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Outline of this Talk

● Defines several notions required to understand detailed 
game research technologies

● Minimax search (binary case)
● AND/OR tree search
● Minimax/Negamax search (general case)
● Game-playing in practice



  

Game Tree Representation (1 / 2)
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Game Tree Representation (2 / 2)
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Simplest Case of Minimax Search
Binary Evaluation (1 / 3)  
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Simplest Case of Minimax Search
Binary Evaluation (2 / 3)

● Each player tries to win. Zero-sum – opponent's win is my loss

● OR node (aka MAX node): If I have at least one winning move, I 
can win (by playing that move)

● If all my moves are losses, I lose. 

//Basic minimax with Boolean outcome
bool MinimaxBooleanOR(GameState state) {
  if (state.IsTerminal())
    return state.StaticallyEvaluate();
  foreach legal move m of state
    state.Execute(m) 
    bool isWin = MinimaxBooleanAND(state);
    state.Undo();
    if (isWin)
     return true;
  return false;
}



  

Simplest Case of Minimax Search
Binary Evaluation (3 / 3) 

● Each player tries to win. Zero-sum – opponent's win is my loss

● AND node (aka MIN node): All moves need to be winning

● If any of my moves are losses, I lose. 

//Basic minimax with Boolean outcome
bool MinimaxBooleanAND(GameState state) {
  if (state.IsTerminal())
    return state.StaticallyEvaluate();
  foreach legal move m of state
    state.Execute(m) 
    bool isWin = MinimaxBooleanOR(state);
    state.Undo();
    if (not isWin)
     return false;
  return true;
}



  

Example 
Best and Worst Cases
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Boolean Minimax - Efficiency

● Time complexity (number of leaf nodes evaluated)
● Best case: about bd/2, first move causes cutoff
● Worst case: about bd, no move causes cutoff
● Space complexity O(bd) – depth-first exploration

b: number of available moves (branching factor)

d: search depth



  

AND/OR Tree

● Formalizes concept of game tree with alternating players

● OR node: player's turn – can win if move 1 OR move 2 OR 
… wins

● AND node: opponent's turn – player wins only if opponent's 
move 1 AND move 2 AND … all win (for player)

● Many applications when goal can be expressed recursively 
as conjunction/disjunction of subgoals

● Normal form: alternating layers of AND, OR nodes

● Generalization AND/OR DAG or DCG

● Introduce three values, win, loss, and unknown in this 
lecture



  

Example of AND/OR Tree
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Proof Tree

● A winning strategy for player

● Dual concept: disproof tree – proves we cannot win

● Subset of game tree, covers, all possible opponent replies

● Subtree P of game tree G is proof tree iff:

● P contains root of G
● All terminal nodes of P are wins
● If interior AND node is in P, all its children are in P
● If interior OR node is in P, at least one child is in P 



  

Example of Proof Tree
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Comments on Proof Tree

● Some definition work on DAG, even arbitrary graph

● There may be more than one proof tree

● Efficiency: want to find minimal or at least small proof tree

● In uniform (b,d) tree, with OR node at root, number of leaf 
nodes in best case is 1, 1, b, b, b2, b2,...

b: branching factor, d: depth

● Search is most efficient if it examines only at the proof tree

● In practice, that's impossible. But good move ordering is 
crucial



  

Minimax Search

● General case – score of position can be any finite 
number

● Frequent special case: small set of values, e.g., win-
draw-loss

● We try to maximize the score, opponent tries to 
minimize it

● Zero-sum: each extra point we win, the opponent loses



  

Full Search versus Heuristic Search

● Code so far searches until the end of game

● For heuristic play, stop search earlier (e.g., after N moves)

● Depth-limited search can be good for move ordering – 
iterative deepening idea (next lecture)

● Minimax search code with depth-limit

● Can exactly solve positions (when search finds proof tree)

● Evaluate positions at leaf nodes by calling evaluation 
function that approximates a chance of winning

● Scores are assumed to be integer in this lecture
● Principal variation – best-scoring path for both players



  

Example of Minimax Search
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Minimax Search – 
OR Node (MAX Node)

int MinimaxOR(GameState state, int depth) {
  // Evaluate from root player's view
  if (state.IsTerminal() or depth=0)
    return state.StaticallyEvaluate()
  int best = -INF
  foreach legal move m from state
    state.Execute(m)
    int score = MinimaxAND(state, depth-1)
    best = max(best, score)
    state.Undo()
  return best
}



  

Minimax Search –
AND Node (MIN Node)

int MinimaxAND(GameState state, int depth) {
  // Evaluate from root player's view
  if (state.IsTerminal() or depth=0)
    return state.StaticallyEvaluate()
  int best = INF
  foreach legal move m from state
    state.Execute(m)
    int score = MinmaxOR(state, depth-1)
    best = min(best, score)
    state.undo()
  return best
}



  

Negamax Search

● Minimax search uses max and min procedures

● Negamax always maximizes the score by negating returned 
scores from children

● Evaluate states at leaf nodes from current player's viewpoint 



  

Example of Negamax Search
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Negamax Search –
Pseudo Code

int Negamax(GameState state, int depth) {
  // Evaluate from current player's view
  if (state.IsTerminal() or depth=0)
    return state.StaticallyEvaluate()
  int best = -INF
  foreach legal move m from state
    state.Execute(m)
    int score = - Negamax(state,depth-1)
    best = max(best, score)
    state.Undo()
  return best
}



  

Comments on Plain 
Minimax/Negamax

● Inefficient. No pruning as opposed to Boolean case 
above. In (b,d) tree, searches all bd paths

● How can we add pruning? (next lecture)
● How to set a proper depth to search (next lecture)
● Simple idea: prune if max. value reached (usually does 

not help much)



  

Game-Playing Program in Practice

●  Incorporates several approaches such as
● Opening book
● Search engine, e.g., alpha-beta (next lecture) and MCTS 

(afternoon)
● Endgame database
● Specialized search



  

Opening Book

● Databases that collect positions and moves particularly in 
the beginning of games

● Collected from human experts' game records if available 
e.g. chess, checkers, shogi, Go

● If position to query is stored in opening book, play stored 
move immediately at that position

● If more than one move is available, select one randomly

● Can provide a high-quality move and non-deterministic 
behavior of game-playing program, and save time

● Blunder moves must be filtered out when book is 
constructed



  

Endgame Database

● In some games, all positions in endgame can be 
enumerated by single/parallel computing resources

● e.g., positions with <= 6 pieces in chess and with <= 
10 pieces in checkers

● Precompute win-draw-loss values of these positions 
and save them in database

● Perform retrograde analysis that backs up scores from 
terminal positions to build database

● Perfect evaluation can be achieved by fast database lookup

● Paging-based approach is used if database does not fit into 
memory



  

Specialized Search

● In some game-playing systems, specialized search is 
incorporated to efficiently check if sub-goal can be achieved

● E.g., tactical search in Go and check-mate (tsume-shogi) 
search in shogi 

● Main search invokes such specialized search by limited 
time/node expansions

● Specialized search has much higher overhead than 
endgame database lookups

● When specialized search is invoked must be carefully 
considered (see next lecture in case of shogi)



  

Summary

● Explained basic notions required to understand remaining 
material

● AND/OR tree search and proof tree
● Minimax/Negamax search
● Game-playing program in practice e.g. opening book, 

endgame database, specialized search
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