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Plan

« Finish Chapter 8: Planning and Learning with Tabular Methods.
o Chapter 9: On-policy Prediction with Approximation.
o Chapter 10: On-policy Control with Approximation.

o | will not talk about the Average Reward formulation today.

Marlos C. Machado
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Reminder |

You should be enrolled in the private session we created in Coursera for CMPUT 655.
| cannot use marks from the public repository for your course marks.

You need to check, every time, if you are in the private session and if you are submitting
quizzes and assignments to the private section.

The deadlines in the public session do not align with the deadlines in Coursera.

If you have any questions or concerns, talk with the TAs or email us
cmputo6b5@ualberta.ca.

Marlos C. Machado
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Reminder |l

o On the project

o The project proposal is due Wednesday % .

o The course project is very different from what we generally ask undergraduate students to do. It is
to be done over an extended period of time.

o Recommended readings:

= The Elements of Style by W. Strunk Jr.

»  Empirical Design in Reinforcement Learning by A. Patterson, S. Neumann, M. White, and A. White.

o Thereis no scheduled Coursera activity for you to do next week

Marlos C. Machado



CMPUT 655 - Class 7/12

Reminder |l

« | want your feedback!

o Mid-term Course and Instruction Feedback online evaluation opened today.
o It will close today.

o 21 of 54 students responded so far &=

Marlos C. Machado
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Please, interrupt me at any time!

Marlos C. Machado https://pngtree.com/freepng/question-expression-cartoon-illustration_4545209.ht



Chapter 8

Planning and Learning with
Tabular Methods
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Last Class: When the Model Is Wrong

« A model can be wrong for all sorts of reasons (e.g., stochastic environment,
function approximation, non-stationarity in the environment).

o An incorrect model often leads to suboptimal policies.

o One needs to constantly explore to refine the learned model.

o Exploration: take actions that improve the model.
o Exploitation: behaving in the optimal way given the current model.

o Dyna-Q+: Provides “bonus rewards” for long-untried actions.
Specifically, consider the reward r + ky/r, where t is the number of time steps
since that transition was tried for the last time.

Marlos C. Machado
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Last Class: Dyna-Q+ Sometimes Works \_(*J)_/

Marlos C. Machado
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Prioritized Sweeping

« How should we select transitions to simulate for the planning update?

« Working backward from goal states seem like a good idea, but it is dependent
on the idea of a “goal state”.
o More generally, we want to work back from any state whose value has changed.

e Prioritized sweeping is the idea of prioritizing updates according to their urgency.
o  When the effect of a change is greater than a threshold, the state in which that change happened
is added to a priority queue.

Marlos C. Machado
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Prioritized Sweeping

Prioritized sweeping for a deterministic environment

Initialize Q(s,a), Model(s,a), for all s,a, and PQueue to empty
Loop forever:
(a) S < current (nonterminal) state
(b) A « policy(S, Q)
(c) Take action A; observe resultant reward, R, and state, S’
(d) Model(S, A) + R, S’
(e) P+ |R+ ymax, Q(S5,a) — Q(S, A)|.
(f) if P > 6, then insert S, A into PQueue with priority P
(g) Loop repeat n times, while PQueue is not empty:
S, A « first(PQueue)
R,S’' < Model(S, A)
Q(S,A) + Q(S,A) + a[R + ymax, Q(S’,a) — Q(S, A)]
Loop for all S, A predicted to lead to S:
R < predicted reward for S, A, S
P <+ |R + ymax, Q(S, a) — Q(S, A)|.
if P > 6 then insert S, A into PQueue with priority P

Marlos C. Machado
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Expected vs. Sample Updates

o There are three dimensions in the updates one can do:
Should we use state values or action values”?
Should we estimate the value for the optimal policy or for an arbitrary given policy?
Should we use expected or sample updates?

Marlos C. Machado
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Expected vs. Sample Updates

o If possible, are expected updates always preferable?

o They yield a better estimate because they are uncorrupted by sampling error, but they also require
more computation, and computation is often the limiting resource in planning.

Q(s,a) « Zﬁ(S’, r|s,a) ['f‘ +ymax Qs a')] Q(s,a) < Q(s,a) + o [R - WH}Z?}XQ(S/, a’) — Q(s, a)]
o Do we have enough time to do an expected update?

o Isit better to have a few sample updates at many state—action pairs or to have
expected updates at a few pairs?

