“(...) Muad'Dib learned rapidly because his first training was in how to
learn. And the first lesson of all was the basic trust that he could
learn. It's shocking to find how many people do not believe they can
learn, and how many more believe learning to be difficult. Muad'Dib

knew that every experience carries its lesson.”

Frank Herbert, Dune

CMPUT 655
Introduction to RL

Class 5/12
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Plan

o Chapter 5: Monte-Carlo Methods
o Off-Policy Prediction and Control with Importance Sampling
« Chapter 6: Temporal-Difference Learning

o 1D learning
o Sarsa
o Q-Learning

o Expected Sarsa

« Chapter 7: n-Step Bootstrapping
o GeReravalgefoRcHons

Marlos C. Machado
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Reminder |

You should be enrolled in the private session we created in Coursera for CMPUT 365.
| cannot use marks from the public repository for your course marks.

You need to check, every time, if you are in the private session and if you are submitting
quizzes and assignments to the private section.

The deadlines in the public session do not align with the deadlines in Coursera.

If you have any questions or concerns, talk with the TAs or email us
cmputo6b5@ualberta.ca.

Marlos C. Machado



CMPUT 655 — Class 5/12

Reminder |l

e YOu just submitted 2 practice quizzes and 2 programming assignments:

o Week 2 of Sample-based Learning Methods: TD Learning Methods for Prediction.
o  Week 3 of Sample-based Learning Methods: TD Learning Methods for Control.

o Next week only 1 practice quiz and programming assignment:
o Week 4 of Sample-based Learning Methods: Planning, Learning, and Acting.

« The project proposal is due in 2 weeks!
As well as, for now, 3 weeks of Coursera content: Prediction and Control with

Function Approximation.

Marlos C. Machado
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Please, interrupt me at any time!

Marlos C. Machado https://pngtree.com/freepng/question-expression-cartoon-illustration_4545209.ht
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Monte-Carlo Methods

Marlos C. Machado
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Learning with exploration

We stopped after On-policy first-visit MC control (for e-soft policies).

e ... but how can we learn about the optimal policy while behaving according to an
exploratory policy? We need to behave non-optimally in order to explore .

« S0 far we have been on-policy, which is a compromise: we learn about a
near-optimal policy, not the optimal one.

o But what if we had two policies? We use one for exploration but we learn about

another one, which would be the optimal policy? _ _
Behaviour policy

That’s off-policy learning! "% P°"

Marlos C. Machado
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Pros and cons of off-policy learning

Pros Cons
e Itis more general. « Itis more complicated.
o [t is more powerful. o [t has much more variance.

. o Thus it can be much slower to learn.
o It can benefit from external data
Check Example 5.5 in

o  and other additional use cases. o Itcanbe unstapble. 0 ERE o
Infinite Variance

Marlos C. Machado
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What’s the actual issue?

Let 11 denote the target policy, and let b denote the behaviour policy.

We want to estimate E_[G/], but what we can actually directly estimate is E,[G].

In other words, E[G, [S, = s] = v, (s).

Marlos C. Machado
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Importance Sampling

A general technique for estimating expected values under one distribution given
samples from another. It is based on re-weighting the probabilities of an event.

Marlos C. Machado
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Importance Sampling

In RL, the probability of a trajectory is:

Pr{At7St+1,At+17 L1 a O | StaAt:T—l o 7T}
= 7(A¢|St)p(St41|St, Ae)m(At41|St+1) - - - (ST | ST-1, AT—1)

T-1

— HW(Ak|Sk)p(Sk+1|SkaAk)7
k=t

Marlos C. Machado
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Importance Sampling

In RL, the probability of a trajectory is:

Pr{At7St+1,At+17 L1 a O | StaAt:T—l o 7T}
= 7(A¢|St)p(St41|St, Ae)m(At41|St+1) - - - (ST | ST-1, AT—1)

T-1
= ][ m(AkISk)p(Sk+11Sk, A%),
k=t
the relative prob. of the traj. under the target and behavior policies (the IS ratio) is:

We require coverage:
b(a|s) > 0 when Ti(als) > 0

__k . -, m(Ak|Sk)P(Ske1 | Sk, Ak) T w(AkISk)
—t b(Ak|Sk)p(Sk‘—|—l|Sk,Ak) e s b(Aklsk) The IS ratio does

not depend on the

MDP, that is, on
Marlos C. Machado p(s’, r | S, a)!

