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Plan

« A Brief Overview of Everything we discussed so far.
o Chapter 11: Off-policy Methods with Approximation.

« Chapter 12: Eligibility Traces.

| won’t talk about everything from these chapters.

Marlos C. Machado
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Reminder

e Midterm

o The midterm is next Friday. Nov 10th, in this very same room, from 15:30 to 16:50 (80 minutes)

o The exam will be closed book and written in real-time. No cheat sheet.

« We will have “regular” classes next week, from 14:00 to 15:00.

o Il give you a 30-minute break before the midterm. Everyone will need to leave the room.

o I’'m still marking the project proposals. You should have them by next week.

Marlos C. Machado
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Please, interrupt me at any time!

Marlos C. Machado https://pngtree.com/freepng/question-expression-cartoon-illustration_4545209.ht
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What have we discussed so far?

I Tabular Solution Methods
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What have we discussed so far?

I Tabular Solution Methods
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What have we discussed so far?
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I Tabular Solution Methods
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What have we discussed so far?

I Tabular Solution Methods
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What have we discussed so far?

I Tabular Solution Methods
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What have we discussed so far?

I Tabular Solution Methods

Marlos C. Machado
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What have we discussed so far?
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What have we discussed so far?
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Chapter 11

*Off-policy Methods with
Approximation

Marlos C. Machado
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Off-Policy Methods with Approximation — Why"?

Off-policy learning is extremely important, but we need to be able to approximate
our estimates when dealing with large (or infinite) state spaces \ _(*)_/

Marlos C. Machado
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Off-Policy Methods with Approximation

« “The extension to function approximation turns out to be significantly and harder
for off-policy learning than it is for on-policy learning.”

o “The tabular off-policy methods developed in Chapter 6 and 7 readily extend to semi-gradient
algorithms, but these algorithms do not converge as robustly as they do under on-policy training.”

Marlos C. Machado



MPUT -Gl 12
20 CMPUT 655 — Class 9/

Off-Policy Methods with Approximation

« The challenge of off-policy learning can be divided into two parts:
o The target update (not to be confused with the target policy).

o The distribution of the updates.

Marlos C. Machado
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Off-Policy Methods with Approximation

« The challenge of off-policy learning can be divided into two parts:
o The target update (not to be confused with the target policy).
» Importance sampling.
o The distribution of the updates.
» Importance sampling.

= [rue gradient methods that do not rely on any special distribution for stability.

Marlos C. Machado
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Semi-gradient Methods

« Addressing the target of the update (but not the distribution of the updates).

o “These methods may diverge in some cases, and in that sense they are not sound, but still they
are often successfully used.”

Marlos C. Machado
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Semi-gradient Methods

« Addressing the target of the update (but not the distribution of the updates).

o “These methods may diverge in some cases, and in that sense they are not sound, but still they
are often successfully used.”

« Off-policy TD:

i pigy = T4
t t:t b(At|St)

Wil = Wi + ap6:VO(S,wy)

0t = Rit1 + v0(St41,We) — 0(Se,wy)

Marlos C. Machado



CMPUT 655 — Class 9/12

27

Marlos C. Machado https://pngtree.com/freepng/question-expression-cartoon-illustration_4545209.ht



o8 CMPUT 655 — Class 9/12

Expected Sarsa

W1 = Wi + b V4(Sy, Ay, wy), with
8 = Rey1+7 ) m(alSi41)d(St41, @, we) — 4(Se, Ay, we)

“Note that this algorithm does not use importance sampling. In the tabular case it is clear that this is
appropriate because the only sample action is A, and in learning its values we do not have to consider
any other actions. With function approximation it is less clear because we might want to weight different
State-action pairs differently once they all contributed to the same overall approximation.”

Marlos C. Machado
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Expected Sarsa

W1 = Wi + b V4(Sy, Ay, wy), with

0 = Rer1+7 ) m(alSt41)d(Ser1, a, We) — 4(St, Ar, W)

“Note that this algorithm does not use importance sampling. In the tabular case it is clear that this is
appropriate because the only sample action is A, and in learning its values we do not have to consider
any other actions. With function approximation it is less clear because we might want to weight different

State-action pairs differently once they all contributed to the same overall approximation.”
e n-step Expected Sarsa
. _1 A
Giten = Rey1+ -+ 9" "Rign +7Y"4(St+n, At+n, Wetn—1)

Witn = Witn—1+0pt+1** Pron [Geit+n — G(St, At, Wetn—1)] V3(St, At, Wiyn—1)

Marlos C. Machado
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The Mismatch between Distribution of Updates

« In off-policy learning, the distribution of updates does not match the on-policy

distribution. . -
Wip1 = Wi + Otpt(stV’U(St,Wt)
Example X = [O 0 2]T First time: 5t = Rt+1 + 76(8t+1awt) - ?’)(Stawt)
@_,@ a=01 w,=[0, ..., 0, 10]" Second time:
] y=0.9 6,=0+0.9 xx"W, - x'W, w,_. =10, .. 0108
x=1[0,...,01 _ ) _ t+1 ) » Yy
| ] p=1.0 =0+09x20-10=8 5, =0+0.9xx"W, -x'Ww,

T+

=[0,...,0,10.8] W, =W, +0.1x864xXx

=10, ..., 0,11.7]

Wiyl = Wt -+ apt5tV'D(St,wt) =w;+a- 1- (2’)’ — ].)’U)t » 1 = (1 + O{(2’)’ — ]-))'wt

Marlos C. Machado
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The Mismatch between Distribution of Updates

o Maybe we need overparameterization, or linearly independent features.

