT

CUT ALL CUT CUT CUT CUT

Tree generated by alpha-beta with perfect ordering
 - 3 types of nodes (PV, CUT, and ALL)

Reducing the Search Window

● Classical alpha-beta starts with window (-INF,INF)

● Cutoffs happen only after first move has been searched

● What if we have a “good guess” where the minimax value
will be?

● E.g., “Aspiration window” in chess: take score from
last move, (-one-pawn, +one-pawn) or so

● Gamble: can reduce search effort, but can fail

Other Alpha-Beta Based Algorithms

● Idea: smaller windows cause more cutoffs

● Null window (α,α+1) – equivalent to Boolean search
● Answer question whether v <= α or v > α

● With good move ordering, score of first move will allow to
cut all other branches

● Change search strategy. Speculative, but remain exact by
re-search if needed

● Scout by Judea Pearl, NegaScout by Reinefeld: use null
window searches to try to cut all moves but the first

● PVS – principal variation search, equivalent to NegaScout

PVS/NegaScout
[Marsland & Campbell, 1982] [Reinefeld, 1983]

● Idea: search first move fully to establish a lower bound v

● Null window search to try to prove that other moves have
score <= v

● If fail high, re-search to establish exact score of new, better
move

● With good move ordering, re-search rarely needed. Savings
from using null window outweigh cost of re-search

NegaScout Pseudo-Code

int NegaScout(GameState state, int alpha, int beta, int depth) {
 if (state.IsTerminal() || depth = 0)
 return state.Evaluate()
 b = beta
 bestScore = -INF
 foreach legal move mi i=1,2,.. from state
 State.Execute(mi)
 int score = -NegaScout(state, -b, -alpha, depth – 1)
 if (score > alpha && score < beta && i > 1) // re-search
 score = -NegaScout(state, -beta, -score, depth – 1)
 bestScore = max(bestScore,score)
 alpha = max(alpha, score)
 state.Undo()
 if (alpha >= beta)
 return alpha
 b = alpha + 1
 return bestScore
}

Note for experts: A condition to reduce re-search overhead is
removed here. See [Reinefeld, 1983][Plaat,1996] for details

Search Enhancements

● Basic alpha-beta is simple but limited

● Need many enhancements to create high-performance
game-playing programs

● General (game-independent, algorithm-independent) and
specific

● Depends on many things: size, structure of search tree,
availability of domain knowledge, speed versus quality
tradeoff, parallel versus sequential

● Look at some of the most important ones in practice

Enhancements to Alpha-Beta

There are several types of enhancements
 Exact (guarantee minimax value) versus inexact

 Improve move ordering (reduce tree size)

 Improve search behavior

 Improve search space (pruning)

Iterative Deepening

● Series of depth-limited searches d = (0), 1, 2, 3,....

● Advantages
● Anytime algorithm – first iterations are very fast
● If branching factor is big, small overhead – last search

dominates
● With transposition table (explain later), store best move from

previous iteration to improve move ordering
● In practice, usually searches less than without iterative

deepening
● Some game programs increase d in steps of 2

● E.g. odd/even fluctuations in evaluation, small branching factor

Iterative Deepening and
Time Control

● With fixed time limit, last iteration must usually be
aborted

● Always store best move from recent completed iteration
● Try to predict if another iteration can be completed
● Can use incomplete last iteration if at least one move

searched (however, the first move is by far the slowest)

Transposition Table (1 / 3)

● Idea: Cache and reuse information about previous search
by using hash table

● Avoid searching the same subtree twice

● Get best move information from earlier, shallower searches

● Essential in DAGs where many paths to same node exist
● Discuss issues in solving games/game positions

● Help significantly even in trees e.g. with iterative deepening

● Replace existing results with new ones if TT is filled up

Transposition Table (2 / 3)

● Typical TT Content
● Hash code of state (usually not one-on-one, but

astronomically small error of different states with identical
hash code)

 See http://chessprogramming.wikispaces.com/Zobrist+Hashing

● Evaluation
● Flags – exact value, upper bound, lower bound
● Search depth
● Best move in previous iteration

http://chessprogramming.wikispaces.com/Zobrist+Hashing

Transposition Table (3 / 3)
● When n is examined with (α,β), retrieve information TT