Pt:T—1 =3
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The solution

The ratio p, ., transforms the returns to have the right expected value:
E[pt:T—th | St:S] — ’Uﬁ(S).

Ordinary importance sampling: S pr.7(t)—1Gt
& teT(s) Ft: -

vV .
) 7(5)
\Set of all time steps in
which state s is visited.
Weighted importance sampling: Z G
. Pt.T(t)—1Gt

Ztgy(s) Pt:T(t)—1

Marlos C. Machado



15 CMPUT 655 — Class 5/12

Incremental update (Weighted 1S)

We want to form the estimate

« Tl WiGi
Vo= n=>2 Wi = ps..7(t.)—
ZZ:% Wi Pt;:T(t;)—1
The update rule for V_is
Wn
— =2 — >
Vn+1 Vn =} Cn, [Gn Vn], n = ]-a

and

Marlos C. Machado



CMPUT 655 — Class 5/12

16

Marlos C. Machado https://pngtree.com/freepng/question-expression-cartoon-illustration_4545209.ht



17

CMPUT 655 — Class 5/12

Putting Everything Together for Prediction

Marlos C. Machado

Off-policy MC prediction (policy evaluation) for estimating Q ~ ¢,

Input: an arbitrary target policy 7

Initialize, for all s € §, a € A(s):
Q(s,a) € R (arbitrarily)
C(s,a) « 0

Loop forever (for each episode):
b « any policy with coverage of 7
Generate an episode following b: Sy, Ag, R1,...,S7—1,Ar_1, R
G«0
W1
Loop for each step of episode, t =T—-1,T-2,...,0, while W # 0:
GagG i h
C(St, At) o C(St, At) + W
Q(St, Ar) < Q(St, Ay) + gv@v:Tt) [G — Q(S:, Ar)]
W Wiis)
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Putting Everything Together for Control

Initialize, for all s € 8, a € A(s):
Q(s,a) € R (arbitrarily)
C(s,a) <0
7(s) < argmax, Q(s,a) (with ties broken consistently)

Loop forever (for each episode):
b < any soft policy
Generate an episode using b: Sg, Ag, R1,...,S7_1,A1r_1, R
G+ 0
W<«+1
Loop for each step of episode, t =T—-1,T7—-2,...,0:
G ’)’G + Rt+1
C(St, At) S C(St, At) + W
Q(St, Ar)  Q(S1, Ae) + % [G — Q(St, At)]
w(St) < argmax, Q(S;,a) (with ties broken consistently)
If A, # 7r(St) then exit inner Loop (proceed to next episode)

Marlos C. Machado
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Interlude

Marlos C. Machado
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An overview

« Main features of a reinforcement learning problem:

o Trial-and-error learning
o Exploration

o Delayed credit assignment

Marlos C. Machado
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An overview

« Main features of a reinforcement learning problem:

o Trial-and-error learning

o  Exploration A flavour of RL: Bandits (Chapter 2)

Marlos C. Machado
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An overview

Main features of a reinforcement learning problem:

[
o Trial-and-error learning

©  Exploration But what does that mean?

o  Delayed credit assignment What is this sequehtlal decision-making
problem we are trying to solve?
What does solution mean here?

A problem formulation: MDPs (Chapter 3)

Marlos C. Machado



MPUT -Gl 12
o4 CMPUT 655 - Class 5/

An overview

« Main features of a reinforcement learning problem:

o Trial-and-error learning
o Exploration

o Delayed credit assignment

o What about the solution?

A first solution: Dynamic Programming (Chapter 4)

Marlos C. Machado
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An overview

« Main features of a reinforcement learning problem:

o Delayed credit assignment

o What about the solution?

We need to know p(s’, r | s, a) and it
o Dynamic programming! <—— can be computationally expensive to
solve the system of linear equations.

