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Abstract

This article ' motivates Al research in the area of real-time strategy (RTS) games and de-
scribes the road—map and the current status of the ORTS project whose goals are to imple-
ment an RTS game programming environment and to build Al systems that eventually can
outperform human experts in this popular and challenging domain.
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1 Introduction

Commercial computer games are a growing part of the entertainment industry and
simulations are a critical aspect of modern military training. These two fields have
much in common, cross—fertilize, and are driving real-time Al research [11]. With
the advent of fast personal computers, simulation—based games have become very
popular. Today, these games constitute a multi—billion dollar enterprise. Exam-
ples are sports games — in which players control entire hockey, soccer, basketball
teams, etc. — and real—time strategy (RTS) games where players command armies
which clash in real-time. The common elements of simulation games are severe
time constraints on player actions and a strong demand of real-time Al which must
be capable of solving real-world decision tasks quickly and satisfactorily. Popular
simulation games are therefore ideal test applications for real-time Al research.
RTS games — such as the million-sellers Starcraft and Warcraft by Blizzard Enter-
tainment and Age of Empires by Ensemble Studios — can be viewed as simplified

L A preliminary and condensed version of this paper has been presented in the IJCAI-2003
poster session.

Email addresses: mbur o@s. ual bert a. ca (Michael Buro),
furtak@s. ual berta. ca(Timothy Furtak).

Preprint submitted to Information Sciences 6 October 2003



military simulations. In these games several players struggle over resources scat-
tered over a 2D terrain by setting up economies, building armies, and guiding them
into battle in real-time. The current Al performance in commercial RTS games is
poor by human standards. This may come as a surprise because RTS games have
been around for more than ten years already and low—end computers nowadays can
execute more than a billion operations per second. The main reasons why the Al
performance in RTS games is lagging behind developments in related areas such as
classic board games are the following:

e RTS game worlds feature many objects, incomplete information, micro ac-
tions, and fast-paced action. By contrast, World—class Al players mostly exist
for slow—paced, turn—based, perfect information games in which the majority of
moves have global consequences and human planning abilities therefore can be
outsmarted by mere enumeration.

e Market dictated Al resource limitations. Up to now popular RTS games have
been released solely by games companies who naturally are interested in maxi-
mizing their profit. Because graphics is driving games sales and companies strive
for large market penetration only about 15% of the CPU time and memory is
currently allocated for Al tasks. On the positive side, as graphics hardware is
getting faster and memory getting cheaper, this percentage is likely to increase —
provided game designers stop making RTS game worlds more realistic.

e Lack of Al competition. In classic two—player games tough competition among
programmers has driven Al research to unmatched heights. Currently, however,
there is no such competition among real-time Al researchers in games other
than computer soccer. The considerable man—power needed for designing and
implementing RTS games and the reluctance of games companies to incorporate
Al APIs in their products are big obstacles on the way towards Al competition
in RTS games.

In what follows, we first take a closer look at Al challenges in RTS games to mo-
tivate this domain as being well-suited for real-time Al research. Then, we will
describe the ORTS project in some detail whose goals are to implementation of an
RTS game programming environment and to build Al systems that can defeat hu-
man RTS game players. Finally, we discuss related work and close with concluding
remarks.

2 RTS Games and Al Research

RTS games offer a large variety of fundamental Al research problems, unlike other
game genres studied by the Al community so far:

e Adversarial real-time planning. In fine—grained realistic simulations, agents
cannot afford to think in terms of micro actions such as “move one step North”.



Instead, abstractions of the world state have to be found that allow to conduct
forward searches in a manageable abstract space and to translate found solutions
back into action sequences in the original state space. Because the environment
is also dynamic, hostile, and smart — adversarial real-time planning approaches
need to be investigated.

A typical strategic problem that illustrates the necessity for adversarial plan-
ning is shown in Fig. 1. All corner regions are sealed off by strips of trees. In
this Warcraft—2 map lumber and gold are the resources and no air transports are
available. It does not take long for human players to realize that it is necessary to
cut through the trees right away to claim and defend the gold mine in the center
[A]. The computer player (2), however, is clueless and only starts chopping trees
after running out of gold. It lost after being sieged by the human player (1) [B,C].

e Decision making under uncertainty. Initially, players are not aware of the en-
emies’ base locations and intentions. It is necessary to gather intelligence by
sending out scouts and to draw conclusions to adapt. If no data about opponent
locations and actions is available yet, plausible hypotheses have to be formed
and acted upon.

