"All have their worth," said Yavanna, "and each contributes to the worth of the others".

J.R.R. Tolkien, The Silmarillion

CMPUT 365 Introduction to RL

Marlos C. Machado

Class 11/35

Reminder I

You should be enrolled in the private session we created in Coursera for CMPUT 365.

I **cannot** use marks from the public repository for your course marks.

You **need** to **check**, **every time**, if you are in the private session and if you are submitting quizzes and assignments to the private section.

The deadlines in the public session **do not align** with the deadlines in Coursera.

If you have any questions or concerns, **talk with the TAs** or email us cmput365@ualberta.ca.

Reminder II

- Progr. assign. for Coursera's Dynamic Programming module is due Friday. Fundamentals of RL: Dynamic Programming – Week 4.
- Monday is a holiday: National Day for Truth and Reconciliation
- Midterm 1 is next Friday.
 Bring your OneCard ID
 No calculators, no cheat sheet

Last Class: Policy Evaluation (Prediction)

Iterative Policy Evaluation, for estimating $V \approx v_{\pi}$

```
Input \pi, the policy to be evaluated
Algorithm parameter: a small threshold \theta > 0 determining accuracy of estimation
Initialize V(s) arbitrarily, for s \in S, and V(terminal) to 0
Loop:
\Delta \leftarrow 0
Loop for each a \in S:
```

Loop for each
$$s \in s$$
:
 $v \leftarrow V(s)$
 $V(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$
 $\Delta \leftarrow \max(\Delta, |v - V(s)|)$
until $\Delta < \theta$

Policy Improvement

Given a value function for a policy π , how can we get a better policy π ?

We already know how good policy π is, what if we acted differently now? What if instead of selecting action $\pi(s)$ we selected action $a \neq \pi(s)$, but then we followed π ?

We know the value of doing that!

$$\begin{array}{lll} q_{\pi}(s,a) &\doteq & \mathbb{E}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_t = s, A_t = a] \\ \text{If this new action is} &= & \sum_{s',r} p(s',r \mid s,a) \Big[r + \gamma v_{\pi}(s') \Big]. \\ \text{this new policy is} &= & s',r \end{array}$$

better, in

Policy Improvement – Intuition

 v_k for the random policy

	←	↔	↔
t	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow
€	⇐	↔	Ļ
\leftrightarrow	\Leftrightarrow	\rightarrow	

.

Policy Improvement Theorem

That this is true is a special case of a general result called the *policy improvement* theorem. Let π and π' be any pair of deterministic policies such that, for all $s \in S$,

$$q_{\pi}(s, \pi'(s)) \ge v_{\pi}(s).$$
 (4.7)

Then the policy π' must be as good as, or better than, π . That is, it must obtain greater or equal expected return from all states $s \in S$:

$$v_{\pi'}(s) \ge v_{\pi}(s). \tag{4.8}$$

A more aggressive update

Instead of doing it for a particular action in a single state, we can consider changes at *all* states and to *all* possible actions.

$$egin{aligned} &\pi'(s) &\doteq rg\max_a q_\pi(s,a) \ &= rg\max_a \mathbb{E}[R_{t+1} + \gamma v_\pi(S_{t+1}) \mid S_t = s, A_t = a] \ &= rg\max_a \sum_{s',r} p(s',r \mid s,a) \Big[r + \gamma v_\pi(s') \Big], \end{aligned}$$

This is called *policy improvement*. And eventually it converges to the optimal policy.

Policy Improvement – Intuition

 v_k for the random policy

	←	←	\leftrightarrow
t	Ļ	↔	ţ
t	\Leftrightarrow	L→	ţ
\Leftrightarrow	\rightarrow	→	

11

Policy Iteration: Interleaving Policy Eval. and Improvement

Marlos C. Machado

Value Iteration

Value Iteration, for estimating $\pi \approx \pi_*$

Algorithm parameter: a small threshold $\theta > 0$ determining accuracy of estimation Initialize V(s), for all $s \in S^+$, arbitrarily except that V(terminal) = 0

Generalized Policy Iteration

17