"And always, he fought the temptation to choose a clear, safe course, warning "That path leads ever down into stagnation.""

Frank Herbert, *Dune*

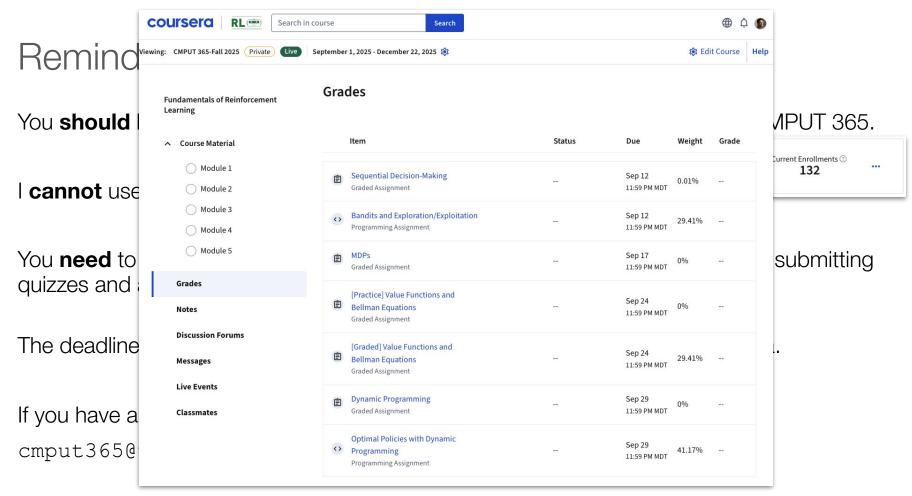
CMPUT 365 Introduction to Sequential-Decision Making

Marlos C. Machado

Classes 2 & 5 of 36

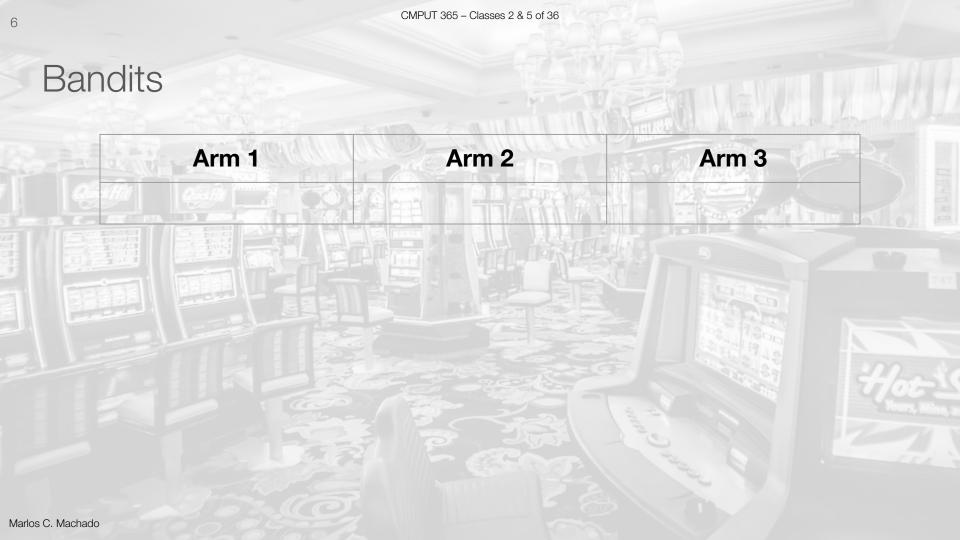
Plan

- Motivation
- Non-comprehensive overview of Intro to Sequential-Decision Making in Coursera (Bandits, Chapter 2 of the textbook)



Please, interrupt me at any time!

Let's play a game!



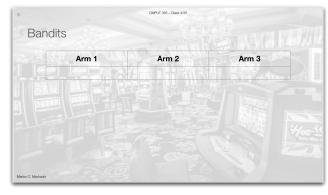
Reinforcement learning (RL)

- RL is about learning from evaluative feedback (an evaluation of the taken actions) rather than instructive feedback (being given the correct actions).
 - Exploration is essential in reinforcement learning.
- It is not necessarily about online learning, as said in the videos, but more generally about sequential decision-making.
- Reinforcement learning potentially allows for continual learning but in practice, quite often we deploy our systems.

