"Where did you go to, if I may ask?" said Thorin to Gandalf as they rode along "To look ahead," said he. "And what brought you back in the nick of time?" "Looking behind," said he.

J.R.R. Tolkien, The Hobbit

CMPUT 365 Introduction to RL

Marlos C. Machado

Class 14/35

Reminder

You should be enrolled in the private session we created in Coursera for CMPUT 365.

I **cannot** use marks from the public repository for your course marks.

You **need** to **check**, **every time**, if you are in the private session and if you are submitting quizzes and assignments to the private section.

There were **17 pending invitations** last time I checked!

If you have any questions or concerns, **talk with the TAs** or email us cmput365@ualberta.ca.

Reminders and Notes

- On the midterm:
 - The marks are now available on eClass. I will share instructions for the exam viewing soon.
- What <u>I</u> plan to do today:
 - Continue overview of Monte Carlo Methods for Prediction & Control (Chapter 5 of the textbook).
- What I recommend **YOU** to do:
 - Graded Quiz (Off-policy Monte Carlo) is due today.
 - Programming Assignment is not graded this week.

SPOT: Mid-term Course Evaluation

https://go.blueja.io/MlqAHuUezE-my_PTHx9IEg

CMPUT 365 - Class 14/35

Please, interrupt me at any time!

Last Class: Monte Carlo Prediction

First-visit MC prediction, for estimating $V \approx v_{\pi}$

7

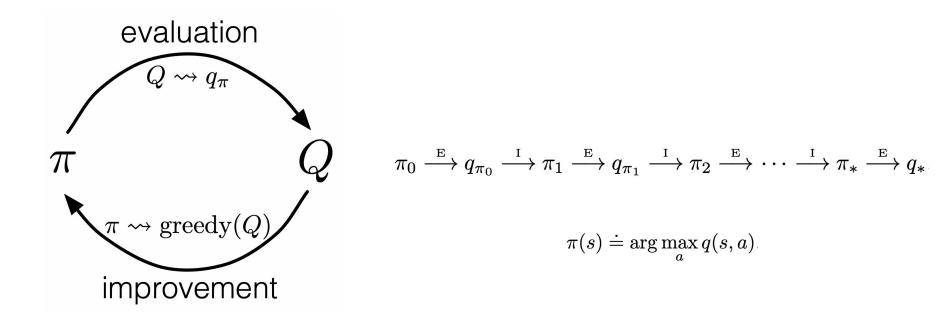
Some useful information / reminders about MC Methods

- Often it is much easier to get samples than to get the distribution of next events. Recall the Blackjack example in the textbook.
- Monte Carlo methods do not *bootstrap* (the estimate for one state does not build upon the estimate of any other state).
- First/every-visit MC converge to $v_{\pi}(s)$ as the number of visits to s goes to infinity. In first-visit MC, each return is i.i.d. and has finite variance $\sqrt{(\mathcal{Y})}$
- The computational cost of estimating the value of a single state is independent of the number of states.

Monte Carlo Estimation of Action Values

- If we don't have access to a model, we need to estimate action values.
- Same as before, but now we visit state-action pairs _(𝒴)_/
 But to estimate q_∗ we need to estimate the value of *all* actions from each state.
 Solution? Exploration! ... or exploring starts 😒

Monte Carlo Control



Monte Carlo ES

```
Monte Carlo ES (Exploring Starts), for estimating \pi \approx \pi_*
Initialize:
    \pi(s) \in \mathcal{A}(s) (arbitrarily), for all s \in S
    Q(s, a) \in \mathbb{R} (arbitrarily), for all s \in S, a \in \mathcal{A}(s)
    Returns(s, a) \leftarrow empty list, for all s \in S, a \in \mathcal{A}(s)
Loop forever (for each episode):
     Choose S_0 \in S, A_0 \in \mathcal{A}(S_0) randomly such that all pairs have probability > 0
    Generate an episode from S_0, A_0, following \pi: S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T
    G \leftarrow 0
    Loop for each step of episode, t = T-1, T-2, \ldots, 0:
         G \leftarrow \gamma G + R_{t+1}
          Unless the pair S_t, A_t appears in S_0, A_0, S_1, A_1, \ldots, S_{t-1}, A_{t-1}:
               Append G to Returns(S_t, A_t)
               Q(S_t, A_t) \leftarrow \operatorname{average}(Returns(S_t, A_t))
               \pi(S_t) \leftarrow \operatorname{arg\,max}_a Q(S_t, a)
```