e Opponent modeling, learning. One of the biggest shortcomings of current (RTS)
game Al systems is their inability to learn quickly. Human players only need a
couple of games to spot opponents’ weaknesses and to exploit them in future
games. Current machine learning approaches which mostly base on statistics are
inadequate in this area.

e Spatial and temporal reasoning. Static and dynamic terrain analysis as well

Fig. 1. RTS game scenario. The start locations of up to four players are marked with crosses
and are sealed off by strips of trees. Triangles represent gold mines. An acceptable Al
system needs to figure out that chopping trees right away to reach the mine in the center
quickly is necessary to win the game.



as understanding temporal relations of actions is of utmost importance in RTS
games — and yet, current game Als largely ignore these issues and fall victim to
simple common—sense reasoning [8].

e Resource management. Players start the game by gathering local resources to
build up defenses and attack forces, to upgrade weaponry, and to climb up the
technology tree. At any given time the players have to balance the resources they
spend in each category. For instance, a player who chooses to invest too many
resources into upgrades, will become prone to attacks because of an insufficient
number of units. Proper resource management is therefore a vital part of any
successful strategy.

e Collaboration. In RTS games groups of players can join forces and intelligence.
How to coordinate actions effectively by communication among the parties is a
challenging research problem. For instance, in case of mixed human/Al teams,
the Al player often behaves awkwardly because it does not monitor the human’s
actions, cannot infer the human’s intentions, and fails to synchronize attacks.

e Pathfinding. Finding high—quality paths quickly in 2D terrains is of great impor-
tance in RTS games. In the past, only a small fraction of the CPU time could be
devoted to Al tasks, of which finding shortest paths was the most time consum-
ing. Hardware graphics accelerators are now allowing programs to spend more
time on Al tasks. Still, the presence of hundreds of moving objects and the urge
for more realistic simulations in RTS games make it necessary to improve and
generalize pathfinding algorithms. Keeping unit formations and taking terrain
properties, minimal turn radii, inertia, enemy influence, and fuel consumption
into account greatly complicates the once simple problem of finding shortest
paths.

Playing RTS games is challenging. Even more challenging is the creation of au-
tonomous real—time systems capable of outperforming human experts in this do-
main. The range of applications of RTS real-time Al modules is by no means lim-
ited to creating smart opponents to entertain human players. High—performance
simulators are in high demand for training military personnel today and will be-
come the core of automated combat and battlefield decision—support systems of
tomorrow. In [22] it is predicted that 20% of the U.S. armed forces will be robotic
by 2015. The current state of real-time command and control (C?) Al, in partic-
ular in the RTS games domain, is less than satisfactory: computer opponents do
not: smartly adapt to adversaries, learn from their own mistakes, look—ahead in ab-
stracted search spaces, reason about spatial and temporal object relations, nor do
they collaborate and communicate well. Human experts, on the other hand, excel
in all those areas. This is true not only for the chosen domain. However, by concen-
trating on a concrete and bounded real—time decision task that features a number of
challenging but manageable sub—problems of general interest, we think the chance
of accomplishing the goal of creating a strong autonomous C? Al system within
a couple of years is good. The results of RTS game research will increase our un-
derstanding of fundamental Al problems — such as opponent modeling and ad-
versarial real-time planning — and will have considerable impact on the real-time



control domain in general and the computer games industry in particular which is
in need of creating credible computer controlled agents. 2

3 The ORTS Project

RTS games have become quite popular in recent years. For instance, in South Ko-
rea alone millions of people enjoy playing StarCraft and Age of Empires — two of
the best—selling computer games ever. Tournaments with considerable prize money
are being held regularly all over the world. The development of high—performance
Al systems can benefit a lot from human expertise. Thus, it is natural to tap into
available RTS game resources to learn from human experts and to measure Al
performance in tournaments. Unfortunately, games companies are not inclined to
release communication protocols or to add Al interfaces to their products which
is required to let programs aid human players or play entire games autonomously.
Moreover, current RTS game simulations rely on client—side simulations in which
all client machines run the entire game simulation and just hide information from
the respective players. While this approach saves bandwidth in case the command
frequency is small, it is prone to map—revealing hacks which spoil the game expe-
rience just as badly as revealing opponents’ cards in poker.