Marlos C. Machado
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Often, the error falls dramatically with a fraction of b updates

1 =
sample expected
updates\ updates
RMS error b =2 (branching factor)
in value
estimate
0+

0 156 2b
Number of max Q(s’, a’) computations
a

Marlos C. Machado



CMPUT 655 - Class 7/12

17

Marlos C. Machado https://pngtree.com/freepng/question-expression-cartoon-illustration_4545209.ht



18 CMPUT 655 - Class 7/12
Trajectory Sampling
e The classical approach, from dynamic programming, is to perform sweeps
through the entire state space, updating each state once per sweep.

e However, in many tasks, most states are irrelevant under good policies.

e What if we sampled states from the state or state—action space according to
some distribution?

e rajectory sampling is the idea of sampling states from the on-policy distribution.

Marlos C. Machado
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Inconclusive Results
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Real-time Dynamic Programming

o Real-time dynamic programming, or RTDP, is an on-policy trajectory-sampling
version of the value-iteration algorithm of dynamic programming (DP).

o RTDP updates the values of states visited in actual or simulated trajectories by
means of expected tabular value-iteration updates.

o RTDP is an example of an asynchronous DP e TV Sttes:
algorithm. In RTDP, the update order is dictated Start States M GlE el Flicy
by the order states are visited in real or

simulated trajectories.

« It has some interesting convergence results in
. . Relevant States
stochastic optimal path problems. reachable from some start state

under some optimal policy

Marlos C. Machado
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Decision-time Planning

o We've been discussing background planning: using planning to gradually improve

a policy or value function based on simulated experience obtained from a model.
o Well before an action is selected for any current state S,, planning has played a part in improving
the table entries needed to select actions for many states, including S..

« Decision-time planning uses planning to begin and complete it after encountering
each new state S,, as a computation whose output is the selection of an action
A, on the next step planning begins anew with S, , to produce A, ., and so on.

« We can still see decision-time planning as proceeding from simulated experience

to updates and values, and ultimately to a policy.
o Now the values and policy are specific to the current state and the action choices available there.

o The response time really matters in this choice.

Marlos C. Machado
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Heuristic Search

e The classical state-space planning methods in artificial intelligence are
decision-time planning method collectively known as heuristic search.

e [f one has a perfect model and an imperfect action-value function, then in fact
deeper search will usually yield better policies.

e Much of its effectiveness is due to its search tree being focused on the states
and actions that might immediately follow the current state.

Marlos C. Machado



MPUT — Class 7/12
o4 CMPUT 655 — Class 7/

Heuristic Search

Heuristic search can be implemented as a sequence of one-step updates (shown
here outlined in blue) backing up values from the leaf nodes toward the root. The
ordering shown below is for a selective depth-first search.
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Rollout Algorithms

Rollout algorithms are decision-time planning algorithms based on MC control

applied to simulated trajectories that all begin at the current environment state.
o They estimate action values for a given policy by averaging the returns of many simulated

trajectories that start with each possible action and then follow the given policy.
Unlike the Monte Carlo control algorithms previously described, the goal of a
rollout algorithm is not to estimate a complete optimal action-value function, q,,

or a complete action-value function, g_, for a given policy .
o They produce Monte Carlo estimates of action values only for each current state and for a given
policy usually called the rollout policy.

They are not learning algorithnms per se, but they do leverage the RL toolkit.

Marlos C. Machado
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Monte Carlo Tree Search (MCTS)

« MCTS is a great example of a rollout, decision-time planning algorithm.

o But enhanced by the addition of a means for accumulating value estimates obtained from the MC
simulations in order to successively direct simulations toward more highly-rewarding trajectories.

« The core idea of MCTS is to successively focus multiple simulations starting at the
current state by extending the initial portions of trajectories that have received high

evaluations from earlier simulations.

o Monte Carlo value estimates are maintained only for the subset of state—action pairs that are most
likely to be reached in a few steps, which form a tree rooted at the current state.

Marlos C. Machado
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Monte Carlo Tree Search (MCTS)
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Upper Confidence Bound 1 Applied to Trees (UCT)

Bandit based Monte-Carlo Planning

Levente Kocsis and Csaba Szepesvari

Computer and Automation Research Institute of the
Hungarian Academy of Sciences, Kende u. 13-17, 1111 Budapest, Hungary
kocsis@sztaki.hu

Marlos C. Machado
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Monte Carlo Tree Search (MCTS)

Choose in each node of the game tree the move as the argmax of

Ww; In Nz
— T K
T T

w.: number of wins for the node considered after the i-th move.

n.: number of times the child node has been visited after the i-th move.
N.: number of times the parent node has been visited after the i-th move.
K: scalar parameter for trading-off exploration and exploitation.

Marlos C. Machado [Kocsis and Szepesvari, 2006]
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MCTS incorporates several RL principles

« MCTS is a decision-time planning algorithm based on MC control applied to simulations

that start from the root state (it is a kind of rollout algorithm).
o It benefits from online, incremental, sample-based value estimation and policy improvement.

