“The rotten tree-trunk, until the very moment when the storm-blast breaks it in two,
the appearance of might it ever had.”

tlon to RL
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Plan

o Note on the proof last week

. Course project B

o Markov decision processes

o The problem formulation (and then a solution)

Marlos C. Machado
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Chapter 3

Finite Markov Decision
Processes
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Markov Decision Processes — \Why"?

o “MDPs are a classical formalization of sequential decision making, where actions
influence not just immediate rewards, but also subsequent situations, or states,
and through those future rewards.”

o “Thus MDPs involve delayed reward and the need to trade off immmediate and

delayed reward.”

o “Whereas in bandit problems we estimated the value|qg.(a)

MDPs we estimate the value|qg.(s,a

estimate the value

V.(S)

N—

of each action a, in

of each action a in each state s, or we

of each state given optimal action selections.”

« MDPs are a mathematically idealized form of the reinforcement learning problem
for which precise theoretical statements can be made.

Marlos C. Machado
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Markov Decision Processes — \Why"?

4 .
“In this chapter we introduce the formal problem of
finite Markov decision processes, or finite MDPs,

kwhich we try to solve in the rest of the book.”

~

Marlos C. Machado
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The Agent-Environment Interface

Basis on which the
choices are made

state
S

Figure 3.1: The agent—envir¢

Marlos C. Machado
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Example 1: Navigating a maze

States: cell #
Actions: [up, down, left, right]
Reward:  +1 upon arrival to G

0 otherwise

Dynamics: deterministic outside mud puddle
at the mud puddle you can get stuck
with probability 0.9.

Marlos C. Machado
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Example 2: Bandits

arm 2
arm 1
4\
Ny
< \IN
reward
ofarm 2 reward
ofarm 1

Marlos C. Machado
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Where's the boundary between agent and environment?

It depends!
And it is often much closer than you think!

“The agent-environment boundary represents the limit of the
agent’s absolute control, not of its knowledge.”

Marlos C. Machado
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Formalizing the Agent-Environment Interface
p(s',r|s,a) = Pr{S;=s",Ri=r|S;_1=s,4;_1=a}

Z Zp(s',r|s,a) =1, for all s € 8,a € A(s)
s’eSreR

p(s'|s,a) = Pr{S;=s"|Si_1=s,4i-1=a} = Zp(s’,ﬂs,a)

reR

Marlos C. Machado
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Formalizing the Agent-Environment Interface

r(s,a) = E[R; | Si—1=5,4;-1=a] = Y Y p(s,r|s,a)

reR s’'es

ps r|s, a)

T(S’a,s’) = E[Rt | St_lzs,At—lzafaSt — S,] — Z ,|8 (l
T reR

Can you show this?

Marlos C. Machado
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The Markov Property

“The future is independent of the past given the present”

Pr(S, IS)=PrS_.|S,, ..., S

This should probably be seen as a restriction
on the state, not on the decision process.

Marlos C. Machado
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A note on the Markov property

Definition: We say that (S, A, R,, S;, A, R,, S,, A,, ...) has the Markov property if
foranyt=0,s,s,, ....s, , € % a,a,..a E.&andr G, € R, it holds
that

1’ r2’ o

Pr(R ro S =8,,18,=8,A,=a,, R, =r,...,R =r,85=s,A =a)

tel = e S

only depends on the values of s, a,, s, , andr, ,. In particular, none of the other past

values matter when calculating probabilities of the form above. That is:

Pr(R r S :St+‘||So:So’Ao:ao’R1:r‘|"'-aR:r S:SA:a’[)

1+1 = +17 Tt

=PrR. ,=r ., S 1:St+1|8t:St’At:at)'

t+1 t+17 T+

Marlos C. Machado
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A note on the Markov property

)

\

The Markov property does not mean that the state representation
tells all that would be useful to know, only that it has not forgotten

anything that would be useful to know.

Marlos C. Machado
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Reward Hypothesis

“That all of what we mean by goals and purposes can be well thought of as the
maximization of the expected value of the cumulative sum of a received scalar signal
(called reward).”

Marlos C. Machado
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The ultimate goal: Maximize Returns

End of an episode

Gi = Riy1+ Riyo+ Riyz +-++ Rp*

Continuing task

G¢ = Rip1+7Riy2 + 7V Rz +-- = Z'YthHc-l—L

Gt = Riy1 + YRiv2 + V?Rivs + V2 Reya + -
= Ri11+7v(Riv2 + YRiq3 + 7V’ Reqa + - )
= Ri11 +7Giq1

Marlos C. Machado
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Unifying Notation

T oo
: Z ;E k
k=0 k=0

o We can’t use the same notation for episodic and continuing tasks because:

o We are not specifying the episodes in the indices of an episodic task, we should actually have R, ..
o In continuing tasks we have a sum over infinite numbers and in episodic tasks we sum over finite
numbers.