Our first learning algorithm: Monte Carlo Methods (Chapter 5)

Marlos C. Machado
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An overview

CMPUT 655 — Class 5/12

« Main features of a reinforcement learning problem:

o Trial-and-error learning
o Exploration

o Delayed credit assignment

o What about the solution?

o  Dynamic programming

o Monte Carlo methods «——

Marlos C. Machado

Do we really need to wait until the end of
an episode to learn something?

The core idea behind RL: Temporal-Difference Learning (Chapter 6)
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An overview

« Main features of a reinforcement learning problem:

o Trial-and-error learning
o Exploration

o Delayed credit assignment

« What about the solution?
o  Dynamic programming

o Monte Carlo methods

o TD learning We learn from experience like MC methods
but we bootstrap like we do in DP.

Marlos C. Machado
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Chapter 6

Temporal-Difference Learning

aaaaaaaaaaaaaaa
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Prediction

Marlos C. Machado
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Temporal-difference learning — Why"?

“If one had to identify one idea as central and novel to reinforcement learning, it
would undoubtedly be temporal-difference (TD) learning.”

Marlos C. Machado
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1D Prediction

A simple every-visit Monte Carlo method is:
V(St) g V(St) + o [Gt _ V(St)] What if we don’t want to wait until we

have a full return (end of episode)!

NewEstimate < OldEstimate + StepSize [Target - OIdEstimate]

Marlos C. Machado
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1D Prediction

A simple every-visit Monte Carlo method is:

VI(S,) « V(S:) + a[Ci = V(St)]

Target

Temporal-Difference Learning:

V(S1)  V(S0) + o Russ + 9V (Sis1) — V(S
Target

Marlos C. Machado
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1D Prediction

A simple every-visit Monte Carlo method is:

V(S)) < V(Si)+ |G- V(S)]
Temporal-Difference Learning (specifically, one-step TD, or TD(0)):

V(S)  V(S0) + o Riss + 4V (Sis1) - V(S)]

These are estimates all the way down...

Marlos C. Machado
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Tabular TD(0)

Tabular TD(0) for estimating v,

Input: the policy 7 to be evaluated
Algorithm parameter: step size a € (0, 1]
Initialize V (s), for all s € 8T, arbitrarily except that V (terminal) = 0

Loop for each episode:
Initialize S
Loop for each step of episode:
A < action given by 7 for S
Take action A, observe R, S’
V(S) < V(S)+ a[R +4V(S') — V(S)]
Spmple 5 5
ubdate until S is terminal

Marlos C. Machado
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Temporal-Difference Error

5t — Rt+1 -+ ’}’V(St+1) — V(St)

Marlos C. Machado
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Example — Driving Home

Example 6.1: Driving Home Each day as you drive home from work, you try to
predict how long it will take to get home. When you leave your office, you note the time,
the day of week, the weather, and anything else that might be relevant. Say on this
Friday you are leaving at exactly 6 o’clock, and you estimate that it will take 30 minutes
to get home. As you reach your car it is 6:05, and you notice it is starting to rain. Traffic
is often slower in the rain, so you reestimate that it will take 35 minutes from then, or a
total of 40 minutes. Fifteen minutes later you have completed the highway portion of
your journey in good time. As you exit onto a secondary road you cut your estimate of
total travel time to 35 minutes. Unfortunately, at this point you get stuck behind a slow
truck, and the road is too narrow to pass. You end up having to follow the truck until
you turn onto the side street where you live at 6:40. Three minutes later you are home.

Marlos C. Machado
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Example — Driving Home

The sequence of states, times, and predictions is thus as follows:
Elapsed Time Predicted Predicted

State (minutes) Time to Go  Total Time
leaving office, friday at 6 0 30 30
reach car, raining 5 35 40
exiting highway 20 15 35
2ndary road, behind truck 30 10 40
entering home street 40 3 43

arrive home 43 0 43

Marlos C. Machado
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Example — Driving Home

The rewards in this example are the elapsed times on each leg of the journey.! We are
not discounting (v = 1), and thus the return for each state is the actual time to go from
that state. The value of each state is the ezxpected time to go. The second column of
numbers gives the current estimated value for each state encountered.