« [t saves action-value estimates attached to the tree edges and updates them using

reinforcement learning’s sample updates.
o It focuses the Monte Carlo trials on trajectories whose initial segments are common to high-return
trajectories previously simulated.

« By incrementally expanding the tree, MCTS effectively grows a lookup table to store a
partial action-value function, with memory allocated to the estimated values of

state—action pairs visited in the initial segments of high-yielding sample trajectories
o  MCTS avoids the problem of globally approximating an action-value function while it retains the benefit of
using past experience to guide exploration.

Marlos C. Machado
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Wrapping Up

« \We have finished Part | of the textbook, Tabular Solution Methods.

« Reinforcement learning can be seen as being more than a collection of individual

methods, but a coherent set of ideas cutting across methods.

o They all seek to estimate value functions.
o They all operate by backing up values along actual or possible state trajectories.
o They all follow the general strategy of generalized policy iteration (GPI).

Marlos C. Machado
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Wrapping Up

Marlos C. Machado

CMPUT 655 — Class 7/12
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Part I1I:
Approximate Solution Methods

Marlos C. Machado



CMPUT 655 - Class 7/12

What We Have Done So Far: Tabular RL

« Absolutely everything we did was in the tabular case.

38

o There’s a huge memory cost in having to fill a table with a ridiculous total number of states.
o We might never see the same state twice.

o  We cannot expect to find an optimal policy (or value function) even in the limit of infinite time and data.

o« \What about...

Marlos C. Machado
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From Now On: Generalization

» Instead, we should find a good approximate solution using limited computational
resources.

o We need to generalize to from previous encounters with different states that are in
some sense similar to the current one.

« We obtain generalization with function approximation (often from the supervised
learning literature).

Marlos C. Machado
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Finally! The Three Fundamental Problems of RL

Exploration
Tabular Contextual
MDP Algs. Bar|o’its Bandits
???
Credit Generalization
! izati
Assignment Policy
Bellman Optimization Supervised
Equations Learning

Marlos C. Machado [Inspired by John Langford’s slides]



CMPUT 655 - Class 7/12

42

Marlos C. Machado https://pngtree.com/freepng/question-expression-cartoon-illustration_4545209.ht



43

CMPUT 655 - Class 7/12

Function Approximation — An Example

Marlos C. Machado

State space: <x, y> coordinates (continuous, no grid)
and <x, y> velocity (continuous).

Start state: Somewhere in the bottom left corner, where
a suitable <x, y> coordinate is selected randomly.

Action space: Adding or subtracting a small force to x
velocity or y velocity, or leaving them unchanged.

Dynamics: Traditional physics, collisions with obstacles
are fully elastic and cause the agent to bounce.

Reward function: +1 when you hit the region in G.
y: 0.9.
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Function Approximation

o Inthe tabular case, v_ € R,

« Instead, we will approximate v_ using a function parameterized by some weights
w € R where d < [4]. We will write ¥(s,w) = v (s).

Marlos C. Machado
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Function Approximation

o Inthe tabular case, v_ € R,

« Instead, we will approximate v_ using a function parameterized by some weights
w € R where d < |4]. We will write ¥(s,w) = v (s).

« Anexample: o Generalization: When something
X rwl\ changes, many states can be affected.
s= |’ w= |- V(is,w)=s'w
X W,
Y W

< \
Feature vector

Marlos C. Machado
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Function Approximation

o Inthe tabular case, v_ € R,

« Instead, we will approximate v_ using a function parameterized by some weights
w € R where d < |4]. We will write ¥(s,w) = v (s).

e Anexample:

T e X

‘= £ = =

Generalization: When something
changes, many states can be affected.

V(is,w)=s'w

« Extending RL to function approximation also makes it applicable to partially
observable problems, in which the full state is not available to the agent.
I'll often use o to denote the agent’s observation (instead of s).

Marlos C. Machado
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Chapter 9

On-policy Prediction with
Approximation

Marlos C. Machado



MPUT — Class 7/12
49 CMPUT 655 — Class 7/

Prediction

Marlos C. Machado
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Value-function Approximation

o We can interpret each update we have seen so far as an example of the desired
input-output behavior of the value function.

o Lets~ udenote an individual update, where s is the state updated and u the
update target that s’s estimated value is shifted to.

o §,~ G, Monte Carlo update

© St ~ Rt+1+ v Vn(St+1) TD(0)

o 5, G,,, n-step TD

o s~E R, +YyV(S,, | S, =9] Dynamic Programming

e Supervised learning methods learn to mimic input-output examples, and when
the output are numbers, the process is called function approximation.