● Do not examine n further if TT information indicates
● Node n is examined deep enough and
● TT contains exact value for n, or
● Upperbound in TT <= α, or
● Lowerbound in TT >= β

● Try best move in TT first if n needs to be examined
● Best move is often stored in previous iterations
● Usually causes more cutoffs than without iterative

deepening even if search space is tree
● Save evaluation value, search depth, best move etc in TT

after n is examined

Move Ordering

● Good move ordering is essential for efficient search

● Iterative deepening is effective

● Often use game-specific ordering heuristics e.g. mate
threats

● More general: use game-specific evaluation function

History Heuristic
[Schaeffer 1983, 1989]

● Improve move ordering without game-specific knowledge

● Give bonus for moves that lead to cutoff such as

● history_table[color][move] += d2

● history_table[color][move] += 2d (d: remaining depth)

● Prefer those moves at other places in the search

● Will see later in MCTS – all-moves-as-first heuristic, RAVE

● History heuristic might not be as effective as it used to be
but is effectively combined with late move reduction (later)

● E.g. Chess program Stockfish gives a penalty for “quiet
moves” that do not cause cut-offs

C.f. Figure 8 in

[Marsland, 1986]

Performance Comparison of
Alpha-Beta Enhancements

MTD(f) [Plaat et al, 1996]

● PVS, NegaScout: full window search for move 1, null
window searches for moves 2, 3, …

● Idea: Only null window searches (γ,γ+1) that can check
either score <=γ or >γ. Compute minimal value by series
of null window searches.

● Start with score in a previous iteration, then go up or
down

● Perform better than PVS/NegaScout by a factor of 10%

● PVS/NegaScout are still used in practice because of
instability of MTD(f)'s behavior

Search Extensions, Reductions, and
Selective Search

● Ideas: Search promising moves deeper, unpromising ones
less deep

● Avoid “horizon effect”
● E.g. extend search for check, piece capture in chess

● Shape the search tree

● Both exact and heuristic methods

● Try to perform safe form of pruning in recent approaches

● Look at some of most important approaches

Example of Search Extensions and
Reductions

 Quiescence search

 Null move pruning

 Futility pruning

 Late move reduction

 ProbCut

 Realization probability search

 Singular extension

Quiescence Search

● Hard to evaluate chaotic, unstable positions at leaf nodes
● E.g., King in check, hanging pieces

● Idea: evaluate only “stable” positions

● Replace static evaluation by a small “quiescence search”

● Evaluate leaf nodes (stable positions) generated by
quiescence search

● Highly restricted move generation – just resolve instability

● E.g., generate check, piece exchange, and pass in
chess/shogi

Null Move Pruning (1 / 2)
[Beal, 1990][Donninger, 1993]

● Almost all searched paths contain at least one terrible move

● Idea: cut-off those subtrees quicker

● Null move: if we pass and can still get a search cut, then
prune

Null Move Pruning (2 / 2)

● Assume n is examined with window (α, β) with depth d
● Pass and reduce depth to d-R where R is a tuned value

(large when remaining depth is large)
● Perform null window search to check if returned score >=

β or not (from current player's viewpoint)
● If score >= β, perform cutoff – indication that opponent

may have made a terrible move and n is unlikely to be in
PV line

● Otherwise, perform normal search
● Scenarios where null move pruning shouldn't be applied

● E.g., positions in check, chess endgames (avoid
Zugzwang)

Futility Pruning and its Extension
[Schaeffer,1986][Heinz, 1998]

● Idea: discard moves that are unlikely to become best

● Performed at nodes close to leaf nodes e.g. remaining
depth = 1 or 2

● Assume n is examined with window (α, β) with depth d
● Prepare evaluation function eval0(m) that roughly

calculates the score for move m and margin F – use larger
F for deeper search

● If eval0(m)+F <= α, prune m because m has almost no
chance to be a good move

● Otherwise, perform normal search
● Do not apply futility-pruning for tactical moves because they

usually have high errors in eval0

Late Move Reduction (LMR)

