LOGISTELLO — A Strong Learning Othello Program

by Michael Buro, NEC Research Institute, Princeton, NJ

Overview

This note briefly describes LOGISTELLO — one
of today’s strongest Othello programs. Besides
the powerful hardware on which it is running and
the efficient implementation of standard game
tree searching techniques, the program’s consid-
erable playing strength is mainly due to several
new ap-

Internet Graphical
Othello User
Server Interface
T Communication
Game-Tree Searcher
Game
pe—
Manager

Evaluation
Function

Opening Book Play

Estimation of feature weights
and values of pattern instances

Periodical Correction

proaches for the construction of evaluation fea-
tures, their combination, selective search, and
learning from previous games which the author
has investigated in his Ph.D. thesis and consid-
erably improved while working at NECI. Here is a
graphical overview of LOGISTELLO’s components:

Public

Games

Selfplayed

Games

Game

Analyzer/Corrector

PR

Move Evaluator

Opening Book consisting of

ca. 23,000 tournament games +

evaluations of ”best” move-
alternatives

Periodical Update

Training set consisting
of ca. 80,000 games

LOGISTELLO’s Evaluation Function

The classical approach for constructing evalua-
tion functions for game—playing programs is to
combine win correlated evaluation features of the
position linearly:

flp) = Zn:wz'fi(P)-
=1

This type of evaluation function is chosen very
often since the combination overhead is relatively
small compared to the time for computing the
features and there are efficient methods available
for determining the feature weights. When the
relative importance of the features or even the
feature set varies depending upon the game stage
this simple model can be generalized to:

flo) = iws,i f5i(p), where s = stage(p).
=1

ROSENBLOOM (1982) and LEE & MAHAJAN
(1990) introduced a table-based evaluation
scheme, in which values of all edge configurations
were precomputed by (probabilistic) minimax al-
gorithms and stored in a table for a quick evalua-
tion of the edge structure. The pattern approach
presented in [BURO 1997b] generalizes this tech-
nique by permitting the automatic evaluation of
pattern configurations of any shape. The current
pattern set is shown in Figure 1.

diag4 diagh diag diag?
o] o]
o]
o) o)
o] o) o) i
ol o]
o)
diag8 hor./vert.2 hor./vert.3 hor./vert.4
1)
O]]
o]

OO

Figure 1: The current pattern set

LOGISTELLO’s pattern features approximate im-
portant concepts in Othello, like striving for sta-
ble discs, maximizing the number of moves, and
parity. The evaluation function is dependent
upon game stage. In Othello the number of discs
on the board is a reasonable measure. Thirteen
stages were chosen, namely 13-16 discs, 17-20
discs, ..,61-64 discs. For pattern value estima-
tion by means of linear regression a large set of
training positions is used. It consists of ca. three
million Othello positions stemming from about
60,000 games played between early versions of
Igor Purdanovié’s program KITTY and LOGIS-
TELLO and 20,000 additional games that were
generated by LOGISTELLO while extending its
opening book. All positions were labeled with
a disc differential by negamaxing the final game
results in the tree built from all games. This pro-
cedure is accurate for endgame positions since the
example games are played perfectly in this stage,
whereas labels assigned to opening and middle-
game positions are only approximations.

In addition to the pattern features shown in
Figure 1 a simple phase dependent parity feature
is used. Thus, LOGISTELLO’s evaluation function
has the following form:

fp) =(
[faa,s0 + o + faa,s.a] + [fas,e1 + oo + fas,0.4]+
[fa6,5.1 + - + fa6,5.4] + [far,s.1 + - + far,s.a]+
[fag,s.1 + fags.2l + [fuve,s + oo+ frvz,salt+
[fhvS,s.l + ...+ fhv3,5.4] + [fhv4,s.1 + ...+ fhv4,s.4}+
[fedge+2X,s.1 +...+ fedge+2X,s.4]+
[foxs,5.1 + - + foxs,s.8]+
[f3x3,5.1 + o + f3x3,5.4] + fparity,s) (D)

where s = stage(p) and f; ,; evaluates the i—th
occurrence of pattern z on boards at game stage s
(for instance, fedget2X,5.1+ -+ + fodget2X 5.4 deter-
mines the evaluation for the entire edge structure
by adding up table values for each of the four
edges).

This entirely table-based evaluation function
is very accurate and can be computed quickly.

PROBCUT: LOGISTELLO’s Selective Search

Human players are able to find good moves with-
out searching the game—tree in its full width.
Using their experience they are able to prune
unpromising variations in advance. The result-
ing game—trees are narrow and might be rather
deep. By contrast the original minimax algorithm
searches the entire game-tree up to a certain
depth and even its efficient improvement — the
aff algorithm — is only allowed to prune back-
wards because it has to compute the correct mini-
max value. The selective search procedure PROB-
CuT presented in [BURO 1995] permits pruning of
subtrees that are unlikely to affect the minimax
value and uses the time saved for analysis of cru-
cial variations. The idea is to take advantage of
the fact that values returned by minimax searches
of different depths are highly correlated. In order
to evaluate a position at height A, it can first be
examined by a shallow search of depth d < h.
The result vy is then used for estimating the true
value v, and to decide with a prescribed likeli-
hood whether vy, lies outside the current a3 win-
dow (Figure 2). If so, the position is not searched
more deeply and the appropriate window bound
is returned. Otherwise, the deep search is per-
formed yielding the true value. Here, a shallow
search has been invested but relative to the deep
search the effort involved is negligible.