Why study bandits?

- Bandits are the simplest possible reinforcement learning problem.
 - Actions have no delayed consequences.
- Bandits are deployed in so many places! [Source: Csaba's slides]
 - Recommender systems (Microsoft paper):
 - News,
 - Videos,
 - **.** ...
 - o Targeted COVID-19 border testing (Deployed in Greece, paper).
 - Adapting audits (Being deployed at IRS in the USA, paper).
 - Customer support bots (Microsoft paper).
 - o ... and more.

Why study bandits?



We don't really know q*, so we use an estimate of it, Q_t

$$q^*(a) \doteq \mathbb{E}[R_t \mid A_t = a]$$

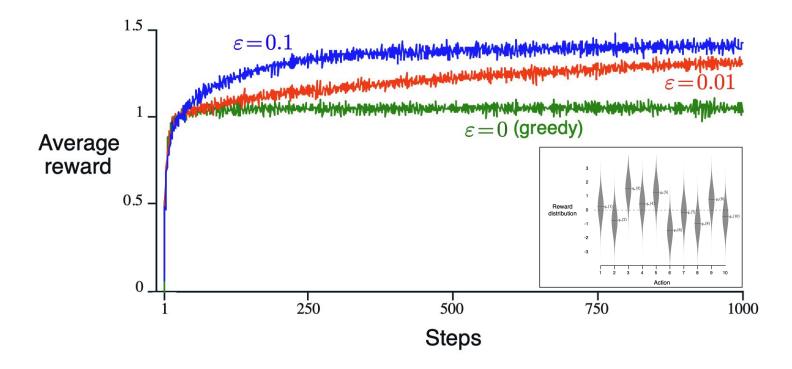
$$A_t = \operatorname{argmax}_a Q_t(a)^2$$

Greedy action

Exploration

- Exploration is the opposite of exploitation.
- It is a whole, very active area of research, despite the textbook not focusing on it.
- How can we explore?
 - Randomly (ε-greedy)
 - Optimism in the face of uncertainty
 - Uncertainty
 - Novelty / Boredom / Surprise
 - Temporally-extended exploration
 - o ..

Exploration matters



Incremental updates to estimate q.

$$Q_{n+1} = \frac{1}{n} \sum_{i=1}^{n} R_i$$

Incremental updates to estimate q.

$$Q_{n+1} = \frac{1}{n} \sum_{i=1}^{n} R_{i}$$

$$= \frac{1}{n} \left(R_{n} + \sum_{i=1}^{n-1} R_{i} \right)$$

$$= \frac{1}{n} \left(R_{n} + (n-1) \frac{1}{n-1} \sum_{i=1}^{n-1} R_{i} \right)$$

$$= \frac{1}{n} \left(R_{n} + (n-1)Q_{n} \right)$$

$$= \frac{1}{n} \left(R_{n} + nQ_{n} - Q_{n} \right)$$

$$= Q_{n} + \frac{1}{n} \left[R_{n} - Q_{n} \right]$$

Update rule

NewEstimate ← OldEstimate + StepSize [Target - OldEstimate]

 $Q_{n+1} \doteq Q_n + \alpha \left[R_n - Q_n \right]$

A bigger step-size means bigger steps (updates).

A constant step-size gives more weight to recent rewards.

How you initialize Q_n really matters.

The principle of **optimism in the face of uncertainty** really leverages that.

This is the direction you need to move to get closer to the solution.

A note on step-sizes

A well-known result in stochastic approximation theory gives us the conditions required to assure convergence with probability 1:

$$\sum_{n=1}^{\infty} \alpha_n(a) = \infty$$

Cannot be too small.
E.g.:
$$\alpha_n = 1/n^2$$

and

$$\sum_{n=1}^{\infty} \alpha_n^2(a) < \infty$$

Cannot be too big.

