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Abstract

In the case of two individuals in a competitive situation, or
“game,” the game itself (i.e. the players, the rules, the
equipment) can be considered to constitute a distributed
cognitive system. However, the dominant model of
competitive behavior is game theory (VonNeumann &
Morgenstern, 1944), which has traditionally treated
individuals as isolated units of cognition. By simulating
game playing with neural networks, and also by using human
subjects, it is demonstrated that the interaction between two
players can give rise to emergent properties which are not
inherent in the individual players.

Recent work in distributed cognition (e.g. Hutchins, 1994;
Norman, 1993; Zhang, 1997; Zhang & Norman, 1994) has
indicated that cognitive processing can take place across
distributed systems composed of multiple, interacting
cognitive systems. For example, navigating a large ship,
such as a naval vessel, is accomplished through interactions
amongst specially trained humans and specialized
equipment (Hutchins, 1994). Distributive systems involving
more than one agent are prototypically cooperative in
nature, in that the agents involved benefit from the function
of the distributed system (e.g. a ship avoids sinking).
However, distributed systems may also result in situations
in which some individuals benefit at a cost to others. The
simplest example of this is the case of two individuals in a
zero sum game (i.e. a game in which only one player can
win). Games such as this can be thought of as distributed
cognitive systems with the goal of choosing one player as
the winner.

Although game playing clearly involves interactions
between the players, it does not necessarily follow that we
need to consider the distributed properties of a game in
order to understand the behavior of a player. This depends
on whether the functionality of the cognitive mechanism
used by an individual player can be understood in isolation,
or needs to be interpreted in terms of the role it plays in the
distributed system. The answer to this question will depend
to some degree on our assumptions concerning the game
playing process. For example, game theory (VonNeumann
& Morgenstern, 1944) describes how rational players
should behave in a competitive situation prescribed by rules
and with payoffs for certain results. However, in order to do
this it is necessary to make assumptions concerning the
cognitive mechanisms available to the players. One
assumption that is frequently made is that players have the
ability to generate random responses (i.e. to draw responses
at random from a predetermined distribution). For
example, the game theory solution for Paper, Rocks and
Scissors (hence forth PRS) is to play randomly, 1/3 paper,
1/3 rocks, and 1/3 scissors (in PRS play: paper beats rocks,

rocks beats scissors, and scissors beats paper). With this
assumption in place there is nothing to be gained by
viewing PRS as a distributed system because players'
interactions are limited to tossing out and receiving random
responses. However, the assumption of random responses is
problematic for two reasons. The first is that people are
normally quite bad at generating random responses (see
Tune, 1964, and Wagenaar, 1972 for reviews), and the
second is that when people guess what is coming next in a
series they attempt to capitalize on sequential
dependencies, regardless if they are present or not (e.g.,
Anderson, 1960; Estes, 1972; Restle, 1966; Rose & Vitz,
1966; Vitz & Todd, 1967; Ward, 1973; Ward & Li, 1988).

Given the above research, a more realistic model of PRS
play would have players trying to detect each others
sequential dependencies. Note that the story is now
different if we consider the players in isolation or if we
consider them within the context of the distributed system
formed by the game. Taken in isolation, a player's strategy
appears passive, limited to searching for sequential
dependencies in their opponents responses. However, from
the distributed perspective the situation is highly interactive
as each player both drives, and is driven by, their
opponent's responses (i.e. my behavior would be based on
my beliefs about sequential dependencies in my opponents
play, which would be driven by my opponents behavior,
which in turn is driven by my behavior in a similar way) .
The question is, whether this highly interactive situation
can impart an alternative functional significance to a
sequential detection mechanism?

The Decoy Strategy
Given an opponent who is using the strategy of searching
for sequential dependencies, we can ask the game theory
question of how a rational opponent should respond.
Generating random responses will certainly avoid any
disadvantage, but it will also fail to produce an advantage.
The ideal strategy under these conditions would be to use
one's own responses to lure the opponent into a predictable
pattern of play which could somehow be exploited.
Interestingly, this agrees well with peoples' reports of how
they play games such as PRS. Aside from a minority who
claim to respond randomly, most people claim to deceive
their opponents by allowing them to detect biases which
are, in reality, decoys drawing their opponents into a
predictable pattern of play. This strategy of using ones own
pattern of responses to exert control over one's opponent's
responses will be referred to as the decoy strategy.

What I will endeavor to show in this paper is that the
function of sequential detection mechanisms within a game
situation is not to passively detect sequential dependencies,
but to execute the decoy strategy. Furthermore, it will be



demonstrated how the ability to do this is mediated by
working memory.