3.1 Overview

To overcome these problems, the Open—Real-Time—Strategy (ORTS) project was
conceived in 2001 [4]. The short—term project goal is to set up a programming envi-
ronment for conducting real-time Al experiments. Central to this is the implemen-
tation of an RTS game server which allows researchers to connect their Al systems
to measure Al performance in real-time domains with the following properties:

e Objects navigate and interact in initially uncharted worlds in real-time. Terrain
features include deep seas, rivers, plateaus, and ramps. Objects have radar—like
vision which is only obstructed by elevation. They can be airborne, land—based,
or naval.

e Players compute actions for a set of objects at their command. The computational
model can range from local to global with respect to the objects in order to reflect

2 At this point it should be stressed that our and the games industry’s objectives regarding
Al strength differ: while we are interested in creating strong Al systems capable of de-
feating the best humans, game developers want to maximize the replay value of their titles
which excludes average humans losing all the time against computer players. We acknowl-
edge this fact and point out that strong Al systems can be toned down to adjust to weaker
players, whereas the other way around is much harder.



given command hierarchies and different levels of physical restrictions imposed
by the world.

e Objectactions include straight—line motion, attacking objects, gathering resources,
trading goods, building, upgrading, and repairing objects.

e Team players can communicate and can share views of the world and object
control.

e Top—Ilevel goals of the players include: destroying all opponent objects, reaching
a designated location first, or gathering as much resources as possible in a given
time period.

Compared with commercial RTS titles the ORTS system has the following advan-
tages:

e Free Software. ORTS is released under the GNU Public License (GPL) which
means that anyone can download the source code at no cost in order to learn how the
system works and to contribute to the project by submitting bug fixes and adding
new features. It also means that projects that incorporate ORTS code need to release
their source code as well. It is important to point out that this does not prevent users
of GPL’ed code from selling their software. The benefit of GPL’ed software releases
to the community is huge as witnessed by the success of the Linux, KDE, and Mono
projects. We invite games companies to release source code of their popular but no
longer sold or maintained games to the community so that we all can learn.

e Flexible Game Specification. ORTS is a generic RTS game programming en-
vironment. It provides the infrastructure for RTS games including a server and a
graphics client. However, the actual game played when using the ORTS system is
not fixed — as in commercial RTS games — but scripted. A script is used to de-
fine unit properties — such as size, sight range and maximum speed — and unit
actions. The freedom to adjust RTS games to the needs of Al researchers is impor-
tant. However, we also acknowledge the importance of providing standard setups
in order to attract human players and to spark competition in form of tournaments.
The community can help here because ORTS is free software.

e A Hack—free server—side simulation. The ORTS game server maintains the
entire world state and sends only visible information to players which connect
from remote machines. Map—revealing client hacks that are common in commercial
client—side simulations are therefore impossible. The additional bandwidth require-
ment is mitigated by compressed incremental updates.

e Players are in total control. Today’s commercial RTS games confine users to
single view graphical user interfaces, fix low—level unit behavior, and sometimes
use veiled communication. The ORTS system, on the other hand, employs an open
message protocol that allows Al researchers and players to connect whatever client
software they like — ranging from split—screen GUIs, over hybrid systems in which
Al components aid the human player, to fully autonomous Al systems. ORTS



clients have complete knowledge of all their units and visible terrain at all times.
Therefore, there is no need for switching focus back and forth in case of multiple
simultaneous battles. Another big advantage is that in ORTS there is no prescribed
low—level unit behavior, which in commercial RTS games often is too simplistic
and awkward. Instead, clients send each and every micro action — including break-
ing down paths into straight line segments — to the server. Furthermore, in each
simulation cycle actions can be generated for all units unlike in client—side simula-
tions where the command frequency is very limited. ORTS clients are therefore in
total control of their units.

e Remote Al. In commercial client—side simulations the Al code for all players
runs on all peer nodes to save bandwidth and to keep the simulations synchronized.
This creates unwanted CPU load. Moreover, user configurable Al behavior is lim-
ited to simple scripts because there are no APIs to directly connect Al systems that
run on remote machines. By contrast, conducting Al experiments in the ORTS en-
vironment is easy. Its open message protocol allows users to even connect super
computers to either play RTS games autonomously or to aid human players.

Popular games in which human players still have the upper hand are ideal test—
domains for Al research. By providing an open source RTS game programming
environment we hope to spark interest in the C? domain among real-time Al re-
searchers. The open design allows the construction of hybrid Al systems in which
human players are aided by Al modules of growing capabilities. Competitive game
playing on an ORTS Internet game server is therefore likely to improve Al perfor-
mance and ergonomic GUI design.