A natural way to express vj, by means of vg is
to use a linear model of the form vy, = a-vg+b+e
with a,b € IR and a normally distributed error
variable e with mean 0 and variance o2. After
choosing height h and check depth d the param-
eters a,b and o can be estimated using linear re-
gression applied

Figure 2: Forward cut scenario

to a large number of examples (vq(p;),vn(p;))-
Now it is possible to test the cut conditions prob-
abilistically: vy > [holds with probability at
least p if and only if (¢, — 8) /o > & 1(p) is true,
where 0, = a - vg + b and ® denotes the distri-
bution function of a normally distributed random
variable with mean 0 and variance 1. This condi-
tion is equivalent to vg > (& 1(p) -0 + B —b)/a.
Analogously, it can be shown that v, < a holds
with probability of at least p iff vg < (—®1(p) -
0+ o —b)/a. If one of these conditions is met
during the game-tree search the current position
will not be searched to depth h. In this way large
subtrees can be cut in order to save time for the
relevant lines.

It remains to choose the cut threshold & (p)
suitably. For this purpose tournaments between
the non-selective and the selective program ver-
sion can be played using different thresholds in
order to find the value that results in the great-
est playing strength.

In the first PROBCUT implementation of LO-
GISTELLO h = 8 and d = 4 were chosen, and
a,b, and o were estimated separately for each
game phase. When &~ !(p) = 1.5 the winning
percentage of the PROBCuT-enhanced version of
LOGISTELLO playing against the brute—force ver-
sion was 74.2% in a 70-game tournament.

Recently this selective search procedure has
been improved. Experiments showed that by ap-
plying the following generalizations the playing
strength can be increased even further:

1. allowing forward pruning at different
heights. In this way bad moves — which
exist in almost any position — or very good
refutations can be detected earlier and more
time can be saved for relevant lines.

2. performing several check searches of in-
creasing depth until a cut condition is met.
This procedure saves time in very unbal-
anced positions.

3. using different cut thresholds for each game
stage.

LOGISTELLO’s Opening Book Algorithm

If a player wants to be successful not only in a sin-
gle game against an unknown opponent but in a
sequence of games, he might be faced with sim-
ple but effective playing strategies of the opponent
which cannot be met only by the well-known game—
tree search techniques. Perhaps the most obvious
and simple one is the following: “If you have won
a game, try it the same way next time.” A pro-
gram with no learning mechanism and no random
component follows this strategy, but is also a vic-
tim of it, since it does not deviate and therefore
can lose games twice in the same way. In order to
avoid this, it is necessary to find reasonable move
alternatives. This can be accomplished passively,
as the following strategy shows: “Copy the oppo-
nent’s winning moves next time when colors are
reversed.” The idea behind this elegant method is
to let the opponent show you your own faults in
order to play the opponent’s winning moves next
time by yourself. In this way, even an otherwise
stronger opponent can be compromised, since —
roughly speaking eventually he is playing against
himself. Thus, copying moves makes it necessary to
come up with good move alternatives actively. In
order to do so, a player must have an understanding
of his winning chances after deviations from known
lines.

The mentioned basic requirements of a skilled
match strategy lead directly to an algorithm for
guiding opening book play based on negamax
search. Suppose a game-tree is built from vari-
ations — starting with the initial game position

and its leaves are labelled as follows: The first
component of the label indicates whether the cor-
responding position is a sure win, draw, or loss for
the side to move (W,L,D). In cases where this clas-
sification is not yet known, a question—mark is used
in the first component and the second component is
the heuristic evaluation of the position computed,
for instance by a deep negamax search (larger val-
ues indicate a higher winning chance for the side to
move). Furthermore, in each interior node of the
tree the heuristically best® deviation is added to the
tree together with the reached position and its deep
evaluation. Figure 3 shows examples. Here, solid
lines mark variation moves, whereas long dashed
lines represent the best move alternatives in each
interior node. Short dashed lines indicate the ex-
istence of other deviations with lower evaluation
which don’t have to be considered for the moment
because the best deviation would be preferred.

Given such a tree, it is easy to guide the opening
book play in best first manner: Find the node

“In what follows, best means heuristically best.