The sequence of states, times, and predictions is thus as follows:
Elapsed Time  Predicted Predicted

State (minutes) Time to Go Total Time
leaving office, friday at 6 0 30 30
reach car, raining ) 35 40
exiting highway 20 15 35
2ndary road, behind truck 30 10 40
entering home street 40 3 43

arrive home 43 0 43

Marlos C. Machado
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Example — Driving Home

45 -
___actual outcome actual
outcome
Predicted
total
travel 35
time
30
T T T T T T T T T T T T
leaving reach exiting 2ndary home arrive leaving reach exiting 2ndary home arrive
office car highway road street home office ~ car highway road street home

Situation Situation

Figure 6.1: Changes recommended in the driving home example by Monte Carlo methods (left)
and TD methods (right).

Marlos C. Machado
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Optimality of TD(0)

« Under batch training, constant-a MC converges to values, V(s), that are sample
averages of the actual returns experienced after visiting each state s. These are
optimal estimates in the sense that they minimize the mean square error from
the actual returns in the training set.

o Bath TD(0) gives us the answer that it is based on first modeling the Markov
process and then computing the correct estimates given the model (the
certainty-equivalence estimate).

Marlos C. Machado
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Example

Example 6.4: You are the Predictor Place yourself now in the role of the predictor
of returns for an unknown Markov reward process. Suppose you observe the following
eight episodes:

A.0,B,0
B,1
B,1
B,1

‘]

W W W w
O = =

V(A) = 7 s 0
A5z

Marlos C. Machado
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Example

Example 6.4: You are the Predictor Place yourself now in the role of the predictor
of returns for an unknown Markov reward process. Suppose you observe the following
eight episodes:

A,0,B,0 B, 1
B,1 B, 1
B,1 B, 1
B,1 B,0
D MC

VIA) =2 % or 07 r= 0
A5z

V(B) = %

Marlos C. Machado
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TD vs Monte Carlo

“Batch Monte Carlo methods always find the estimates that minimize mean square
error on the training set, whereas batch TD(0) always finds the estimates that would
be exactly correct for the maximume-likelihood model of the Markov process.”

In general, the maximum-likelihood estimate of a parameter is the parameter
value whose probability of generating the data is greatest.

Marlos C. Machado
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Control

Marlos C. Machado
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Sarsa: On-policy Control

« We again use generalized policy iteration (GPI), but now using TD for evaluation.

e We need to learn an action-value function instead of a state-value function.
We can do this!

. Rt+1/\ Rt+2m Rt+3©_._ & s
RO e Oy Brr s (s

Q(St, At) < Q(St, Ar) + [Rt—l—l + YQ(St+1, At+1) — Q(St, At)]

Marlos C. Machado
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Sarsa: On-policy Control

Sarsa (on-policy TD control) for estimating Q ~ q.

Algorithm parameters: step size a € (0,1], small € > 0

Loop for each episode:
Initialize S

Loop for each step of episode:
Take action A, observe R, S’

Q(S, 4) + Q(S, A) + a[R +Q(S", A') — Q(S, A)]
S S Ae A

until S is terminal

Initialize Q(s,a), for all s € 8T, a € A(s), arbitrarily except that Q(terminal,-) =0

Choose A from S using policy derived from @ (e.g., e-greedy)

We need to explore!

Choose A’ from S’ using policy derived from @ (e.g., e-greedy)

Marlos C. Machado
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Q-Learning: Off-Policy Control

Q(St, At) + Q(St, At) + [Rt+1 + ’YmC?X Q(St+1,a) — Q(S:, At)]

o Q directly approximates q., regardless of the policy being followed.

« Notice we do not need importance sampling. We are updating a state—action
pair. We do not have to care how likely we were to select the action; now that
we have selected it we want to learn fully from what happens.

Marlos C. Machado
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Q-Learning: Off-Policy Control

Q-learning (off-policy TD control) for estimating 7 =~ m,

Algorithm parameters: step size a € (0, 1], small € > 0
Initialize Q(s,a), for all s € 8*,a € A(s), arbitrarily except that Q(terminal,-) = 0

Loop for each episode:

Initialize S

Loop for each step of episode:
Choose A from S using policy derived from Q (e.g., e-greedy)
Take action A, observe R, S’
Q(S,A) < Q(S, A) + a[R + ymax, Q(S',a) — Q(S, 4)]
S+ S

until S is terminal

Marlos C. Machado
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Example — Q-Learning vs Sarsa

Sarsa
-25 4
R=-1
Safer path
Sum of _5
rewards Q-learning
Optimal path ! % edliJ:c?ge
S The Cliff G P 754
-100 . T T . 1
0 100 200 300 400 500
Episodes

Marlos C. Machado
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Discussion

Exercise 6.12. Suppose action selection is greedy. Is Q-learning then exactly the
same algorithm as Sarsa? Will they make exactly the same action selections and

weight updates”?

