Games Research at U of A

Michael Buro, Ph.D.

Department of Computing Science
University of Alberta, Edmonton

May-6-2003

Outline

* The GAMES Group at U of A

- Classic Games Research
- Commercial Games Research

* ORTS: An Open RTS Game Environment

- RTS Games

- Issues: Client Hacks & Weak A.l.
- Project Roadmap, Current State

- Demo

* Classic Games

- Early A.l. test domain
* Heuristic Search
¢ Evaluation Functions
¢ Opponent Modeling ...
- Making computers
strong(er)

- Goal: World-champion
level

m GAMES Group at U of A

Game-playing, Analytical Methods,
Minimax search, and Emperical Studies

* Commercial Games

- Addressing A.l. problems
game developers face
* Pathfinding
* Learning
* Believable behaviour
* Low/high level ALl ...
- Goals: smart NPC or
opponent behaviour -
efficient algorithms

Classic Games Research

* Minimax Search
Enhancements

* Evaluation Function
Learning

* Imperfect Information
* Opponent Modeling
* Single Agent Search

* Chinook - Checkers
World-champion

* Logistello - super-
human Othello program

* IS Shogi - computer
Shogi World-champion

* OptiBot - an “optimal”
Poker program




Commercial Games Research

* Tackling A.l. issues games developers face
- Efficient Pathfinding
* What topology? incremental, real-time
* How to find paths for formations?
- Learning in Sports Games
* Finding/Avoiding “Sweet Spots”
* Increasing replay value
- Scripting Languages for role playing games
- A.l. for RTS Games

Ties to Computer Games Companies

* Currently Electronic Arts and Bioware

* Get source code access to current titles: E.g.
- FIFA Soccer
- Baldur's Gate
- Neverwinter Nights

* Run experiments with state-of-the-art game
engines

* Interact with game developers

* Solve problems that matter

* Internships

Real-Time Strategy (RTS) Games

* Players build and command armies

* Real-time object motion usually on 2.5D
battlefield

* Imperfect information (“Fog of War”)
* Resources
* Technology tree




A Typical RTS Game
StarCraft (tm)

RTS Game Wish Lists

Player Perspective:
* Smarter unit level Al
* Better computer opponents/allies
* Multiple-view GUIs
* Hack-free game environment

CS Perspective:

* Better Al (low- and high-level)
* Al interfaces
* Man/Machine + Machine/Machine competitions

ORTS -
An Open RTS Game Environment

* Test domain for real-time Al research
* Abstract RTS game
* Hack-free server-side simulation
- Only server maintains entire game state
- Local player views are sent to clients

- Clients send actions back to server
* Portable: C++ & SDL

* Free software - GPL

Server-Side Simulation Issues

* Downstream data: ~ C * #visible objects
(10 KB/sec 4x250 objects @ 5 fps)

* Upstream data: ~ D * #own objects
(~1 KB/sec)

* Bottlenecks: CPU + network latency
* Need dedicated server
* Can the server be trusted?




Server-Side Simulation Benefits

* All unit commands are generated in clients
- Command for each unit in every frame

- No fixed unit behaviour! Micro actions are
sent

* Users can roll their own client software
- GUIs with multiple views, resolutions etc.

- Low-level unit behavior (a la Quake's
AimBots)

* Client hacks pointless

Project Roadmap

* First:

- Finish server code, optimize it

- Implement platform independent GUI

- Client software, Al plugins for low-level unit behavior

- “Advanced” RTS competitions (humans+Al plugins)
* Then:

- Al arms race commences

- Machine RTS game competitions
* Ultimate Goal:

- High-level Al replaces human general

Current State

StarCraft-like terrain features almost complete
* Efficient object motion + collision test

* Not so efficient tile-based view computation
* Incremental / compressed data transmission

* Performance

- worst case: all objects visible
- on P3/1GHz: ~15 fps 1200 moving objects

Current Projects

* Summer Students:
- optimize server/client code
- implement GUI
* Thesis Topics:
- Learning low-level behavior
- Heuristic search, abstraction, and planning
- Scripting in RTS games




Demo