3.2 A Command and Control Al Research Agenda

The long term goal of the ORTS project is the creation of Al systems whose per-
formance is surpassing human experts in real-time command and control domains.
Even before the simulator is completed we have initiated research on C? Al in two
directions:

e Bottom—up. A good local unit performance is crucial to the overall success of
a C? system because generals are overburdened if they have to issue low—level
instructions to all objects under their command. Instead, objects are required to
handle the most basic problems they face autonomously and quickly. Examples in-
clude finding safe routes to a given destination, concentrating attacks, and fleeing
in the face of overwhelming opposition. Simple reactive systems such as finite au-
tomata, rule—based systems, and decision trees are adequate for many local decision
problems. Some of these systems are suited for machine learning and combinato-
rial optimization. In [13], for instance, genetic algorithms were used to optimize
cellular automata that control objects to study emergent strategical behavior in the



C? domain. A layered learning approach is presented in [18] which statically maps
plan structures into a hierarchy of decision components that can be trained indepen-
dently. Preliminary TD—learning experiments conducted in the ORTS system have
revealed that even for managing mundane local tasks, like fleeing, look—ahead is
necessary. In order to improve the local decision quality we intend to bootstrap
evaluation functions that are used in conjunction with shallow heuristic searches
to compute object actions. Local simulations generate the necessary training data
for various function approximation techniques — such as neural networks, support
vector machines [7], and the Generalized Linear Evaluation Model introduced in
[3] — that we want to utilize.

e Top—down. On the other end of the spectrum, planning is important to deal with
vast state spaces. In the C2 domain heuristic search conducted in the original state
space on a global scale is infeasible due to micro actions. Instead, the search space
needs to be abstracted while retaining sufficient information to map found solu-
tions in the abstracted space to actions in the original space. The biggest challenges
in this project are the presence of adversaries, very little time for decisions, and
incomplete information which causes frequent re—planning [6,9] when new infor-
mation about the current world state is revealed. A way to tackle these problems at
once is to find suitable abstractions that lead to manageable search spaces which
allow to reconstruct solutions and can be traversed quickly by traditional heuristic
search techniques. Unlike general planning tasks, navigating in 2D environments
and building simplified economies provides many opportunities for exploiting do-
main knowledge. For instance, terrain analysis modules [16] can generate sets of
important way points [21] — which are useful for planning attack routes [17] and
setting up formations [5] — and analysing asset type dependency graphs [20] can
provide valuable information for economic planning.

Human expertise in the C2 domain is also very helpful. Because the goal is to per-
form better than human experts there is no reason to demand tabula rasa approaches
that create systems from first principles by coming up with evaluation features or
search space abstractions on their own. All is fair — we can make full use of human
knowledge and reasoning abilities and build a strong C? system based on machine
learning and planning on top of it.

The next milestone is the design of an RTS C? hierarchy and associated computa-
tional decision models suitable for machine learning and planning. Starting with the
training of low—level object behavior, support systems will then be developed to aid
human experts — in the role of coordinators — and freeing them from low—level
decisions. By also training the upper parts of the C? hierarchy the final goal is to
be able to replace the human coordinator in RTS games by a autonomous real—time
Al system of greater performance.

One property that makes games ideal test domains for Al research is the possibility
of direct confrontation in well—defined arenas which allows to gather significant



statistical performance data and to evaluate progress objectively. The initial project
stage is focused on low—level unit behavior whose effectiveness can be measured by
either local simulation or the success rate of human/machine hybrid teams in which
the human player assumes the role of a general who delegates micro actions to the
subordinate Al. Later, when the focus shifts to global tasks, software performance
will be measured by either letting autonomous systems play against each other or
against human/machine hybrid teams. This evaluation methodology relies on the
presence of open RTS simulation software and ergonomic graphical user interfaces
as well as their acceptance in the research and player communities — which is
likely given the eminent interest in both multi—agent research and RTS gaming.
Comepetition is a driving force for research.

This project can be broken down into a number of well-defined sub—tasks such as
implementing an RTS game system, training of low—level object behavior, finding
features and state space abstractions for heuristic search and planning purposes,
terrain analysis, and efficient pathfinding. These tasks are focused, mostly inde-
pendent, and their complexity range from undergraduate— to doctorate—level which
makes them suitable for programming project and thesis topics.

4 ORTS Software Components and Performance

In this section we discuss various implmentation issues and provide experimental
results that underline ORTS’s efficient simulation and data communication.