Q(S, 4) + Q(S,A) + a[R+vQ(S', A’) — Q(S, A)]

Q(S,A) + Q(S, A) + a[R + ymax, Q(S',a) — Q(S, A)]

Marlos C. Machado
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Expected Sarsa

What if instead of the maximum over next state-action pairs we used the expected
value, taking into account how likely each action is under the current policy?

Q(St, A1)  Q(St, Ar) + | Revs + VEA[Q(St1, Aria) | Sert] — Q(Sy, Ar)]
= Q(S5:, At) + [Rt+1 +7 Z m(alSt+1)Q(St+1,a) — Q(St, At)] :

Marlos C. Machado
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Expected Sarsa

What if instead of the maximum over next state-action pairs we used the expected
value, taking into account how likely each action is under the current policy?

Q(St, A1)  Q(St, Ar) + | Revs + VEA[Q(St1, Aria) | Sert] — Q(Sy, Ar)]
= Q(S5:, At) + [Rt+1 +7 Z m(alSt+1)Q(St+1,a) — Q(St, At)] :

Expected Sarsa is more computationally expensive than Sarsa but, in return,
it eliminates the variance due to the random selection of A, ..

Marlos C. Machado
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Is Expected Sarsa on-policy or off-policy?

Marlos C. Machado
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Is Expected Sarsa on-policy or off-policy”?

Expected can use a policy different from the target policy 1 to generate behavior
(thus, it can be off-policy; although one can use it on-policy as well).

Marlos C. Machado
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Maximization Bias

e The control algorithms we discussed so far use a maximization to get their
target policies (either a max/greedy policy or an e-greedy policy).

e Maximization bias: A maximum over estimated values is used implicitly as an
estimate of the maximum value, which can lead to a significant positive bias.

Marlos C. Machado
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Double Learning

o Theissue is that we use the same samples to determine the maximizing action
and to estimate its value.

e In Bandits:

o  Split the data, learn Q,(a) and Q,(a) to estimate g(a).

o Choose actions according to one estimate and get estimate from the other:
A* = argmax, Q,(a) Q,(A") = Q (argmax, Q,(a))

o This leads to unbiased estimates, that is: E[Q,(A")] = q(A")

Q1(St, At) <+ Q1(S:, Ay)+a [Rt+1+7Q2 (St41,argmax Q1 (Si41,a)) —Q1(S:, At)]

Marlos C. Machado
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Double Q-Learning

Algorithm parameters: step size a € (0, 1], small € > 0
Initialize Q1 (s, a) and Q2(s,a), for all s € 87, a € A(s), such that Q(terminal,-) =0

Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A from S using the policy e-greedy in Q1 + Q2
Take action A, observe R, S’
With 0.5 probabilility:

Q1(S, 4) ¢ Qu(S, 4) + a(R+1Qx(S', argmax, Q1 (', a) — Qu(S, 4) )
else:

Qa(S, 4) < Qa(S, 4) + & (R +1Q1 (', argmax, Qs(S', a)) — Qa(S, 4) )
S8

until S is terminal

Marlos C. Machado
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Afterstates

« One could evaluate states after the agent has taken an action (instead of states
in which the agent has the option to select an action).

o Thisis particularly useful when we have knowledge of an initial part of the
environment’s dynamics but not necessarily of the full dynamics (e.g., how an
opponent will reply in a game).

e [his can be much more efficient!

Marlos C. Machado
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Example — Tic-Tac-Toe

starting position

opponent's move

our move

opponent's move

our move

opponent's move

our move

Marlos C. Machado
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Chapter 7

n-step Bootstrapping

aaaaaaaaaaaaaaa
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Prediction

Marlos C. Machado
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n-step Bootstrapping

o Can we unify Monte Carlo and TD methods to get the best of two worlds?

e N-step methods span a spectrum with MC methods at one end and one-step
TD methods at the other. The best methods are often intermediate between the
two extremes.

