

An Update on Game Tree
Research
Akihiro Kishimoto and Martin Mueller

 Presenter:
 Akihiro Kishimoto, IBM Research - Ireland

Tutorial 2: Solving and Playing
Games

Outline of this Talk

● Defines several notions required to understand detailed
game research technologies

● Minimax search (binary case)
● AND/OR tree search
● Minimax/Negamax search (general case)
● Game-playing in practice

Game Tree Representation (1 / 2)
X X

O

O
Current state
X to play

X X

O

O X X

O

O X X

O

O X X

O

OX X

O

O

O to play

X X

X

X

X

X X

O

O

X

X X

O

O

X

X X

O

O

X

O

O O

X X

O

O

X

O X to play

Game Tree Representation (2 / 2)

Root node

Interior node

Terminal node Leaf node

Perform look-ahead search by building game tree

WIN

LOSS

Player's
state

Opponent's
state

Player's moves

Opponent's moves

Player's move

Simplest Case of Minimax Search
Binary Evaluation (1 / 3)

Win Loss Loss Win Loss Win

Win Loss

Loss

Win Win

Win

Win

Player Opponent

Simplest Case of Minimax Search
Binary Evaluation (2 / 3)

● Each player tries to win. Zero-sum – opponent's win is my loss

● OR node (aka MAX node): If I have at least one winning move, I
can win (by playing that move)

● If all my moves are losses, I lose.

//Basic minimax with Boolean outcome
bool MinimaxBooleanOR(GameState state) {
 if (state.IsTerminal())
 return state.StaticallyEvaluate();
 foreach legal move m of state
 state.Execute(m)
 bool isWin = MinimaxBooleanAND(state);
 state.Undo();
 if (isWin)
 return true;
 return false;
}

Simplest Case of Minimax Search
Binary Evaluation (3 / 3)

● Each player tries to win. Zero-sum – opponent's win is my loss

● AND node (aka MIN node): All moves need to be winning

● If any of my moves are losses, I lose.

//Basic minimax with Boolean outcome
bool MinimaxBooleanAND(GameState state) {
 if (state.IsTerminal())
 return state.StaticallyEvaluate();
 foreach legal move m of state
 state.Execute(m)
 bool isWin = MinimaxBooleanOR(state);
 state.Undo();
 if (not isWin)
 return false;
 return true;
}

Example
Best and Worst Cases

 D

I H J

 E G

L MK

 F

CB

 A

L W L W L W

W L

L

W W

W

W

OR node
(MAX node)

AND node
(MIN node)

G

M L K

F D

H IJ

 E

BC

W L W L W L

W W

W

W

Worst case Best case

Boolean Minimax - Efficiency

● Time complexity (number of leaf nodes evaluated)
● Best case: about bd/2, first move causes cutoff
● Worst case: about bd, no move causes cutoff
● Space complexity O(bd) – depth-first exploration

b: number of available moves (branching factor)

d: search depth

AND/OR Tree

● Formalizes concept of game tree with alternating players

● OR node: player's turn – can win if move 1 OR move 2 OR
… wins

● AND node: opponent's turn – player wins only if opponent's
move 1 AND move 2 AND … all win (for player)

● Many applications when goal can be expressed recursively
as conjunction/disjunction of subgoals

● Normal form: alternating layers of AND, OR nodes

● Generalization AND/OR DAG or DCG

● Introduce three values, win, loss, and unknown in this
lecture

Example of AND/OR Tree

Unknown Loss Loss Win Loss Win

Unknown Loss

Loss

Win Win

Win

Win

OR node AND node

Proof Tree

● A winning strategy for player

● Dual concept: disproof tree – proves we cannot win

● Subset of game tree, covers, all possible opponent replies

● Subtree P of game tree G is proof tree iff:

● P contains root of G
● All terminal nodes of P are wins
● If interior AND node is in P, all its children are in P
● If interior OR node is in P, at least one child is in P

Example of Proof Tree

Unknown Loss Loss Win Loss Win

Unknown Loss

Loss

Win Win

Win

Win

OR node AND node

Proof tree

Comments on Proof Tree

● Some definition work on DAG, even arbitrary graph

● There may be more than one proof tree

● Efficiency: want to find minimal or at least small proof tree

● In uniform (b,d) tree, with OR node at root, number of leaf
nodes in best case is 1, 1, b, b, b2, b2,...