Marlos C. Machado
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A note from the textbook

Marlos C. Machado

Viewing each update as a conventional training example in this way enables us to use
any of a wide range of existing function approximation methods for value prediction. In
principle, we can use any method for supervised learning from examples, including artificial
neural networks, decision trees, and various kinds of multivariate regression. However,
not all function approximation methods are equally well suited for use in reinforcement
learning. The most sophisticated artificial neural network and statistical methods all
assume a static training set over which multiple passes are made. In reinforcement
learning, however, it is important that learning be able to occur online, while the agent
interacts with its environment or with a model of its environment. To do this requires
methods that are able to learn efficiently from incrementally acquired data. In addition,
reinforcement learning generally requires function approximation methods able to handle
nonstationary target functions (target functions that change over time). For example,
in control methods based on GPI (generalized policy iteration) we often seek to learn
q¢» while m changes. Even if the policy remains the same, the target values of training
examples are nonstationary if they are generated by bootstrapping methods (DP and TD
learning). Methods that cannot easily handle such nonstationarity are less suitable for
reinforcement learning.

iAlleas JoN
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The Prediction Objective (A Notion of Accuracy)

« Inthe tabular case we can have equality, but with FA, not anymore.
o Making one state’s estimate more accurate invariably means making others’ less accurate.

How much do we care about

- Mean Squared Error: the error in each state s.
—— 2
VE(w) = 3 u(s) [on(s) — 9(s,w)|

SES

Usually, the fraction of time spent in s.
On-policy distribution.

Marlos C. Machado
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The Prediction Objective (A Notion of Accuracy)

« Inthe tabular case we can have equality, but with FA, not anymore.
o Making one state’s estimate more accurate invariably means making others’ less accurate.

How much do we care about

- Mean Squared Error: the error in each state s.
= 2
VE(w) = 3~ u(s) [vx(s) — 8(s,w)|

SES

Usually, the fraction of time spent in s.
On-policy distribution.

o When doing nonlinear function approximation, we lose pretty much every
guarantee we had (often, even convergence guarantees).

Marlos C. Machado
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Stochastic-gradient and Semi-gradient Methods

« The approximate value function, V(s,w), needs to be a differentiable function of w
for all states.

« For this class, consider that, on each step, we observe a new example S, = v _(S).
Even with the exact target, we need to properly allocate resources.

« Stochastic gradient-descent (SGD) is a great strategy:

3 1 . £
Wip1 = Wi — iaV |:’U71—(St) == ’U(St,Wt)]

= w; +alva(S) — f)(St,wt)] V(S W)

Vi(w) = (af(W) of(w)  Of(w) ) .

8w1 ’ 8w2 T 8wd

Few (one)

state at a time We need to consider the impact

of our update. Thus, small
Marlos C. Machado updates are often preferred.
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A More Realistic Update

« LetU, denote the t-th training example, S, = v_(S)), of some (possibly random),
approximation to the true value.

Wil = Wi + « [Ut - f)(St,wt)] V’f)(St,Wt)

Gradient Monte Carlo Algorithm for Estimating v =~ v,

Input: the policy 7 to be evaluated

Input: a differentiable function ¢ : § x R* — R

Algorithm parameter: step size a > 0

Initialize value-function weights w € R? arbitrarily (e.g., w = 0)

Loop forever (for each episode):
Generate an episode Sy, Ag, R1,51,A1,..., Ry, St using 7
Loop for each step of episode, t =0,1,...,T — 1:
W W+ a[Gt - 13(St,w)] Vo (S;,w)

Marlos C. Machado
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A Clearer Instantiation — Linear Function Approximation

o LetV(x, w)=x'w. We have V _V(x, w)=X(s).
o Thus,w, ., =w,+alU -V w)] V_ Vx w)becomes:

w, =W +aU - VX, w)x.

Marlos C. Machado
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Semi-gradient TD

o WhatifU =R _,+VyV(S, ,wW)7?

t+1°

« We |lose several guarantees when we use a bootstrapping estimate as target.
o The target now also depends on the value of w,, so the target is not independent of w,.

» Bootstrapping are not instances of true gradient descent. They take into account
the effect of changing the weight vector w, on the estimate, but ignore its effect on
the target. Thus, they are a semi-gradient method.