Marlos C. Machado
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The Mismatch between Distribution of Updates

Nope. Baird’s counter-example:

~
\

m(solid|-) =1

b(dashed|-) = 6/7
\ b(solid|-) =1/7
\
1 i v =0.99

Marlos C. Machado

Maylbe we need overparameterization, or linearly independent features.

Semi-gradient Off-policy TD

Steps 1000

There are also counterexamples similar to
Baird’s showing divergence for Q-learning
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The Deadly Triad

1.  Function approximation
2. Bootstrapping Should we give up on something?

3. Off-policy training

Notice, not control, nor GPI. Prediction!

Marlos C. Machado
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There’s much more to be said, but not In this class

V—E(W) = |lvw — kui

.\».*
BE(w) = |5} — TNn

The 3D space of /

all value functions =
3
over 3 states

PBE(w) = |16,

Value error (VE)

;min TDE

WD ITv,; (min VE)
/PBE =0 /
in BE

m

w, The subspace of all value functions representable as Uy,

e

Marlos C. Machado
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Chapter 12

Eligibility Traces
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Fligibility Traces — Why?

“Eligibility traces are one of the basic mechanisms of reinforcement learning. (...)
Almost any temporal-difference (TD) method, such as Q-learning or Sarsa, can be
combined with eligibility traces to obtain a more general method that may learn more
efficiently.”

Marlos C. Machado
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Eligibility traces

o They unify and generalize TD and Monte Carlo methods.

o A =0 give us one-step TD methods.

o A =1 gives us Monte Carlo methods, but it is a way of implementing them online and on
continuing problems without episodes.

Marlos C. Machado
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Eligibility traces

o They unify and generalize TD and Monte Carlo methods.

o A =0 give us one-step TD methods.

o A =1 gives us Monte Carlo methods, but it is a way of implementing them online and on
continuing problems without episodes.

o What else allows us to unify TD and Monte Carlo methods?

Marlos C. Machado
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Eligibility traces

o They unify and generalize TD and Monte Carlo methods.

o A =0 give us one-step TD methods.

o A =1 gives us Monte Carlo methods, but it is a way of implementing them online and on
continuing problems without episodes.

o What else allows us to unify TD and Monte Carlo methods?

o n-step returns!

Marlos C. Machado
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Eligibility traces

» Eligibility trace is a short-term memory vector, z, € RY, that parallels the
long-term weight vector w, € R,

o When a component of w, participates in producing an estimated value, then the corresponding
component of z, is bumped up and then begins to fade away.

o The trace decay parameter A € [0, 1] determines the rate at which the trace falls.

« The computational advantage of eligibility traces over n-step methods is that only
a single trace vector is required rather than a store of the last n feature vectors.

o The results with eligibility traces are much stronger with linear function approx.

Marlos C. Machado
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The A-return

o Chapter 7, the n-step return is the sum of the first n rewards plus the estimated
value of the state reached in n steps:

Giton = Rep1 +YRepo+ - +¥" 'Ry + 7" 0(StymsWign_1), 0<t<T—n

e \What if we averaged n-step returns for different ns”? For example:

1 1
5Gtit2+5Ght44

wir O—eo—0O+—e—

Any set of n-step returns can be avg. in this way, even an infinite set, as
as the weights on the component returns are positive and sum to 1.

pir O—eo—+—eo+—D—eo—D—0e—

Marlos C. Machado
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The A-return

e An update that avg. simpler component updates is called a compound update.

o  Obviously, a compound update can only be done when the longest of its component updates is
complete.

e “The TD(\) algorithm can be understood as one particular way of averaging
n-step updates. This average contains all the n-step updates, each weighted
proportionally to A", and is normalized by a factor of 1-A to ensure that the
weights sum to 1. The resulting update is toward a return, called the A-return,
defined in its state-based form by”

(e @)

G} =(1=X)) _ A"'Grisn.

n=1

Marlos C. Machado
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The A-return

e An update that avg. sin

o  Obviously, a compound
complete.

e “The TD(A\) algorithm ca
n-step updates. This ay
proportionally to A", ar
weights sumto 1. The t
defined in its state-base

Gg\i(l—)\)f

Marlos C. Machado
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0. 9]

G =(1=X)) X" 'Grin.
The A-return n=1

e The weight fades by A with each additional step. After a terminal state has been
reached, all subsequent n-step returns are equal to the conventional return, G..