● See http://chessprogramming.wikispaces.com/Late+Move+Reductions

● Similar to history pruning, history reductions, null window
search for realization probability search

● Idea: in likely fail low nodes, reduce search depth of low-
ranked moves

● Popular in some strong chess/shogi programs

● Assume n is examined with window (α, β)
● Perform null window search with reduced depth to check if

score <= α for move m ranked low in move ordering
● If score <= α, cutoff, otherwise perform normal search

http://chessprogramming.wikispaces.com/Late+Move+Reductions

ProbCut [Buro 1995,2000]

● Observation: in many games, with good evaluation, search
outcomes are highly correlated between different depths

● Reduce search depth for moves that are probably bad

● Yields more time to search more promising moves deeper

● Assume n is about to be examined with window (α, β)
● Perform shallower search for move m and obtain score sc
● Check if a × sc + b – β >= Φ-1(p) × σ, which indicates the

real score for move m is >= β with probability p
● Check analogously if real score for m is <= α with

probability p
● Up to two null window searches are performed

Search Performance of
Pruning Techniques

C.f. Figure 5 in

[Hoki et al, 2012]

Realization Probability Search
[Tsuruoka et al, 2002]

● One example of fractional search depth extensions and
reductions

● Define move categories, assign a fractional depth to each
category

● Set fractional depth by estimating probability that next move
is in specific category from master game records

● Need to avoid horizon effect caused by moves with large
fractional depth

● Perform null window search to check if score sc > current
best score

● Perform full window search with small fractional depth (i.e.
deeper search) if sc > current best score

Singular Extension
[Anantharaman et al, 1990]

● Observation: One move (singular move) that is much better
than the others may have some pitfalls

● Idea: Extend the search for a singular move at (expected)
PV and CUT nodes

● Idea can be extended to binary, trinary [Campbell et al,
2002]

● Whether a move is singular or not cannot be known
beforehand

● Perform null window searches for non-singular moves with
reduced search depths + lowered window values

Evaluation Functions

● Returns heuristic value that indicates probability of winning

● A lot of domain knowledge is added
● E.g. piece values, material balance, mobility etc in chess

● Trade-off between knowledge and speed

● Most features are linear combination
● eval(n) = W1 x F1(n) + W2 x F2(n) + … + Wk x Fk(n)

 W1,...,Wk are parameters and F1,..Fk are features
● Parameter tuning – by hand or machine learning

● This tutorial deals with one recent successful approach to
tune parameters in shogi

● See references for other approaches e.g., [Buro, 1998]

Minimax Tree Optimization (MMTO)
[Hoki and Kaneko, 2014]

● Earlier version known as “Bonanza method” [Hoki, 2006]

● Successful for tuning evaluation function with 40 million
parameters in shogi

● All of strong computer shogi programs incorporate machine
learning approaches influenced by this approach

● Assumption: grandmasters play good moves

● Idea: Prepare many game records of grandmasters and
learn to increase the number of moves that match between
alpha-beta and grandmasters

MMTO (Cont'd)

JMMTO
P

= (w)=J (P,w)+JC (w)+JR (w)

J (P,w)=∑p∈P∑m∈Mp
T (s (p.dp ,w)−s (p.m,w))

: Sigmoid function

: minimax value for move m at position p identified by
alpha-beta (use score at PV leaf in practice)

JR (w)

: move played by grandmaster at position p

: set of legal moves except d
p
 at position p

: constraint term

: l
1
-regularization term

wi (t+1)=wi (t)−h⋅sgn(∂ JMMTO
P (w (t))

∂w i)

1. Find best w to maximize

where

2. Use grid-adjacent update

P : Set of positions

Other Issues on Alpha-Beta in
Practice

● In some games, specialized search is invoked by main alpha-
beta (previous lecture)

● E.g., in shogi, main alpha-beta cannot often find long
sequence to mate player even with search extensions

● Specialized search called tsume-shogi solver with limited
time/node expansions is used to avoid loss that results from
main alpha-beta failing to find mating sequence

● Tsume-shogi solver cannot always be invoked because of its
high overhead

● Typical computer shogi programs invoke tsume-shogi solver
only at important lines