b: branching factor, d: depth

● Search is most efficient if it examines only at the proof tree

● In practice, that's impossible. But good move ordering is
crucial

Minimax Search

● General case – score of position can be any finite
number

● Frequent special case: small set of values, e.g., win-
draw-loss

● We try to maximize the score, opponent tries to
minimize it

● Zero-sum: each extra point we win, the opponent loses

Full Search versus Heuristic Search

● Code so far searches until the end of game

● For heuristic play, stop search earlier (e.g., after N moves)

● Depth-limited search can be good for move ordering –
iterative deepening idea (next lecture)

● Minimax search code with depth-limit

● Can exactly solve positions (when search finds proof tree)

● Evaluate positions at leaf nodes by calling evaluation
function that approximates a chance of winning

● Scores are assumed to be integer in this lecture
● Principal variation – best-scoring path for both players

Example of Minimax Search

30

30 25

60 30 25

60 35 30 20 15 25

Principal Variation

45

45 20

MAX node MIN node

Minimax Search –
OR Node (MAX Node)

int MinimaxOR(GameState state, int depth) {
 // Evaluate from root player's view
 if (state.IsTerminal() or depth=0)
 return state.StaticallyEvaluate()
 int best = -INF
 foreach legal move m from state
 state.Execute(m)
 int score = MinimaxAND(state, depth-1)
 best = max(best, score)
 state.Undo()
 return best
}

Minimax Search –
AND Node (MIN Node)

int MinimaxAND(GameState state, int depth) {
 // Evaluate from root player's view
 if (state.IsTerminal() or depth=0)
 return state.StaticallyEvaluate()
 int best = INF
 foreach legal move m from state
 state.Execute(m)
 int score = MinmaxOR(state, depth-1)
 best = min(best, score)
 state.undo()
 return best
}

Negamax Search

● Minimax search uses max and min procedures

● Negamax always maximizes the score by negating returned
scores from children

● Evaluate states at leaf nodes from current player's viewpoint

Example of Negamax Search

30

-30 -25

60 30 25

-60 -35 -30 -20 -15 -25

Principal Variation

45

-45 -20

MAX node MIN node

Negamax Search –
Pseudo Code

int Negamax(GameState state, int depth) {
 // Evaluate from current player's view
 if (state.IsTerminal() or depth=0)
 return state.StaticallyEvaluate()
 int best = -INF
 foreach legal move m from state
 state.Execute(m)
 int score = - Negamax(state,depth-1)
 best = max(best, score)
 state.Undo()
 return best
}

Comments on Plain
Minimax/Negamax

● Inefficient. No pruning as opposed to Boolean case
above. In (b,d) tree, searches all bd paths

● How can we add pruning? (next lecture)
● How to set a proper depth to search (next lecture)
● Simple idea: prune if max. value reached (usually does

not help much)

Game-Playing Program in Practice

● Incorporates several approaches such as
● Opening book
● Search engine, e.g., alpha-beta (next lecture) and MCTS

(afternoon)
● Endgame database
● Specialized search

Opening Book

● Databases that collect positions and moves particularly in
the beginning of games

● Collected from human experts' game records if available
e.g. chess, checkers, shogi, Go

● If position to query is stored in opening book, play stored
move immediately at that position

● If more than one move is available, select one randomly

● Can provide a high-quality move and non-deterministic
behavior of game-playing program, and save time

● Blunder moves must be filtered out when book is
constructed

Endgame Database

● In some games, all positions in endgame can be
enumerated by single/parallel computing resources

● e.g., positions with <= 6 pieces in chess and with <=
10 pieces in checkers

● Precompute win-draw-loss values of these positions
and save them in database

● Perform retrograde analysis that backs up scores from
terminal positions to build database

● Perfect evaluation can be achieved by fast database lookup

● Paging-based approach is used if database does not fit into
memory

Specialized Search

● In some game-playing systems, specialized search is
incorporated to efficiently check if sub-goal can be achieved

● E.g., tactical search in Go and check-mate (tsume-shogi)
search in shogi

● Main search invokes such specialized search by limited
time/node expansions

● Specialized search has much higher overhead than
endgame database lookups

● When specialized search is invoked must be carefully
considered (see next lecture in case of shogi)

Summary

● Explained basic notions required to understand remaining
material

● AND/OR tree search and proof tree
● Minimax/Negamax search
● Game-playing program in practice e.g. opening book,

endgame database, specialized search

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