MC Control without Exploring Starts

On-policy first-visit MC control (for ε -soft policies), estimates τ	$ au pprox \pi_*$
Algorithm parameter: small $\varepsilon > 0$ Initialize: $\pi \leftarrow \text{an arbitrary } \varepsilon\text{-soft policy}$ $Q(s, a) \in \mathbb{R}$ (arbitrarily), for all $s \in S$, $a \in \mathcal{A}(s)$ $Returns(s, a) \leftarrow \text{empty list, for all } s \in S$, $a \in \mathcal{A}(s)$	
$ \begin{array}{l} \text{Repeat forever (for each episode):} \\ \text{Generate an episode following } \pi: \ S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T \\ G \leftarrow 0 \\ \text{Loop for each step of episode, } t = T-1, T-2, \ldots, 0: \\ G \leftarrow \gamma G + R_{t+1} \\ \text{Unless the pair } S_t, A_t \text{ appears in } S_0, A_0, S_1, A_1 \ldots, S_{t-1}, A_{t-1}: \\ \text{Append } G \text{ to } Returns(S_t, A_t) \\ Q(S_t, A_t) \leftarrow \text{average}(Returns(S_t, A_t)) \\ A^* \leftarrow \arg\max_a Q(S_t, a) \\ \text{For all } a \in \mathcal{A}(S_t): \\ \pi(a S_t) \leftarrow \left\{ \begin{array}{c} 1-\varepsilon + \varepsilon/ \mathcal{A}(S_t) & \text{if } a = A^* \\ \varepsilon/ \mathcal{A}(S_t) & \text{if } a \neq A^* \end{array} \right. \end{array} \right. $	We need to ensure that the probability we select each action is not zero. rbitrarily)

MC Control without Exploring Starts

On-policy: You learn about the policy you used to make decisions.

Off-policy: You learn about a policy that is different from the one you used to make decisions.

```
On-policy first-visit MC control (for \varepsilon-soft policies), estimates \pi \approx \pi_*
Algorithm parameter: small \varepsilon > 0
Initialize:
    \pi \leftarrow an arbitrary \varepsilon-soft policy
    Q(s, a) \in \mathbb{R} (arbitrarily), for all s \in S, a \in \mathcal{A}(s)
    Returns(s, a) \leftarrow empty list, for all s \in S, a \in \mathcal{A}(s)
Repeat forever (for each episode):
    Generate an episode following \pi: S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T
    G \leftarrow 0
    Loop for each step of episode, t = T - 1, T - 2, \dots, 0:
         G \leftarrow \gamma G + R_{t+1}
         Unless the pair S_t, A_t appears in S_0, A_0, S_1, A_1, \ldots, S_{t-1}, A_{t-1}:
              Append G to Returns(S_t, A_t)
              Q(S_t, A_t) \leftarrow \operatorname{average}(Returns(S_t, A_t))
              A^* \leftarrow \operatorname{arg\,max}_a Q(S_t, a)
                                                                                   (with ties broken arbitrarily)
              For all a \in \mathcal{A}(S_t):
                      \pi(a|S_t) \leftarrow \begin{cases} 1 - \varepsilon + \varepsilon/|\mathcal{A}(S_t)| & \text{if } a = A^* \\ \varepsilon/|\mathcal{A}(S_t)| & \text{if } a \neq A^* \end{cases}
```