« nN-step methods enable bootstrapping to occur over multiple steps, freeing us
from the tyranny of the single time step.

Marlos C. Machado
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n-step TD Prediction

« MC methods perform an update for each state based on the entire sequence of
observed rewards (until the end of the episode).

o One-step TD methods have an update that is based on just the one next
reward, bootstrapping from the value of the state one step later as a proxy for
the remaining rewards.

o Intermediate method: perform an update based on an intermediate number of
rewards: more than one, but less than all of them until termination \_(*)_/

Marlos C. Machado
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n-step TD Prediction

1-step TD
and TD(0) 2-stepTD  3-step TD

T 7

° T
These are still TD methods I
because they still change O
an earlier estimate based
on how it differs from a

later estimate. These are
n-step TD methods.

O—e—CO—0—0O——0

Marlos C. Machado

CMPUT 655 — Class 5/12

n-step TD

o——eo+—+—e—

O—-e

oo-step TD
and Monte Carlo

o——o——e-—D—eo—_

DH 5 % @
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n-step TD Prediction

. Completereturn: G = Ryi1 +YRivo + V2 Riys + -+ IRy

Marlos C. Machado
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n-step TD Prediction

. Completereturn: G = Ryi1 +YRivo + V2 Riys + -+ IRy

e One-step return: Gt:t—|—1 = Rt_|_1 + ")/V;g(SH_l)

Marlos C. Machado
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n-step TD Prediction

. Completereturn: G = Ryi1 +YRivo + V2 Riys + -+ IRy
e One-step return: Gt:t—|—1 = Rt_|_1 + ")/V;g(St+1)
. Two-stepretun:  Gpiio = Rip1 + YRiyo + ’72Vt+1(5t+2)

« n-step return: Gitan = Reg1 +vRigo+ -+ + ’yn_lRt+n
+ 'Yn‘/t—}—n—l (St+n)

Marlos C. Machado
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n-step TD Learning Update Rule

‘/t+n(st) = ‘/t+n—1(St) + CVI:C;'t:t+'n, - V;t+n—1(st)]a 0 S t < T«,

Marlos C. Machado
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n-step TD Learning Update Rule

Input: a policy m

Algorithm parameters: step size a € (0, 1], a positive integer n

Initialize V (s) arbitrarily, for all s € 8

All store and access operations (for S; and R;) can take their index mod n + 1

Loop for each episode:
Initialize and store Sy # terminal

T + o0
Loop for t =0,1,2,...:
| Ift <T, then:

| Take an action according to m(-|St)

| Observe and store the next reward as R;y; and the next state as Sy41

| If S;11 is terminal, then T < ¢ + 1

| 7<t—n+1 (7 is the time whose state’s estimate is being updated)

NI =0

IR DB Ly

| If r+n<T,then: G+ G+"V(S-4n) (Crrin)
| V(S:) < V(S:) +alG-V(S:)]

Untilr =T -1

Marlos C. Machado
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Error reduction property of n-step returns

m?x ]EW[Gt:t+n|St:3] - ,Uﬂ'(s)) < 'Yn msaX\V;t+n—1(3) - UW(S) 1

Marlos C. Machado
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Exercise — Textbook

Exercise 7.1 In Chapter 6 we noted that the Monte Carlo error can be written as the
sum of TD errors (6.6) if the value estimates don’t change from step to step. Show that
the n-step error used in (7.2) can also be written as a sum of TD errors (again if the
value estimates don’t change) generalizing the earlier result. [

Marlos C. Machado
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Control
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n-step Sarsa

Giityn = Rep1+vRiq0+-- '+’)’n_1Rt+n+’7th+n—1(St+n,At+n), n>1,0<t<T—n

Qt+n(Sta At) = Qt+n—1(St7 At) + « [Gt:t—i—n - Qt+n—1(St7 At)]

1-step Sarsa
aka Sarsa(0) 2-step Sarsa 3-step Sarsa n-step Sarsa

|
I 7

2

58
3'{3
o W

k]
[92)

o——eo+——e
o—(—eo+——e

!
!

