"The rotten tree-trunk, until the very moment when the storm-blast breaks it in two, has all the appearance of might it ever had."

Isaac Asimov, Foundation

CMPUT 365 Introduction to RL

Marlos C. Machado

Class 8/ 35

Reminder

You should be enrolled in the private session we created in Coursera for CMPUT 365.

I **cannot** use marks from the public repository for your course marks.

You **need** to **check**, **every time**, if you are in the private session and if you are submitting quizzes and assignments to the private section.

Some students who are enrolled in Coursera haven't submitted any quizzes or assignments in the private session, and that's all I can see.

The deadlines in the public session **do not align** with the deadlines in Coursera.

CMPUT 365 - Class 8/35

Please, interrupt me at any time!

Value Functions Satisfy Recursive Relationships

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_t \mid S_t = s]$$

Value Functions Satisfy Recursive Relationships

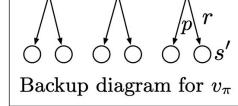
$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_t \mid S_t = s]$$

$$= \mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1} \mid S_t = s]$$

$$= \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s', r|s, a) \left[r + \gamma \mathbb{E}_{\pi}[G_{t+1}|S_{t+1} = s']\right]$$

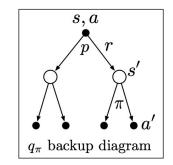
$$= \sum_{a} \pi(a|s) \sum_{s', r} p(s', r|s, a) \left[r + \gamma v_{\pi}(s')\right]$$
This is a set of linear equations.

This is a system of linear equations!



State-Action Value Functions Satisfy Recursive Relationships

Exercise 3.17 What is the Bellman equation for action values, that is, for q_{π} ? It must give the action value $q_{\pi}(s, a)$ in terms of the action values, $q_{\pi}(s', a')$, of possible successors to the state-action pair (s, a). Hint: The backup diagram to the right corresponds to this equation. Show the sequence of equations analogous to (3.14), but for action values.



Optimal Policies and Optimal Value Functions

- Value functions define a partial ordering over policies.
 - $\circ \qquad \pi \geq \pi' \text{ iff } v_{\pi}(s) \geq v_{\pi'}(s) \text{ for all } s \in \mathscr{S}.$
 - There is always at least one policy that is better than or equal to all other policies. The *optimal policy*.

$$v_*(s) \doteq \max_{\pi} v_{\pi}(s)$$

$$q_*(s,a) = \mathbb{E}[R_{t+1} + \gamma v_*(S_{t+1}) \mid S_t = s, A_t = a]$$

$$q_*(s,a) \doteq \max_{\pi} q_{\pi}(s,a)$$

Optimal Policies and Optimal Value Functions

 Because v_{*} is the value function for a policy, it must satisfy the self-consistency condition given by the Bellman equation for state values.

$$v_*(s) = \max_{a \in \mathcal{A}(s)} q_{\pi_*}(s, a)$$

Optimal Policies and Optimal Value Functions

 v_*

 Because v_{*} is the value function for a policy, it must satisfy the self-consistency condition given by the Bellman equation for state values.

$$(s) = \max_{a \in \mathcal{A}(s)} q_{\pi_*}(s, a)$$

= $\max_{a} \mathbb{E}_{\pi_*}[G_t \mid S_t = s, A_t = a]$
= $\max_{a} \mathbb{E}_{\pi_*}[R_{t+1} + \gamma G_{t+1} \mid S_t = s, A_t = a]$
= $\max_{a} \mathbb{E}[R_{t+1} + \gamma v_*(S_{t+1}) \mid S_t = s, A_t = a]$
= $\max_{a} \sum_{s', r} p(s', r \mid s, a) [r + \gamma v_*(s')].$

$$q_*(s,a) = \mathbb{E}\Big[R_{t+1} + \gamma \max_{a'} q_*(S_{t+1},a') \mid S_t = s, A_t = a\Big] \\ = \sum_{s',r} p(s',r|s,a) \Big[r + \gamma \max_{a'} q_*(s',a')\Big].$$

Marlos C. Machado

Also...

I have highlighted a couple of exercises during the class, but there are more. The exercises in Chapter 3 of the book are great. I particularly encourage you to look at Exercises 3.25 - 3.29 as well.

Reinforcement learning is very related to search algorithms

"Heuristic search methods can be viewed as expanding the right-hand side of the equation below several times, up to some depth, forming a "tree" of possibilities, and then using a heuristic evaluation function to approximate v_{*}, at the "leaf" nodes."

$$v_*(s) = \max_a \sum_{s',r} p(s',r|s,a) [r + \gamma v_*(s')].$$

Yay! We solved sequential decision-making problems

Except...

1.

2.

15

З.

Yay! We solved sequential decision-making problems

Except...

- 1. we need to know the dynamics of the environment
- 2. we have enough computational resources to solve the system of linear eq.
- 3. the Markov property

17

Next class

- What <u>I</u> plan to do:
 - Exercises and Examples

- What I recommend <u>YOU</u> to do for next class:
 - Submit Graded Quiz for Fundamental of RL: Value functions & Bellman equations (Week 3).