Simulating the Decoy Strategy
The sequential detection mechanisms assumed to be used
by human game players were modeled using two layer
neural networks with one layer for input and one for output
(i.e. perceptrons, Rosenblatt, 1962). The output layer
consisted of three nodes, to represent paper, rocks, and
scissors. The input layer consisted of a variable number of
three node sets. Each set represented the previous outputs
of the opponent network at a particular lag, with the three
nodes in each set again representing paper, rocks, and
scissors. Thus the networks could be set to "remember" any
number of trials back from the current trial. To represent
this the networks are be referred to in terms of how many
lags back they could recall (i.e. a lag1 network can
remember one trial back, and a lag2 network, two trials
back). Outputs were determined by summing the weights
associated with the activated connections. If two or more
output nodes were equally weighted the tie was resolved
through  random selection. Learning was accomplished
through back-propagation in which a win was rewarded by
adding 1 to the activated connections leading to the node
representing the winning response, and a loss was punished
by subtracting 1 (ties were treated as losses). In all trials,
both networks began with all weights set to zero.

The neural network mechanisms used in this study were
deliberately made as simple as possible in order to keep the
process as transparent as possible. Also, the use of
perceptrons means that the individual networks can be
treated as linear systems, an important consideration for
game theorists.

Simulation Results
The effect of memory was clear, networks that could
remember more always won in the long term. Figure 1
displays a representative result of a lag2 network versus a
lag1 network. However, as would be expected by symmetry,
when a lag2 was pitted against another lag2 network no
advantage emerged.

According to the decoy strategy a player wins through
controlling the opponent's responses. This strategy can be
seen in the causal nature of the simulation results. The
network with the higher lag factor was able to win not by
passively detecting sequential dependencies but by creating
them. Unlike humans who might be predisposed to
generating sequential dependencies, the networks based
their responses solely on each others play. Thus any
tendencies for one network to be predictable were caused
by the other network.

The Decoy Strategy in Humans
The next step was to find out if human subjects could
execute the decoy strategy. To do this, human subjects
played PRS against a lag1 network. There were two reasons
for having them play against the network instead of against
each other. First, it seemed likely that they would be
approximately equal in ability which, according to the

simulation results above, would produce an unremarkable
outcome in the long run (i.e. a 50/50 chance of winning).
Second, under these conditions the only sequential
dependencies present in the computer would be ones
created by the subject. In order to win subjects would have
to both create and exploit sequential dependencies in the
lag1 network.

Method
Subjects The subjects were 13 volunteers from the
University of British Columbia and the University of Hong
Kong.

Apparatus Subjects played against a lag1 network
implemented in Visual Basic (the simulations were also
done using the same program). Subjects selected their PRS
outputs by using a mouse to click on three different icons.
Following this they clicked on a button to reveal the
computer's response. The score and the number of trials
were displayed so subjects could monitor their progress.

Procedure Each subject played for approximately 20
minutes. The number of trials varied based on each
subject's playing speed. All subjects played at least 250
trials (mean number of trials = 441). Subjects were
instructed that the computer was programmed to play like a
human, and that it was possible to beat it. They were also
told that the program was very complex and that they
should play by intuition.

Results
Figure 2 displays the subject's score minus the computer's
score across trials. The data was combined so that each
subject's game picks up where the previous subject left off
(e.g. subject 1 finished with a lead of 44 points after 800
trials so subject 2 was plotted as though he began with a 44
point lead starting at trial number 801). This was done in
order to get a sufficient number of trials (total number of
trials = 5727) to indicate an unambiguous trend. The
upward trend in Figure 2 is very clear and demonstrates
that the human subjects were able to execute the decoy
strategy.

Discussion
The neural networks used in this study were designed to
passively detect sequential dependencies. The decoy
strategy was not implicit in the design of these networks,
but emerged from the interaction between them. Although
it is possible that the human subjects were able to win by
some other means it is unclear how this could be achieved.
Also, it is  doubtful if other explanations could achieve the
same level of parsimony, or consistency with previous
research.

The implications of these results go far beyond
describing a good strategy for playing PRS, as it is possible
that a considerable amount of competitive behavior is based
on this type of process. More generally, the results of this
study are consistent with the view that human cognition
needs to be understood within in the environmental context



Figure 1: A Lag2 network versus Lag1 network

in which it developed (e.g. Gibson, 1986). For humans this
entails understanding an individual within a social context
that is both cooperative and competitive. As demonstrated
in this study, the benefit of an individual cognitive system
may reside in the type of distributed system it creates when
joined with other systems, rather than in its function as an
isolated unit.

The advantage of the methodology used in this study is
that it reconciles distributive and individual cognitive
research for this type of behavior. Using the detailed
findings of traditional cognitive research on individuals,
tentative models can be constructed and placed in
interactive situations. The emergent patterns from such
simulations can then be compared to simulations in which
one of the simulated agents is replaced with a human agent,
or to interactions between two humans. In this way we can
begin to understand the relationship between individual
cognitive agents and the emergent, distributed systems in
which we live.
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