(W, +00) (2,—4) (2, +3)
Ty 15

(7,+5)

Figure 3: Example opening book trees. The principal
leaf w3 of 1% is chosen for expansion. In the resulting
tree 13 leaf v4y would be expanded next.

corresponding to the current position, propagate
the heuristic evaluations from the leaves to that
node by means of the negamax algorithm, and
choose the move that leads to the successor po-
sition with lowest evaluation.” Before the move
to be played can be determined using this algo-
rithm, heuristic evaluations have to be assigned to
the leaves for which the outcome is known. A nat-
ural choice is +o0c for won positions, 0 for draws,
and —oo in lost positions. Provided that heuristic
evaluations are always greater than —oc, and there
are still unexplored variations, this setting ensures
that games will not be lost twice in the same way.

The algorithm applied to the root of the
example—tree 77 in Figure 3 yields the optimal path
(v1, v2,v3) which maximizes the winning chances of
the root player against best counter-play (local to
the tree).

Knowing how to select moves from an opening
book immediately enables the automatic extension
of the book by iterated expansion of the leaf at
the end of the current principal variation. In each
step, the best move and the best deviation are de-
termined in the leaf position and added to the tree
together with their evaluations. Furthermore, if the
leaf position was reached by a deviation, the next
best deviation in the predecessor position also has
to be found and added. Thus, after each expansion,
the tree is complete again consisting of a variation
skeleton augmented by the best deviation in each
interior node. Figure 3 illustrates this process.

“Since in this process heuristic evaluations of positions
from different game phases are compared, it is recommended
to use an evaluation function with a game—phase inde-
pendent meaning, such as winning probability or expected
result.

Milestones

1991 first experiments with statistical feature combination techniques
1992 secarching for significant and fast evaluation features for Othello
1993 LOGISTELLO wins its first tournament (Paderborn I)
1994 - ProbCut - a new selective search approach
- opening book learning
- LOGISTELLO wins Paderborn 11
1995 - 10-disc patterns
- improved opening book algorithm
- LOGISTELLO wins Paderborn III
1996 - multi-ProbCut
- hash-table improvement
- LOGISTELLO wins Paderborn IV
1997 - construction of a much better evaluation function
- LOGISTELLO plays a 6-game match against the current World-
Champion Takeshi Murakami
Recent Improvements
3/1995 10-disc patterns
5/1995 new best-first style endgame search
7/1995 book-algorithm now maximizes the out-of-book score
5/1996 book randomization
10/1996 multi-ProbCut
11/1996 major table estimation bug fixed, new version beats old 57% of the time
12/1996 hash-table improvement saves 15-40% searchtime
3/1997 a new table estimation technique increases the playing strength consider-
ably
4/1997 the entire book has been re-computed using the new evaluation function
7/1987 increasing the number of training examples and generating rare positions
to fill table gaps has improved the evaluation function even further
LOGISTELLO Summary
Eval. Features: - game stage dependent Search depth: in a 2x30 minutes game:

pattern tables
- a simple parity measure
Feature Comb.: - linear

Search: - NegaScout empty squares, exact score 1-2

- corner quiescence search ply later

- multi-ProbCut Opening Book: - consists of ca. 23,000 games +

- iterative deepening evaluations of “best” move alter-
Move sorting: - hash-tables containing moves natives

and value bounds - is automatically updated

- response killer lists Miscellany: - thinking on opponent’s time

- shallow searches - communication with I0S
Search speed: - midgame: ca. 160,000 nodes/sec via socket or with graphical

- endgame: ca. 480,000 nodes/sec interface via file system

Language: C

OS/compiler: Linux/gce 2.7.2.1
Machine: PentiumPro/200 MHz

- midgame: 18-23 ply (selective)
including 10-15 brute-force ply
- endgame: win/loss/draw at 26-22

Othello

. . . a b cde f gh a b c de f gh

The rules of Othello are §1mple. .It is a . [TCTATBIBTATC
two person zero sum perfect information game 9 2[CIX X|C
played on a 8x8 board using 64 two colored 3 . 3[A A
discs. Black goes first with Black and White 4 - QP 4B B
alternating moves thereafter — if possible. In 5 L OE 5|B B
order to move, a disc is placed on an empty 6 - 6 A, A
. , 7 7|1CIX X|C

square showing the player’s color such that the s s[[CIAIBIBIAIC

new disc and another disc already on the board
Start position Square notation

bracket at least one opponent’s disc. All brack-
eted discs in all directions must be flipped now abcdelf gh

showing the player’s color. An example is shown ; ;
in the diagrams to the right. A player with no 3 3
legal moves must pass. The game ends if neither 4 4
player has a legal move. The player who has the 5 5
disc majority wins the game. 3 e_s

g 8

Position after move b5
References

[BurO 1995] ProbCut: An Effective Selective Extension of the Alpha Beta Algorithm, ICCA Journal 18(2),
71-76.

[BUrO 1997a] Toward Opening Book Learning, NECI Technical Note #2.

[BUrO 1997b] Ezperiments with Multi-ProbCut and a New High-Quality Evaluation Function for Othello,
NECI Technical Report #96.

[LEE & MAHAJAN 1990] The Development of a World Class Othello Program, Artificial Intelligence 43,
21-36.

[RosENBLOOM 1982] A World Championship Level Othello Program, Artificial Intelligence 19: 279 320.