Marlos C. Machado
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Unifying Notation

T oo
. Z ;2 : k
k=0 k=0

o We can’t use the same notation for episodic and continuing tasks because:
o  We are not specifying the episodes in the indices of an episodic task, we should actually have Rt,i.
o In continuing tasks we have a sum over infinite numbers and in episodic tasks we sum over finite
numbers.

e Solution:
o ltis mostly fine to drop the episode number.
o We create an absorbing state!

T . () C) Rs=0

,yk—t—le

a3
k:t—l—l\T= coory=1
Marlos C. Machado (but not bOth)
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Example

Example 3.4: Pole-Balancing

The objective in this task is to apply

forces to a cart moving along a track

so as to keep a pole hinged to the cart

from falling over: A failure is said to

occur if the pole falls past a given angle

from vertical or if the cart runs off the

track. The pole is reset to vertical

after each failure. This task could be ~— | PN [
treated as episodic, where the natural

episodes are the repeated attempts to balance the pole. The reward in this case could be
+1 for every time step on which failure did not occur, so that the return at each time
would be the number of steps until failure. In this case, successful balancing forever would
mean a return of infinity. Alternatively, we could treat pole-balancing as a continuing
task, using discounting. In this case the reward would be —1 on each failure and zero at
all other times. The return at each time would then be related to —y%~1, where K is
the number of time steps before failure (as well as to the times of later failures). In either
case, the return is maximized by keeping the pole balanced for as long as possible. H




MPUT -Gl 12
o4 CMPUT 655 — Class 3/

Exercise 3.6 of the Textbook

Ezxercise 3.6 Suppose you treated pole-balancing as an episodic task but also used
discounting, with all rewards zero except for —1 upon failure. What then would the
return be at each time? How does this return differ from that in the discounted, continuing
formulation of this task? [

Marlos C. Machado
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Exercise 3.7 of the Textbook

Ezercise 3.7 Imagine that you are designing a robot to run a maze. You decide to give it a
reward of +1 for escaping from the maze and a reward of zero at all other times. The task
seems to break down naturally into episodes—the successive runs through the maze—so
you decide to treat it as an episodic task, where the goal is to maximize expected total
reward (3.7). After running the learning agent for a while, you find that it is showing
no improvement in escaping from the maze. What is going wrong? Have you effectively
communicated to the agent what you want it to achieve? l

Marlos C. Machado
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Exercise 3.8 of the Textbook

Ezercise 3.8 Suppose v = 0.5 and the following sequence of rewards is received R; = —1,
Ry =2, R3 =6, R4 = 3, and R; = 2, with T' = 5. What are Gy, G1, ..., G57 Hint:
Work backwards. [

Marlos C. Machado
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Practice Exercise

1 2 3
, ‘ 4 |5 |6 |7 Ry, =—1
on all transitions
8 9 |10 |1
actions B lia lia
p(6,—1|5,right) = p(10,7|5,right) =

p(7,—1|7,right) =

Marlos C. Machado
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Exercise 3.10 of the Textbook

FEzercise 3.10 Prove the second equality in (3.10).

Marlos C. Machado




Practice Exercise

Prove that the discounted sum of rewards is always finite, if the rewards are
bounded: |R,_ | <R__ foralltfor some finte R__ > 0.

|Z°°oyi R.,,.|<e fory €[0,1). Hint: Recall that |a + b| < |a] + [b].
=
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Solution Practice Exercise

Marlos C. Machado
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Value Functions and Policies

o \Value functions are “functions of states (or state-action pairs) that estimate how
good it is for the agent to be in a given state”.

o “How good” means expected return.

o EXxpected returns depend on how the agent behaves, that is, its policy.

Marlos C. Machado
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Policy

o A policy is a mapping from states to probabilities of selecting each possible action:
T:S — A(A)

in other words, 1i(als) is the probability that A =aif§ =s.

Ezxercise 3.11 1If the current state is S;, and actions are selected according to a stochastic

policy 7, then what is the expectation of R;;; in terms of m and the four-argument
function p (3.2)7 O

Marlos C. Machado
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Value Function

« The value function of a state s under a policy i, denoted v (s) is the expected
return when starting in s and following 1t thereafter.

state-value

function for 56

policy T —___ .

’077(8) = EW[Gt | StZS] = Ew Z’)’th+k+1 St:8]
k=0
- _ _ _ - k _ _
qﬂ'(S?a’) — Ew[Gt | St—S>At—a] = Er Z’)’ Ritr+1 | St=s,At=a
k=0

action-value
function for
policy t

Marlos C. Machado
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Exercises from the Textbook

Ezercise 3.12 Give an equation for v, in terms of ¢, and .

Ezercise 3.13 Give an equation for ¢, in terms of v, and the four-argument p.