41 \ision

Each cycle, the determination of what information is visible to each client must
be made. This determination is based on which regions of the world are currently
visible to a client. This is the union of what can be seen by all objects currently
under the client’s or an ally’s control. The objects can see only what is within their
defined range of vision, taking into account obstructions caused by terrain features
such as plateaus.

The tile—based nature of the ORTS world naturally lends itself to describing an ob-
ject’s visual field in terms of the regions visible from the tiles it is occupying. Re-
gardless of the criteria used to determine visibility, the highly static nature of terrain
obstructions allow the results of those visibility computations to be reused for any
object looking out from that tile afterward. This ability to avoid re-computation for
minor changes in position greatly mitigates any coarseness in the visual descrip-
tion. Moreover, the level of coarseness may be adjusted by changing the number of
tiles used to describe the world.



An incremental update solution — where each tile maintains a count of the number
of objects that can see it — is able to optimize calculations for situations where
there is little movement. However if there are a large number of moving objects then
computing a client’s view becomes much more expensive. For every object that
moves to a different tile, a potentially large number of counters must be updated.
Storing the changes to the view which occur when an object moves from one tile to
another becomes quite complicated, especially when considering objects that can
move more than one tile per cycle. In these worst case scenarios, computing the
entire view in an optimized manner becomes faster than the bookkeeping needed
for incremental updates.

Unlike an incremental solution, where the change in position of each unit must be
taken into account when determining the visible tiles, ORTS generates the entire
view independent of the last cycle. As a result, it is unaffected by changes in unit
positions or by large portions of the view being quickly hidden and revealed as
would be the case when moving troops through highly obstructed terrain. Because
the number of interactions (collisions, enemy encounters, etc.) increases with the
number of moving objects, computations have been optimized to reduce the re-
sources needed in this worst case. The execution time of the vision computation
is linear in the number of objects (V), the number of tiles ("), and the number of
players (P), for a time complexity of O (N + P-T) (Fig. 2) per simulation cycle.
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The performance is initially greater for small map sizes due to a greater number of
objects being on the same tile. This reduces the number of tileviews used relative to
the number of objects. The space complexity is also O (N + P-T)) if one assumes
a fixed maximum sight range.

For the purposes of ORTS, the visibility status of a tile may be one of three types:

e unknown —no information is offered about the terrain or unit activity on the tile.

e known — partially visible, the complete terrain description may be seen.

e visible — the terrain may be seen, along with any objects or events which are on
or intersect the tile.

These descriptions are used to describe the visibility of tiles within the world as they
relate to a client’s view of the world — a “mapview” — as well as the visibility of
the world around a particular tile — a “tileview”.

To determine a client’s view the tileview for each object, which is actually com-
posed of two bitmaps for visible and known tiles, is computed. The tileviews are
then merged into two mapviews. Finally the difference between the current frame’s
view and that of the previous frame is determined, and the terrain of any newly
explored tiles are included in the information sent to the client (Fig. 3 & 4).

Determining whether an object is visible to a client or not is done by computing the
tiles that the object in question intersects and then accessing the mapview to check
whether those tiles are visible to the client.

The ability of some objects to detect hidden or otherwise cloaked objects requires
another visibility layer for determining which tiles are currently detected, but does
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Fig. 3. Computing a client’s view. The area visible from the tile under each object’s center
is generated, and the results are merged into a visibility map for the entire region.

11



FORALL t in Tiles {
t.vli =t.v2 = 0; /1 reset the maxi numground and air sight ranges

}

/1 set the visibility of each tile based on the objects currently on it
FORALL x in Objects {
if (xis flying) t[center of x].v2
el se t[center of x].vl

}

FORALL t in Tiles {
if (t.vl || t.v2) {
conpute t.bitmap // the ground view up to the nmaxi mum sight range
bitmap b = full _viewt.v2] | (t.bitmap & full _viewt.vl])
mapvi ew. mer ge(b)
}
}

max{t[center of x].v2, x.sight}
max{t[center of x].vl, x.sight}

Fig. 4. Outline of the view computation for a client.

not otherwise affect the vision computations.

In descriptions relating to tile vision, the origin will be used to refer to the center
of the tile from which visibility is being computed. In ORTS, a tile is defined to be
visible relative to another tile if a line may be drawn through the centers of the two,
without intersecting an occluding wall. A tile is considered known if a line may be
drawn from the origin to any point in the interior of the tile without intersecting
an occluding wall. Occluding walls are considered to exist at tile edges where the
height of the tile is greater than can be seen over from the viewing tile. Specifically,
objects may look down onto lower regions, but cannot see areas which are more
than a set amount higher than their current location.