o——eo+—D+—eo—7
.4_04_. e

Marlos C. Machado
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n-step Sarsa

Initialize Q(s, a) arbitrarily, for all s € §,a € A

Initialize 7 to be e-greedy with respect to @, or to a fixed given policy

Algorithm parameters: step size a € (0, 1], small € > 0, a positive integer n

All store and access operations (for Sy, A;, and R;) can take their index mod n + 1

Loop for each episode:
Initialize and store Sy # terminal
Select and store an action Ay ~ m(-|Sp)

T ¢+ ©
Loop for'ti=10 1 2 =%
| Ift < T, then:

| Take action A,

| Observe and store the next reward as R;;1 and the next state as S;1
| If S;41 is terminal, then:

| T+t+1

| else:

| Select and store an action A;y; ~ 7(+|St4+1)

| 7 t—n+1 (7 is the time whose estimate is being updated)

| If7>0:

| G D yimr-1p,

| Ifr+n< T, then G <+ G + ’)’nQ(ST+n, A7-+n) (GT:’T+’n)
| Q(Sr,Ar) < Q(Sr, A7) + a[G — Q(S-, A7)]

| If 7 is being learned, then ensure that 7(-|S;) is e-greedy wrt @

Marlos C. Machado UntilT=T -1
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n-step Sarsa — Example

Action values increased Action values increased
Path taken by one-step Sarsa by 10-step Sarsa
—» +
v
o - —> +

— G)
A
*

Marlos C. Machado
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n-step Expected-Sarsa

Giitin = Rir1 4+ + 7" 'Riyn + 7" Vitn—1(Stsn), t+n<T

Expected approximate value of state s

Vi(s) = Zﬂ'(a|s)Qt(s, a), for all s € 8.

a
1-step Sarsa oo-ste| rs
aka Sarsa(0) 2-step Sarsa 3-step Sarsa n-ste| rsa  aka

o1
T ]

©
[%2])
QO

o—(+—eo+—D—e

!
!

o—+—eo+—+—e+—D—e

.4_04_. e
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n-step Off-Policy Learning

o [0 use data from a behaviour policy, b, we need to consider the difference
between the target policy, 1, and b (i.e., their relative probability of taking the
actions that were taken).

« We need to compute the relative probability of the n actions.

‘/t-l—n(st) = Vvt+n—1(St) + QA Pttyn—1 [Gt:t—}-n — ‘/t-l-n—l(St)] ) D<€ 1,

min(h,T —
(H Y r(AlSk)
b(Ax|Sk)

Pt:h —
k=t

Marlos C. Machado
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n-step Off-Policy Learning
« If an action would never be taken by 7, we ignore

the n-step return (0 = 0).

o If by chance an action that m would take with much
greater probability than b is taken, we need to
over-weight that n-step return by a lot (very large p).

« Again, this can lead to really high variance
(and/or really slow learning).

Marlos C. Machado

Pt:h =

min(h,T'—1)

|1

k=t

7(Ag|Sk)

b(Ax|Sk)
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n-step Off-Policy Learning

Input: an arbitrary behavior policy b such that b(a|s) > 0, for all s € §,a € A
Initialize Q(s, a) arbitrarily, for all s € §,a € A

Initialize m to be greedy with respect to @, or as a fixed given policy

Algorithm parameters: step size o € (0, 1], a positive integer n

All store and access operations (for S¢, A;, and R;) can take their index mod n + 1

Loop for each episode:
Initialize and store Sy # terminal
Select and store an action Ag ~ b(:|So)

T < o©
Loop fort=0,1,2,...:
| Ift < T, then:

| Take action A

| Observe and store the next reward as R:+1 and the next state as Si+1
| If Si41 is terminal, then:

| T—t+1

| else:

| Select and store an action A¢11 ~ b(:|St+1)

| 7+t—n+1 (7 is the time whose estimate is being updated)
|

|

|

|

|

|

Ifr>o0:
P H?::E‘TI-‘—TLT;I) %g:—:‘lg—:)l (p‘r+1:‘r+n)
G« Tl yi-r 1R,
fr+n<T,then: G G+7"Q(Sr4n;Artn) (Grirtn)

Q(Sr, Ar) < Q(Sr, Ar) + ap[G — Q(Sr, Ar)]
If 7 is being learned, then ensure that 7 (:|S;) is greedy wrt @
Marlos C. Machado Until 7 =T -1
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n-step Tree Backup

CMPUT 655 — Class 5/12

« An n-step off-policy learning algorithm without importance sampling.