Marlos C. Machado
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Value Functions Satisfy Recursive Relationships

’Uﬂ-(S) - EW[Gt | St :8]

Marlos C. Machado
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Value Functions Satisfy Recursive Relationships

vr(8) = Ei Gy | Sp=s]
= Ex[Riy1 +vGq1 | St =3]

_ Z m(als) Z Zp(s', r|s,a) [r + YEA[Ge11|Se41 ZSI]]

=2 n(ale) o p(erlosa)[r + 70 A

This is a system of linear equations!

p'r
OO OO O O

Backup diagram for v,

Marlos C. Machado
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State-Action Value Functions Satisfy Recursive Relationships

Ezxercise 3.17 What is the Bellman equation for action values, that 5,a
is, for ¢,? It must give the action value ¢, (s,a) in terms of the action /N
values, q.(s’,a’), of possible successors to the state—action pair (s, a). s’
Hint: The backup diagram to the right corresponds to this equation. /O\ Z&
Show the sequence of equations analogous to (3.14), but for action ¢ o ¢ od
values. O

qr backup diagram

Marlos C. Machado
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Value Functions in Matrix Notation

Reward vector: Transition probability matrix:
r ¢ RISIMIx1 P e [0, 1]/SIMIxIS

r|sa] = E[r|s, a P|sal [8’] = p(8,|8, a) >0 Zp(s/|s, a) =1

S

Marlos C. Machado



42

Value Functions in Matrix Notation

CMPUT 655 - Class 3/12

VWEH@S‘
Policy matrix:
1 e [0, 1]SIXI8114
r(a]s1)" ’
- m(alsy) "
_ m(alsis)) |

w(als1) = [w(a1]s1) m(agls1) ...

Marlos C. Machado

m(|Alls)]

Notice:
IIP < [0, 1]1S1%IS]
PII c [0, 1]/SIMIxISIIA]
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Value Functions in Matrix Notation

rc R|S||A|><1 P c [O, 1]|S||~A|X|S‘ IT < |0, 1]|3|><|5||v4\

v = IIr +~vIIPv
vr(8) = Z 7(als) Zp(s’, r|s,a) [r + ’y'v,r(s’)]

Marlos C. Machado
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Optimal Policies and Optimal Value Functions

« Value functions define a partial ordering over policies.
o mxT1iffv(s)=v_(s)forals € .
o There is always at least one policy that is better than or equal to all other policies. The optimal policy.

Vi (8) = max v (8)

q+(s,a) = E[Ri11 + 0« (Si41) | Se=s5, A¢=aq]

g« (s,a) = maxq.(s,a)

Marlos C. Machado
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Optimal Policies and Optimal Value Functions

« Because v, is the value function for a policy, it must satisfy the self-consistency
condition given by the Bellman equation for state values.

* — ax (qr ’
v (s) T g .(s,a)

Marlos C. Machado
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Optimal Policies and Optimal Value Functions

« Because v, is the value function for a policy, it must satisfy the self-consistency
condition given by the Bellman equation for state values.

* — ax (r ’
V() T g .(s,a)

=maxE; [G: | St=s,Ar=q]
= m3XEW*[Rt+1 + G411 | Se=s, Ay =al]
= m(?X]E[RtH + Yvx(St+1) | Se=s, Ar=a]

= mngp(s’,ﬂs,a) [ + Yo, (s)].

s',r

0.(5,0) = E[Rip1+ymaxq.(Sis,a) | S =s,4, =q

- Zp(s’,ﬂs,a) ['r' —|—'ymaxq*(s’,a')].
a/

Marlos C. Machado /
s’,r
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Also...

| have highlighted a couple of exercises during the class, but there are more. The
exercises in Chapter 3 of the book are great. | particularly encourage you to look at
Exercises 3.25 —3.29 as well.

Marlos C. Machado
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Reinforcement learning is very related to search algorithms

“Heuristic search methods can be viewed as expanding the right-hand side of the
equation below several times, up to some depth, forming a “tree” of possibilities, and
then using a heuristic evaluation function to approximate v,, at the “leaf” nodes.”

V4 (8) = max Zp(s', r|s,a)|r + v (s")].

s',r

Marlos C. Machado
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Yay! We solved sequential decision-making problems

Except...

1.
2.
3.

Marlos C. Machado
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Yay! We solved seguential decision-making problems

Except...

1. we need to know the dynamics of the environment
2. we have enough computational resources to solve the system of linear eq.

3. the Markov property

Marlos C. Machado
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Next class

 What I plan to do:

o  Dynamic Programming / Bellman Equations
o (Maybe) Monte-Carlo Methods
o What YOU need to do for next class:

o  Week 4 of Fundamentals of RL: Dynamic Programming (Practice quiz and Progr. assignment)
o  Week 2 of Sample-based Methods: Monte Carlo Methods for Prediction & Control
m  Week 1 of Sample-based Methods is just a Welcome video.

m Some of you are not enrolled in the Sample-based Methods module on Coursera.

Marlos C. Machado