E.g.:
$$\alpha_n = 1$$

A constant step-size is biased

$$Q_{n+1} = Q_n + \alpha \Big[R_n - Q_n \Big]$$

A constant step-size is biased

$$Q_{n+1} = Q_n + \alpha \Big[R_n - Q_n \Big]$$

$$= \alpha R_n + (1 - \alpha) Q_n$$

$$= \alpha R_n + (1 - \alpha) [\alpha R_{n-1} + (1 - \alpha) Q_{n-1}]$$

$$= \alpha R_n + (1 - \alpha) \alpha R_{n-1} + (1 - \alpha)^2 Q_{n-1}$$

$$= \alpha R_n + (1 - \alpha) \alpha R_{n-1} + (1 - \alpha)^2 \alpha R_{n-2} + \cdots + (1 - \alpha)^{n-1} \alpha R_1 + (1 - \alpha)^n Q_1$$

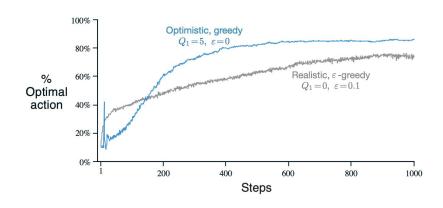
$$= (1 - \alpha)^n Q_1 + \sum_{i=1}^n \alpha (1 - \alpha)^{n-i} R_i.$$

$$Q_i \text{ is always there, forever, impacting the final estimate.}$$

Optimism in the face of uncertainty

$$Q_{n+1} = Q_n + \alpha \Big[R_n - Q_n \Big]$$

Idea: Initialize Q_0 to an overestimation of its true value (optimistically).

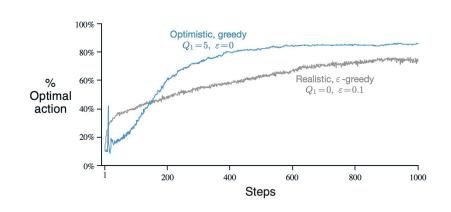


Optimism in the face of uncertainty

$$Q_{n+1} = Q_n + \alpha \Big[R_n - Q_n \Big]$$

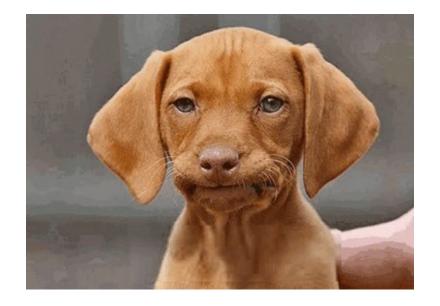
Idea: Initialize Q_0 to an overestimation of its true value (optimistically).

- You either maximize reward or you learn from it.
- The value you initialize Q_0 can be seen as a hyperparameter and it matters.
- There are equivalent transformations in the reward signal to get the same effect.
- For bandits, UCB uses an upper confidence bound that with high probability is an overestimate of the unknown value.



How do we choose the best hyperparameter (α , ϵ , c, etc)?

For this course: we try many things out and see what works best _(ッ)_/





Upper-Confidence-Bound Action Selection

$$A_t \doteq rgmax_a \left[Q_t(a) + c \sqrt{rac{\ln t}{N_t(a)}} \,
ight]$$

Theorem 1. For all K > 1, if policy UCB1 is run on K machines having arbitrary reward distributions P_1, \ldots, P_K with support in [0, 1], then its expected regret after any number n of plays is at most

$$\left[8\sum_{i:\mu_i<\mu^*}\left(\frac{\ln n}{\Delta_i}\right)\right] + \left(1 + \frac{\pi^2}{3}\right)\left(\sum_{j=1}^K \Delta_j\right)$$

where μ_1, \ldots, μ_K are the expected values of P_1, \ldots, P_K .

Contextual bandits (Associative search)

- One need to associate difference actions with different situations.
- You need to learn a policy, which is a function that maps situations to actions.
- Most real-world problems modeled as bandits problems are modeled as contextual bandits problems.
- Example: A recommendation system, which is obviously conditioned on the user to which the system is making recommendations to.

Next class

Reminder: Practice Quiz and Programming Assignment for Coursera's Fundamentals of RL: Sequential decision-making is due next Friday.

- I'll be away Monday and Wednesday
 - o I will make a recording of a background review available for you, in case you want to watch it
 - Richard Sutton, Turing Award Winner, will give a guest lecture on Wednesday!
- What I plan to do on Friday: Wrap up Fundamentals of RL: An introduction to sequential decision-making (Bandits)
 - Time permitting, we'll work on some exercises in the classroom.