Because intersections that occur at the corners of occluding tiles can still leave half
of a tile seen, the definition of visibility is modified to allow for drawing a sight
line from the origin to any point within an arbitrarily small circle at the center of
the observed tile.

To compute the states of the surrounding tiles, the visual field is partitioned into
ranges of angles between which lines of sight are either entirely obscured or visible.
Working outward from the viewing tile, encountering tiles in order of increasing

A\

Fig. 5. Determining occluded regions. The angles obscured by each plateau tile (black
square) are masked out, and every tile is checked to see how much of it is visible. Tiles
with unshadowed centers are visible, tiles with any portion visible are known.
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distance from the origin, the visibility of the tile is determined and the range of
angles it obscures merged with the current set of ranges (Fig. 5).

9 Encountering tiles in increasing order of distance
5| 8 from the origin guarantees that for any tile, all tiles
.
6

that could possibly obscure it have already been

4
O 3 checked and their occluded ranges taken into ac-
10[ 11| 13 count. This is accomplished by encountering tiles
12| 14 as strips of increasing distance from the origin, each
15 strip moving outward from the axis (Fig. 6).

Fig. 6. Order of tile traversal. .
Because occluding walls only occur at the bound-

aries between tiles, the number of possible angles where a transition between ob-
scured and visible ranges can occur is restricted to the set of angles from the ori-
gin through the corners of each tile within a maximum visibility radius. By pre—
computing all such angles, the visible ranges at any point may be expressed in
terms of a bit vector, with each bit representing the visibility status between one
transition angle and the next. In practice the bit vector is stored as an array of
word—sized elements, to maximize the number of concurrent operations.

The visible status of a tile is determined by checking whether the angle of a line
through the origin to its center lies within or on the boundary of a visible range.
Similarly, a tile is known if the range of angles the tile occupies intersects the
currently visible ranges. Having a tile obscure vision is accomplished by merging
its occluding range with the current occluded ranges (Fig. 7).

By converting all of the range data used for the visibility determination into bit
vectors, range operations (merges and intersections) to determine intersections with
the visible region and to mask out obscured regions are reduced to efficient boolean
operations (ANDs and ORs). Similarly, once the tileviews have been converted into
bitmaps they can be quickly merged into a larger bitmap for the entire world.

Fig. 7. Generating a tile view. Bit vectors of the range of slopes each tile takes up are used
to mask the visible region as they are encountered.
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bl ueprint marine
is generic_unit # include a set of common attributes and default val ues
cl ass kevl ar arnor # create a sub-object of type "kevlar" nanmed "arnor"
class rifle weapon # rifle already knows how to shoot, the "shoot" action
# is assigned an index in the marine’s list of actions

setf zcat ON_LAND # "set final" - lock the z-category (used by the server)
setf max_hp 100

set hp 100

set sight 6

setf radius 5

set max_speed 3

set speed 3

end

Fig. 8. Sample blueprint description.

4.2 Game Objects and Scripting

Objects in ORTS are abstract containers for integer variables, actions, and sub—
objects. From these abstract containers, a set of blueprints is defined for the cur-
rent game. These blueprints describe the names and initial values of attributes, the
available actions, and the structure of an object (Fig. 8). All objects in the game are
instances of one of the blueprints. The blueprints are read from a file at the start of
a game, and the descriptions are sent to each of the clients. An object is described
in terms of the actions and constant values of the blueprint along with the current
values of the variables.

The integer elements describe all of an object’s attributes, and can be declared as
constant or hidden. Constant attributes are used in determining how the object in-
teracts with the environment, but since their values never change there is no need to
include them in the object descriptions sent to the client. Hidden attributes describe
values which are visible to the owner of the object and allied players, but which are
not observable by enemies, such as when a weapon was last fired.