« Regardless of the theoretical guarantees, we use them all the time \_(*J)_/

Marlos C. Machado
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Semi-gradient TD(0)

Semi-gradient TD(0) for estimating v =~ v,

Input: the policy 7 to be evaluated

Input: a differentiable function 9 : 87 x R — R such that ¥(terminal,-) = 0
Algorithm parameter: step size a > 0

Initialize value-function weights w € R? arbitrarily (e.g., w = 0)

Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A ~ 7(:|S)
Take action A, observe R, S’
W W+ a[R+v5(S",w) — 9(S,w)| Vi(S,w)
S+ 5

until S is terminal

Marlos C. Machado
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TD Fixed Point with Linear Function Approximation

« We do have convergence results for linear function approximation.
- R T e
Wil = Wi + 0 fig41 + YWy X1 — Wy Xy | Xy

-
= Ww; + a(Rt+1Xt — X4 (Xt — ’YXt+1) Wt)

Marlos C. Machado
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TD Fixed Point with Linear Function Approximation

« We do have convergence results for linear function approximation.
Wip1 = Wi + 6¥<Rt+1 + ’YW;rXtH = WtTXt)Xt
=W+ a<Rt+1Xt — Xt (Xt — ’Yxt+1)TWt)
In a steady state, for any given w,, the expected next weight vector can be written
E[wii1|we] = wi + a(b — Awy)
where b =E[R;;1x/] € R and A=E [xt (xt — 'yxt+1)T] g Raxe

Marlos C. Machado
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TD Fixed Point with Linear Function Approximation

« We do have convergence results for linear function approximation.
- R T e
Wil = Wi + 0 fig41 + YWy X1 — Wy Xy | Xy

=W+ a<Rt+1Xt — Xy (Xt — ’YXt+1)TWt)
In a steady state, for any given w,, the expected next weight vector can be written
E[wii1|we] = wi + a(b — Awy)
where b =E[R;;1x/] € R and A=E [xt (xt — 'yxt+1)T] g Raxe

It converges to:

b — AWTD =0
= b = Awrp
= WTD = A~ 'Db.

Marlos C. Machado
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n-Step Semi-gradient TD

Input: the policy 7 to be evaluated

Input: a differentiable function 9 : 8% x R? — R such that ©(terminal,-) = 0
Algorithm parameters: step size a > 0, a positive integer n

Initialize value-function weights w arbitrarily (e.g., w = 0)

All store and access operations (S; and R;) can take their index mod n + 1

Loop for each episode:
Initialize and store Sy # terminal

T + o0
Loop fort=0,1,2,...:
| Ift <T, then:

| Take an action according to (:|St)

| Observe and store the next reward as R;+; and the next state as Sy
| If S;41 is terminal, then T+t + 1

| 7+ t—n+1 (7 is the time whose state’s estimate is being updated)

| Ifr>0:

|

|

|

G« i) yi-r-1p,
If 7+ n<T,then: G < G+ ¥"0(Sr4n,W) (Cricin)
W W+ a[G—9(S;,w)] Vi(S,,w)

Untilt=T -1

Marlos C. Machado
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Question

How are tabular methods related to linear function approximation?

Marlos C. Machado
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Feature Construction for Linear Methods

o Linear methods can be effective, but they heavily rely on how states are
represented in terms of features.

» Feature construction is a way of adding domain knowledge; but at the same time,
it went out of fashion because of deep reinforcement learning.

o Nalve linear function approximation methods do not take into consideration the
interaction between features.

Marlos C. Machado
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State Aggregation

o Simplest form of representation
« States are grouped together (one component of the vector w) for each group.

« State aggregation is a special case of SGD in which the gradient, VV(S,,w,), is 1
for S,’s group’s component and O for the other components.

resy
N

Marlos C. Machado http://irl.cs.brown.edu/pinball/
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Polynomials

o Doesn’t work so well, but they are one of the simplest families of features.

Marlos C. Machado
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Polynomials

o Doesn’t work so well, but they are one of the simplest families of features.

e Suppose an RL problem has states with two numerical dimensions.

x(s) = (s1,82)

Marlos C. Machado
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Polynomials

o Doesn’t work so well, but they are one of the simplest families of features.

e Suppose an RL problem has states with two numerical dimensions.

x(s) = (s1,82)

But what about interactions? \What if both features were zero?

x(s) = (1, s1, 82,5182) "

Marlos C. Machado
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Polynomials

o Doesn’t work so well, but they are one of the simplest families of features.

e Suppose an RL problem has states with two numerical dimensions.

x(s) = (s1,82)

But what about interactions? What if both features were zero?
T
X(S) = (1, S1, 82, 8182)
And we can keep going...

. 2 .2 2 .2 22\ T
X(S) — (17817 $2,81582,87, S9, 81827818278182)

Marlos C. Machado
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Polynomials
Suppose each state s corresponds to k numbers, s1, Ss, ..., Sk, with each s; € R.
For this k-dimensional state space, each order-n polynomial-basis feature x; can be
written as

Z (S = Hles;?"’j, (9.17)
where each c; ; is an integer in the set {0,1,...,n} for an integer n > 0. These
features make up the order-n polynomial basis for dimension k, which contains
(n + 1)F different features.