T—t—1
G} = (1-2) ) XG4 + NG,
When A = 1: The main sum goes to = When A = 0: The A-return reduces
zero, and the remaining term P— to G, the one-step return.
reduces to the conventional return. vl the 3-step return total area = 1
\ is (1 — A2
% decay by A

weight given to
actual, final return
iS )\'1'7t71

Weighting 1-» | %

Marlos C. Machado Time ——
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Off-line A-return Algorithm

Wil = W + G[Gi\ - @(St,wt)] V'D(St,wt), t= O, o w ,T —1

n-step TD methods

Off-line A-return algorithm (from Chiapter 7)

0551

05+
RMS error | |
at the end

of the episode ¢4}
over the first
10 episodes 035

03}

025 1 1 1 1 1 i 1 1 1 L 1
0 0.2 04 0.6 0.8 1 0 02 04 0.6 0.8 1

Marlos C. Machado
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D)

o “TD(M) is one of the oldest and most widely used algorithms in RL.”

o TD(A) is better than the off-line A-return algorithm because:

a. It updates the weight vector on every step of an episode rather than only at the end.
b. Its computations are equally distributed in time rather than all at the end of the episode.

c. It can be applied to continuing problems rather than just episodic problems.

Z_1 = Oa 5t = Rt+1 + ’Yﬁ(st+1,wt) = @(St,wt)
Zy = ’Y)\Zt—l + V’&(St,Wt), 0 S t S T Wil = Wi + Oé()tZt

Marlos C. Machado
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Semi-gradient TD()\) for estimating 0 ~ v,

Input: the policy 7 to be evaluated

Input: a differentiable function ¥ : 8 x RY — R such that 9(terminal,-) = 0
Algorithm parameters: step size a > 0, trace decay rate A € [0, 1]

Initialize value-function weights w arbitrarily (e.g., w = 0)

Loop for each episode:
Initialize S
z+—0 (a d-dimensional vector)
Loop for each step of episode:
| Choose A ~ 7(:|S)
| Take action A, observe R, S’
| 2z <+ yAz+ Vi(S,w)
| 6+ R+~0(S",w)—9(S,w)
| W wHadz
| S« ¢

until S’ is terminal

Marlos C. Machado
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The Backward View

Marlos C. Machado
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Sarsa(\)

« The action-value form of the off-line A-return algorithm simply uses g instead of v:
Wir1 = Wy + a[Gf‘ — q(St, Ag, Wt)] Vq(St, Ay, wy), t=0,...,T—1

o Sarsa(\) approximates this forward view:
Wil = Wy + 04 Zy,
0t = Rit1 + v4(Stt1, At1, We) — G(St, Ag, Wi)

Z_1 = 0,
z; = YAZi—1 + V§(S;, Ap, W), 0<t<T.

Marlos C. Machado



58

Sarsa(\)
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Sarsa()\) with binary features and linear function approximation

for estimating w'x ~ ¢, or ¢,

Input: a function F(s, a) returning the set of (indices of) active features for s,a
Input: a policy 7

Algorithm parameters: step size a > 0, trace decay rate A € [0,1], small € > 0
Initialize: w = (wy,...,wq)" € R? (e.g., w=0),z = (21,...,24) € R?

Loop for each episode:
Initialize S
Choose A ~ 7(+|S) or e-greedy according to G(S,-, w)
z+ 0
Loop for each step of episode:
Take action A, observe R, S’

0+ R

Loop for ¢ in F(S, A):
0+ 06— w;
zi 2z +1 (accumulating traces)
[or 7 = L (replacing traces)

If S is terminal then:
W W+ adz
Go to next episode
Choose A’ ~ m(-|S’) or e-greedy according to §(5’,-, w)
Loop for i in F(S", A"): § < 6 + yw;
W< W+ adz
Z < YAZ
S+ S;A+— A
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Traces in Gridworld

Action values increased Action values increased Action values increased
Path taken by one-step Sarsa by 10-step Sarsa by Sarsa()) with A=0.9
>y i M i
v ‘ i
a e -1y o ol
: G G G| |y EE G| [y
T 4 [y A ||
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Watkin’s Q(A)

« It decays the eligibility traces in the usual way as long as a greedy action was
taken, but it then cuts the traces to zero after the first non-greedy action is taken.

Watkins’s Q())
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Implementation Issues

In practice, then, implementations on conventional computers may keep track of and
update only the few traces that are significantly greater than zero. Using this trick, the
computational expense of using traces in tabular methods is typically just a few times
that of a one-step method. The exact multiple of course depends on A and v and on the
expense of the other computations. Note that the tabular case is in some sense the worst
case for the computational complexity of eligibility traces. When function approximation
is used, the computational advantages of not using traces generally decrease. For example,
if ANNs and backpropagation are used, then eligibility traces generally cause only a
doubling of the required memory and computation per step. Truncated A-return methods
(Section 12.3) can be computationally efficient on conventional computers though they
always require some additional memory.
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