With the exception of certain variable names, the server does not infer meaning
from these elements. Rather, it is the actions attached to each object, all of which
may be scripted, that define the interactions within the world. This allows for a wide
range of games to be described and simulated in the ORTS environment without the
need to add special extensions. The action scripts refer to attributes, components,
and actions by name and so do not depend on any knowledge about the object’s
type. The scripts themselves are able to perform complex actions — as in Fig. 9 —
including:

e creating new objects — permanent and temporary objects can be created from a
blueprint and assigned an owner.

e (ueuing an action — either for immediate evaluation or for a later cycle.

e cancelling actions — an object’s actions can be individually cancelled if any are
pending in the action queue.

e iterating over objects in a region — allowing the scripting of area effects.
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bl ueprint missile

has core_attr # the server will look for these attributes
has novenent # basi c coordi nates and settings

setf shape Cl RCLE

setf radius 3

set speed 4

setf max_speed 20

setf zcat IN_AR

var hi dden det_range 5 # m ni num di stance to target

var hidden bl ast_range 10 # size of the explosion

var hi dden mi n_danage 200
var hi dden max_damage 350
var hi dden damage_type NORVAL

var hidden fuel 60 # nunber of frames to track before self-destruct
action track_obj(targ;;) { # one object as a paraneter

gob e; # unassi gned obj ect pointer

if (!targ.targetable) break; # the object might be intangible

if (distance(this,targ) <= this.det_range) {

create (e, explosion, -1); # construct an "expl osi on" object
# with owner -1 (unowned) and
# assign e to the new object

x = this.x;

y this.y;

.zcat = targ.zcat;

.radius = this.blast_range;

. danage_t ype = EXPLOSI VE;

OO DD

# activate the explosion right now, it will danage units in its
# bl ast radius and then destroy itself
e. boon(; this. m n_damage, this.max_damage, 0;) in O;
kill(this); # destroy the missile
} else {
this.fuel -=1;
nove(this, targ.x, targ.y); # set a new notion target

this. speed += 4;
if (this.speed > this.max_speed) this.speed = this.nmax_speed;

if (this.fuel < 0) {
create (e, explosion, -1);

e.x = this.x;
e.y = this.y;
e.zcat = targ. zcat;
e.radius = this.blast_range/2; # smaller visual effect
e.boon(;0, O, 0;) in O; # expl ode with no damage
Kill(this);
} else {
this.track_obj(targ;;) in 1; # requeue this action for next cycle
}
}
}
end

Fig. 9. Example of blueprint definition and action scripting for a homing missile.

The scripting language is defined recursively in terms of integer values (either val-
ues or object attributes), basic arithmetic and logical connectives, conditional ex-
pressions, and pre—defined functions. These functions are inserted as compiled ex-
pressions within the script and are used as helpers to provide access to low—level
data structures and commonly used internal functions. It is often the case that when
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the scripting language is unable or is too awkward to use for a specific task, a helper
function may be quickly created by defining a keyword and associating a function
within the script parser.

In addition to scripted actions defined within the blueprints, actions may be com-
piled functions within the server that are explicitly added to a list of available ac-
tions. These actions can then be referenced by name within the object description
and a link to the compiled function added to the internal blueprint.

4.3 Communication and Networking

In each cycle the server sends the state of the world to each client as they perceive
it and the client responds by sending a list of actions for the objects it has control
of. As the world is explored and portions of the map are revealed, the server sends
a list of the newly visible tiles along with a description of their topography (height,
ground type, whether or not the tile slopes in a particular direction). Objects are
entirely described by the index of the blueprint used to create the object, and a
vector of their current attribute values. Subsequent viewings of the same object (if
the object has not been lost from sight) are given in terms of the attribute changes
from the last frame.

With the increasing speed of network communication, such data rates are within the
limits of current high—speed Internet connections. By applying a moderate amount
of compression to the client’s view prior to sending it, the necessary throughput is
greatly reduced to acceptable levels for even large multi—player games (Fig. 10).

The experimental results reported in [4] suggest that the main communication bot-
tleneck when using server—side simulation and high—speed connections such as

uncompressed compressed
60 T T
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download ------- download -----+4
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£ £ °
g 30 g,
= =
1
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400 800 1200 1600 2000 400 800 1200 1600 2000
number of objects number of objects

Fig. 10. Server-side data rates — with and without compression — averaged over 1000
frames with client generated actions. Each object has on average 26 attributes, and requires
approximately 1 byte per attribute to encode the change from the previous cycle. The send-
ing of tile information is included in these measurements, although their contribution to the
average approaches zero since each tile is only sent once.
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cable—modems or DSL is lag rather than data throughput. Lag is induced by data
transfer over networks and by associated computational overhead such as message
compression/inflation and updating data structures on both communication ends.
For the sake of simplicity the first ORTS implementation totally ignored network
lag and indeed used blocking TCP 1/O on both the server and client side. As we are
now moving towards a fully functional RTS game environment latency issues now
need to be addressed. The most pressing question is what should happen when dur-
ing a game one or more players experience unusually high network lag. In the cur-
rent implementation the server gathers statistics about the clients’ response times.
Whenever a client exceeds a maximum lag time accumulated over a certain period
of time it gets disconnected. This strategy works quite well when playing on LANs
but is unsuitable for wide area networks on which lag varies a lot.