Marlos C. Machado
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Fourier Basis

« Fourier series expresses periodic functions as weighted sums of sine and cosine
basis functions (features) of different frequencies.

o Fourier features are easy to use and can perform well in several RL problems.

« When using the Fourier series and the more general Fourier transform, with
enough basis functions essentially any function can be approximated as
accurately as desired.

Marlos C. Machado
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Fourier Basis

o (Consider the one-dimensional case. The cosine basis consists of the n + 7 features
z;(s) = cos(ims), s € [0,1],

fori=0, ..., n. The figure below shows one-dimensional Fourier cosine features x,
fori=1, 2, 3, 4; X, IS a constant function.

1 1 1 1

o -1 - -1
1O 1 0 1 10 1 0 1

Figure 9.3: One-dimensional Fourier cosine-basis features z;, i = 1, 2, 3,4, for approximating

functions over the interval [0, 1]. After Konidaris et al. (2011).
Marlos C. Machado
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Fourier Basis Beyond One Dimension

o

Suppose each state s corresponds to a vector of k numbers, s = (s, 8, ..., %) |,
with each s; € [0, 1]. The ith feature in the order-n Fourier cosine basis can then
be written

zi(s) = cos (ms'c’), (9.18)

wherele =N(cimenic: NiSwighic SeR (e Sfor A= NIEEREElan diy = VIR (7=
This defines a feature for each of the (n + 1)* possible integer vectors c’. The inner
product s'c? has the effect of assigning an integer in {0,...,n} to each dimension
of s. As in the one-dimensional case, this integer determines the feature’s frequency
along that dimension. The features can of course be shifted and scaled to suit the
bounded state space of a particular application.

Marlos C. Machado
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Fourier Basis — Example

« Consider representing a state as a vector of 2 numbers (k = 2), where each
¢ =(c,,c).

c=(1,1)7

The feature varies
along both
dimensions and
represents an
interaction
between the two
state variables

The feature is constant
over the first dimension
and varies over the
second dimension
depending on c,,

1

1

Figure 9.4: A selection of six two-dimensional Fourier cosine features, each labeled by the
vector ¢’ that defines it (s1 is the horizontal axis, and c* is shown with the index ¢ omitted).
After Konidaris et al. (2011).

Marlos C. Machado
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Coarse Coding

« Consider a task in which the natural representation of the state set is a
continuous two- dimensional space.

o \We define binary features indicating
whether a state is present or not in
a specific circle.

The shape defines generalization

Receptive
Field

Narrow generalization Broad generalization

Marlos C. Machado
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Tile Coding

« Tile coding is a form of coarse coding for multi-dimensional continuous spaces
(with a fixed number of active features per timestep).

e lngl -

Tiling 2 —tt-Trt-Tht-— 1 =T

.qs | | ! I

Tiling 3 : E : : !

: Tiling 4 L | S S N !
Continuous ¢ wl e il Four active
2D state s _L [RERE | § e | tiles/features

~_ . : : . overlap the point
pac : E=aE = iy and are used to

" Pointin |ttt r1qd : represent it

state space ! { | P11

to be [T I S [V D I B

represented

Marlos C. Machado
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Tile Coding

Possible
generalizations
for uniformly
offset tilings

Possible
generalizations
for asymmetrically
offset tilings

Marlos C. Machado
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It Isn’t that We do Function Approximation Because \We
Cannot do Tabular Reinforcement Learning

e Successor Representation [Dayan, Neural Computation 1993].

¥.(s,s') [Z‘Ytlst—s'lso—s]

Agent

Average extra steps to goal

Goal | —

Barrier

Marlos C. Machado
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Nonlinear Function Approximation: Artificial Neural Networks

« The basics of deep reinforcement learning.

« lIdea: Instead of using linear features, we feed the “raw” input to a neural network
and ask it to predict the state (or state-action) value function.

But It Is Noi

Marlos C. Machado
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Neural Networks
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Neural Networks

aaaaaaaaaaaaaaa

Q_.
Q_.

h'=a

1 _
s.t.h1_

The activation function
introduces non-linearity

S+ b1)E.g.: f(x) = max(0, x)

1 1 1 1 1
XWX W+ XoW o+ X W 41+B
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Neural Networks

h' = actxW' + b")

1 _ 1 1 1 1 1
s.t.h FEXWL XWX W+ X W 41+B
h? = act(h'W? + b?)

2 _hlg? 162 1 \p2 162
S.t.h1—h1W11+h2W21+h3W31+h4W41+
BZ

aaaaaaaaaaaaaaa
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Neural Networks

Marlos C. Machado

CMPUT 655 - Class 7/12

h' = actxW' + b")

1 _ 1 1 1 1 1
s.t.h1_x1wﬁ+x2w21+x3W31+x4w41+B

h2 = act(h'W2 + b?)