● E.g., PV line, move that improves α value of window (α,β)

Parallel Alpha-Beta

● Known to be notoriously difficult to achieve reasonable
parallel performance

● Parallel alpha-beta suffers from performance degradation
caused by several types of overhead

● Search overhead: extra nodes examined only by parallel
alpha-beta

● Synchronization overhead: idle time for other processors to
finish work

● Communication overhead: communication latency in the
network

● Load balance: metric on how evenly work is distributed

Young Brothers Wait Concept
(YBWC) [Feldmann, 1993]

● Generalization to PVSplit [Marsland & Popowich, 1985] and
many variants exist

● Observation: High-performance alpha-beta achieves good
move ordering

● First move to try has a high probability of causing
cutoffs/narrowing windows at PV nodes

● Idea: recursively apply the rule that the “left-most” branch at
a node must be examined before the others are examined

● Achieves reasonable parallelism with small search
overhead

● Global synchronization point at each iteration – work
starvation in the beginning and end of iterations

Issues in Distributed Memory
Environments

● High-performance alpha-beta uses transposition tables

● Search space of many games are DAG or DCG

● Identical states can be reached via different paths

● Sequential alpha-beta effectively uses information saved in
transposition table

● Shared-memory parallel alpha-beta can still share TT among
threads

● How to effectively share TT in distributed memory
environments?

● See approaches e.g. [Brockington & Schaeffer,2000][Feldmann,
1993][Romein, 2001][Kishimoto & Schaeffer, 2002]

Partitioned Transposition Table
[Feldmann,1993]

● Each processor preserves part of TT disjointly

● Distribute work and use work stealing for load balance

● Ask corresponding processor for TT information

● Incur communication & synchronization overhead for TT
accesses, and additional search overhead for DAG

A

C

E

B

D

F

Processor P Processor Q

Partitioned TT

P Q

Duplicate search

 A

B C E

 D D

Q

TDSAB
[Kishimoto & Schaeffer, 2002]

● Apply Transposition-table driven scheduling (TDS) [Romein et
al, 1999] to alpha-beta

● Can remove synchronization overhead to access TT and some
search overhead for DAG

● See MCTS part as successful example of TDS

A

C

E

B

D

F

Processor P Processor Q

Partitioned TT

Q P

 A

B C E

 D

P

P

Q

Massively Parallel Alpha-Beta in
GPSShogi [Kaneko & Tanaka 2012,2013]

● Very recent method that might be less efficient but is
much simpler than previous approaches

● Won against Miura (professional 8-dan player) with 679
computers (> 2700 cores, mostly iMac 2.5GHz)

● Uses one master and many slaves

● Master manages a tree from root and generates work
assigned to slaves

● Slave independently examines states assigned by
master

● Master updates its tree when slave reports new
scores

Master's Algorithm in GPSShogi

● Assign more slaves to
promising subtrees

● Perform quick alpha-beta
search to select k promising
children (e.g., 1 sec)

● Repeat recursively until all
slaves have work

● Effectively reuse master's
tree when opponent's move
matches predicted move
[Himstedit 2012]

S1 S2 S3 S4

S5 S6
S7

S8

Comments on Alpha-Beta (1 / 2)

● Time: node evaluation, execute/undo moves, alpha-
beta logic – low overhead

● Memory: depth-first search, need only path from root to
current node – very low overhead

● Memory(2): can take advantage of extra use of
transposition table

● Very good overall

Comments on Alpha-Beta (2 / 2)

● Evaluation function: must be reasonably accurate, trade-off
between speed and accuracy

● Solving games/game positions
● Fixed-depth search nature is a problem even with search

extensions+fractional depth
● Rules of repetition depends on rules, e.g. draw in chess,

illegal in Go
● Repetitions must be handled correctly
● Practical “solutions” ignore history – leads to graph history

interaction problem
● Issues about repetitions are handled in the lectures in the

afternoon

Conclusions

● Gave an overview of alpha-beta algorithms and
enhancements

● Alpha-beta variants
● Search enhancements
● Search extension and reductions
● Evaluation function and machine learning
● Parallel alpha-beta

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