We are currently working on an alternative scheme which tries to avoid the decision
on whether or when to kick out players based on network lag altogether. The idea
is that rather than disconnecting clients when they do not answer in time they just
forfeit the opportunity to issue actions to their units in that particular simulation
frame. Two problems remain: what should happen when the server blocks while
sending out the current view to a client or at one time the server receives multiple
action messages? Both problems can be solved by using buffered 1/O: in the first
case messages accumulate in the server’s send buffer. In order to quickly recover
from heavy network lag, several consecutive differential view messages in the send
buffer can be replaced by single messages that encode the current view without
referring to earlier messages. For resolving the second problem the server needs
to be able to remove multiple messages from the receive buffer in a single simu-
lation frame because otherwise clients that experienced lag can never catch up. A
simple strategy is to just consider the youngest action message in the receive buffer
and to dispose of the other messages. The outlined asynchronous communication
scheme has another big advantage: combined with proactive action messages sent
by lagging clients it solves the lag issue in RTS games altogether — provided that
a good response to the next world view(s) is highly predictable. In this regard the
start/stop nature of actions in ORTS is helpful because even if action messages are
delayed, units will — for instance — continue moving or attacking targets once
those actions have been initiated.

5 Related Work

Research on computer soccer pursues goals similar to those outlined in this paper
and has become quite popular [19]. This domain can be regarded as a simplified
RTS game with only a few objects, no economy, unremarkable terrain features,
and more or less complete information. Another big difference is that agents in
computer soccer are required to compute their actions locally. While this decision
makes perfect sense when studying collaboration in autonomous multi—agent set-
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tings, there is no way of strictly enforcing it in games played on wide—area net-
works. In RTS games the player’s role is a manager who by definition has a global
view and needs to think globally. Given its limited view, no single object in RTS
games can even approximate global plans because the playing field is big and pos-
sibly many local battles in different regions are fought simultaneously. Thus, the
Al focus in RTS games has to be on planning on the global scale and the Al sys-
tem does not need to be restricted to computation local to the units. It is therefore
possible to connect any client software running on remote machines to the server
without worrying about cheating.

ORTS is not the first and only free software RTS game project. Most of these
projects, however, are not well maintained and still in the design phase. The no-
table exception is Stratagus (www.nongnu.org/stratagus) — formerly known as
FreeCraft. Stratagus uses client—side simulation and is therefore prone to client
hacks and not suited for real-time internet Al competitions. Nevertheless, it has
recently been used as test—vehicle for MDP related planning research [10].

Many articles on robot motion, planning, temporal and spatial reasoning, and learn-
ing are relevant to constructing Al systems for RTS games. The SOAR architecture
— for instance — and its application to first—person shooter games [14,15] as well
as M. Atkin’s work on the GRASP system that is applied to a capture—the—flag war
game [1,2] are highly significant. Both projects have created high—performance
game programs and represent the state—of—the—art in planning research applied to
games.

The other large body of literature relevant to this work is on military analyses and
applications. Research in this area spans from mathematical combat models [12]
over computer generated forces — which are used in simulation and training —
to decision—support systems that aid commanders and troops on the battle—field
or even control entire weapon systems autonomously. This project brings both re-
search communities together.

6 Conclusion

In this paper we have motivated Al research in the domain of RTS games. We also
described the current state of the ORTS project whose goal it is to implement a
programming infrastructure for RTS game Al research and to build Al systems
that eventually outperform human players. The rich set of research problems that
have to be tackled in order to reach human performance in these games span from
pathfinding over temporal reasoning to adversarial real-time planning. Most of
these problems have applications outside the game domain. Examples include au-
tonomous robot navigation in hostile environments and simulators for training mil-
itary personnel. RTS games are also well suited for team research because work on
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various modules can mostly proceed independently. We encourage Al researchers
to consider RTS games as test—domain and invite programmers to join our efforts
to make our free software RTS game system attractive to both human players and
researchers. The resulting competition then likely drives real-time Al performance
to new heights.
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