2 _ g2 102 112 102
S.t.h1—h1W11+h2W21+h3W31+h4W41+
BZ
o = act(h®W? + b?)

2 3 2 .3 2 3 2 3 2
S.’[.Ow—h1W11+h2W21+h3W31+h4W41+B

o = act(act@ctxW' + b"YW? + b?W? + b3)
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Neural Networks

Marlos C. Machado

F'!epresentat'ion
(Learned features)

h' = actxW' + b")

1 _ 1 1 1 1 1
S.t.h1—X1W11+X2W21+X3W31+X4W41+B

h2 = act(h'W2 + b?)

2 _ g2 1,2 112 1,2
S.t.h1—h1W11+h2W21+h3W31+h4W41+
BZ

o = act(h®W? + b?)

2 3 2 .3 2 3 2 3 2
S.’[.Ow—h1W11+h2W21+h3W31+h4W41+B

o = act(act@ctxW' + b"YW? + b?W? + b3)
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A Note from the Textbook

The backpropagation algorithm can produce good results for shallow networks having
1 or 2 hidden layers, but it may not work well for deeper ANNs. In fact, training a

network with k£ 4+ 1 hidden layers can actually result in poorer performance than training
a network with k£ hidden layers, even though the deeper network can represent all the
functions that the shallower network can (Bengio, 2009). Explaining results like these
is not easy, but several factors are important. First, the large number of weights in

a typical deep ANN makes it difficult to avoid the problem of [overfitting,| that is, the
problem of failing to generalize correctly to cases on which the network has not been
trained. Second, backpropagation does not work well for deep ANNs because the partial
derivatives computed by its backward passes either decay rapidly toward the input side
of the network, making learning by deep layers extremely slow, or the partial derivatives
grow rapidly toward the input side of the network, making learning unstable. Methods

Marlos C. Machado
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Deep Convolutional Network

C3: f. maps 16@10x10
INPUT C1: feature maps S4: f. maps 16@5x5

6@28x28
sz S2: f. maps I C5: layer gg.
6@14x14 r rr 120 y F& layer quPUT

I
| | Full ooanection J Gaussian
Convolutions Subsampling Convolutions Subsampling Full / connections
connection

Figure 9.15: Deep Convolutional Network. Republished with permission of Proceedings of the
IEEE, from Gradient-based learning applied to document recognition, LeCun, Bottou, Bengio,
and Haffner, volume 86, 1998; permission conveyed through Copyright Clearance Center, Inc.

Marlos C. Machado
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Deep Convolutional Network

Input Volume (+pad 1) (7x7x3) Filter WO (3x3x3) Filter W1 (3x3x3) Output Volume (3x3x2)
x[ 2;5:050] w0[:,:,0] wl[:,:,0 o[ s;:1270]
oOfofjofo o o 0 T B =11 0|0 |0 3 -1 4
02212 0 2 0 08 i =1 1 |f-1]fo 112
off2yoj1t 2 0 0 -1 0 1 10 (f1 13 B 1S
04 (O3 P11 (25 (O [0 w0[:,:,1] wifs,:,1 25:1]
53 23 1 [ 3 2B G 9
il 2l il Bl [ .
00 0 0 =t |2
X[

0 |0 JjO |0

010 |21|0

0 J|J0O40710

R e 2 O A 2 Bias b0 (1x1x1 Biasb1 (1x1x1)

O (1 RIS (O (2 [0 0[:,: bl[:,:,0]

T 23 [Of (G 2 1

0 0 0 0 0

0o o |0 O 0

012 |1 24 10

o fo Jfo ]2 1 0

O I (24 AN (08 (G (O

O (1N [OF) 1N (O (0N (0

O I28 29 /28 RIS TN (0

07 (O (G (0N (O (0N (O

Marlos C. Machado [Figure from demo in https://cs231ln.github.io/convolutional-networks/]
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Learned Representations

Typical-looking filters on the first CONV layer (left), and the 2nd CONV layer (right) of a trained AlexNet. Notice that the first-layer
weights are very nice and smooth, indicating nicely converged network. The color/grayscale features are clustered because the
AlexNet contains two separate streams of processing, and an apparent consequence of this architecture is that one stream
develops high-frequency grayscale features and the other low-frequency color features. The 2nd CONV layer weights are not as
interpretable, but it is apparent that they are still smooth, well-formed, and absent of noisy patterns.