Marlos C. Machado

® IA ®—— Selected actions
t+1

Actions that

t+2 were not selected

e o o
the 3-step
tree-backup
update
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n-step Tree Backup

CMPUT 655 — Class 5/12

o An n-step off-policy learning algorithm without importance sampling.

« In Tree-Backup, we update the estimated value of the
node at the top of the diagram toward a target
combining the rewards along the way and the estimated
values of the notes at the bottom plus the estimated
values of the dangling action nodes hanging off the

sides, at all levels.

o Each leaf node contributes to the target with a weight
proportional to its probability of occurring under the

target policy.

Marlos C. Machado

Actions that

o
R Atto were not selected
t+3

® o ©o
the 3-step
tree-backup
update
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n-step Tree Backup

« One-step return (target) is the same as that of Expected Sarsa: S, Ay
Rt—HI
Giay1 = Rep1+7 ) m(alSi41)Qi(Ser1,a) /ﬁ\sjﬂ

Marlos C. Machado
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n-step Tree Backup

« One-step return (target) is the same as that of Expected Sarsa:

Get+1 = Rey1+ 7 Z m(a|St+1)Q+(St+1,a)

o The two-step tree-backup return is

Marlos C. Machado

Gity2 = Rip1 +7y Z m(a|St+1)Qt+1(St+1,a)
aFAtq1

+ ym(At+1|Se+1) (Rt+2 +5 Z 7(a|St+2)Qi+1(St+2,a)

= Rer1+7 ), m(a|Se41)Qer1(Ser1, @) + ¥7(Arr1]Se1) Grivitz,
aF A1

® o ©o
the 3-step
tree-backup
update
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n-step Tree Backup

e N-step return for Tree Backup:

Gt:t+n = Rt-l—l ey Z W(a|St+1)Qt+n—1(St+la a) - 2 ’77F(At+1|5t+1)Gt+1:t+n
aFAtt1

Marlos C. Machado
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n-step Tree Backup
e N-step return for Tree Backup:

Gt:t+n = Rt+1 -y Z W(G|St+1)Qt+n—1(St+1, a) - 2 ’77T(At+1|5t+1)Gt+1:t+n
aFAtt1

o Update rule:

Qi+n (St At) = Qi4n—1(St, At) + @ [Gripqn — Qt4n—1(St, At)]

At each step along a trajectory, there are several possible choices of action according
to the target policy. The one-step target combines the value estimates for these actions
according to their probabilities of being taken under the target policy.

Marlos C. Machado
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n-step Tree Backup

Initialize Q(s, a) arbitrarily, for all s € §,a € A

Initialize 7 to be greedy with respect to @, or as a fixed given policy
Algorithm parameters: step size « € (0, 1], a positive integer n

All store and access operations can take their index mod n + 1

Loop for each episode:
Initialize and store Sy # terminal
Choose an action A, arbitrarily as a function of Sp; Store Ay
T ¢ o0
Loop for t =0,1,2,...:
| Ift<T:
| Take action Az; observe and store the next reward and state as Ryi1,St41
| If Si41 is terminal:
| T+t+1
| else:
| Choose an action A;4, arbitrarily as a function of S;;1; Store A;41
| 7+ t+1—n (7isthe time whose estimate is being updated)
| If7>0:
| ft+1>T:
| G+ RT
| else
| G Rep1 +7 )2, m(a]Se41)Q(Sk+1, 0)
| Loop for k = min(¢,T — 1) down through 7 + 1:
| G < Ri + 72,24, ™(alSk)Q(Sk, a) + ym(Ax|Sk)G
| Q(STyAT) N Q(S'rvA'r) +a[G_Q(ST)AT)]
| If 7 is being learned, then ensure that 7(:|S;) is greedy wrt @
Until7r=T-1

Marlos C. Machado
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