Marlos C. Machado [Figure from https://cs231n.github.io/understanding-cnn/]
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Least-Squares TD (LSTD)

o With more computation per time step we can do better.
o Why not compute the TD fixed point exactly?
wrp = A 'b,
where

A =E[x(x¢ —yx¢41)'| and b=E[Ry1x].
« Why not use the data to estimate A and b?

t—1 t—1
A; = Zxk(xk — ’yxk_|_1)T +el and b;= ZRkak
k=0
\ Ensuresitis

Marlos C. Machado a|WayS lnvel‘tlble
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Least-Squares TD (LSTD)

LSTD for estimating 9 = w' x(-) = v, (O(d?) version)

Input: feature representation x : 8t — R such that x(terminal) = 0
Algorithm parameter: small € > 0

A1 71 A d x d matrix
b+« 0 A d-dimensional vector
Loop for each episode:
Initialize S; x  x(95)
Loop for each step of episode:
Choose and take action A ~ 7(:|S), observe R, S’; x" + x(S5”)

\ ‘K—\lT(x —x')
Al A1 — (A-Tx)vT/(1+vTx) <
b+ b+ Rx
W <— FB Al
S+ 8 x+x

until S’ is terminal

Sherman-Morrison
formula

- -l
(At—l + X1 (Xe—1 — YX¢) )
At__llxt—l(xt—l — ’YXt)TlA\t__ll

1+ (x¢1 — 'Yxt)T:&t__llxt—l

A-1
At—l -

Marlos C. Machado
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Memory-based Function Approximation

« Instead of updating some parameters and discarding the training example, we
save (a subset of) training examples in memory as they arrive.

o When we want to query a state’s value estimate, we retrieve examples from
memory and use them to compute such an estimate. That’s lazy learning.

o These are nonparametric methods.

o Nearest neighbor is the simplest example, and weighted average a slightly more

complicated one.
o It finds the example in memory whose state is closest to the query state and returns that example’s
value as the approximate value of the query state.

« Naturally they inherit the benefits and trade-offs of nonparametric methods.

Marlos C. Machado
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Kernel-based Function Approximation

« The function that assigns the weights in the weighted average is called a kernel
function, or simply kernel, k(s, s’).

e K(s, S’) is a measure of the strength of generalization from s’ to s. How relevant is
the knowledge about state s to state s'.

« Kernel regression, where g(s’) denotes the target for state s’

0(s,D) =

Marlos C. Machado

sts)g

Example of a kernel function: Radial Basis Functions (RBFs)

z:(8) = exp (_ Is — Cz'||2)

2
207
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Chapter 10

On-policy Control with
Approximation
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Control

Marlos C. Machado
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Overview

o More of the same, but now
qA(Sa a’a W) ~ q*(87 a’)

and

Wit1 = Wi + a[Ut — (S, As, Wt)] V(S Ay, wy)

Marlos C. Machado
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Episodic Semi-gradient Sarsa

Episodic Semi-gradient Sarsa for Estimating § ~ q.

Input: a differentiable action-value function parameterization §: 8 x A x R — R
Algorithm parameters: step size o > 0, small € > 0
Initialize value-function weights w € R? arbitrarily (e.g., w = 0)

Loop for each episode:
S, A < initial state and action of episode (e.g., e-greedy)
Loop for each step of episode:
Take action A, observe R, S’
If S’ is terminal:
w <+ w+a[R—§(S,A,w)|V§(S, A,w)
Go to next episode
Choose A’ as a function of §(S’,-, w) (e.g., e-greedy)
w e w+a[R+ (S, A, w) — 4(S, A, w)| Va(S, A, w)
S+ 5
A+ A

Marlos C. Machado
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Episodic Semi-gradient n-step Sarsa

Input: a differentiable action-value function parameterization §: 8 x A x R = R
Input: a policy 7 (if estimating g, )

Algorithm parameters: step size a > 0, small £ > 0, a positive integer n

Initialize value-function weights w € R arbitrarily (e.g., w = 0)

All store and access operations (S, A;, and R;) can take their index mod n + 1

Loop for each episode:
Initialize and store Sy # terminal
Select and store an action Ao ~ 7(-|Sp) or e-greedy wrt §(So, -, W)

T ¢+ o0
Loop fort =0,1,2,...:
| Ift<T, then:

| Take action A,

| Observe and store the next reward as R;+1 and the next state as Si+1

| If Sty1 is terminal, then:

| T+ t+1

| else:

| Select and store A¢y1 ~ m(:|Sty1) or e-greedy wrt G(Si41,-, W)

| 7+ t—n+1 (7isthe time whose estimate is being updated)

| Ifr>0:

|G ppmm g

| If7+n<T,then G+ G+ v"4(Sr4n;Arin, W) (Grirtn)
| w w+a[G—§(Sr, Ar, W) V§(S-, Ar, w)

Untilt=T -1

Marlos C. Machado = .
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Average Reward: A New Problem Setting for Continuing Tasks




