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ABSTRACT
We propose to demonstrate Rubato DB, a highly scalable
NewSQL system, supporting various consistency levels from
ACID to BASE for big data applications. Rubato DB em-
ploys the staged grid architecture with a novel formula based
protocol for distributed concurrency control. Our demon-
stration will present Rubato DB as one NewSQL database
management system running on a collection of commodity
servers against two of benchmark sets.

The demo attendees can modify the configuration of sys-
tem size, fine-tune the query workload, and visualize the
performance on the fly by the graphical user interface. At-
tendees can experiment with various system scales, and thus
grasp the potential scalability of Rubato DB, whose perfor-
mance, with the increase of the number of servers used, can
achieve a linear growth for both OLTP application with the
strong consistency properties and key-value storage applica-
tions with the weak consistency properties.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Concurrency,
Transaction processing ; H.3.4 [Information Storage and
Retrieval]: Systems and Software—Distributed systems

Keywords
Scalability; Concurrency Control; ACID; BASE

1. INTRODUCTION
Today, data is flowing into organizations at an unprece-

dented scale in the world. The ability to scale out for pro-
cessing an enhanced workload has become an important fac-
tor for the proliferation and popularization of data manage-
ment system. The pursuit for tackling the big data chal-
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lenges has given rise to a plethora of data management sys-
tems characterized by high scalability. Diverse systems for
processing big data explore various possibilities in the in-
frastructure design space. The trend of using lower-end,
commodity servers to scale out configurations has become
popular, due to the drop in prices for the hardware and the
improvement in performance and reliability.

A notable phenomena is the NoSQL movement that be-
gan in early 2009 and is growing rapidly. NoSQL systems
are characterized as simplified highly scalable systems ad-
dressing properties of schema-free, simple-API, horizontal
scalability and relaxed consistency [2, 5, 8].

The recently proposed NewSQL systems (relative to NoSQL)
aim to achieve the high scalability and availability same as
NoSQL, while preserving the ACID properties for transac-
tions and complex functionality of relational databases [11].
NewSQL database systems are appropriate in applications
where traditional RDBMS have been used, but requiring
additional scalability and performance enhancement.

According to the core requirement differences between
NoSQL systems and NewSQL systems, there are challenges
in the implementation of NewSQL systems in the following
aspects:

• Data model. NoSQL systems usually merely support
non-relational data model such as key-value stores [5]
and Bigtable-like stores [1]. NoSQL systems represent
a recent evolution by making trade-off between scala-
bility and complexity of the data model. Thus the im-
plementation of NewSQL systems faces with the first
issue:

Is the complex relational data model an obsta-
cle of scalability?

• Consistency model. The NoSQL systems represent
an evolution in building scalable infrastructure by sac-
rificing strong consistency and opting for weak con-
sistency [2, 5, 8]. However, strong consistency lev-
els such as ACID properties are essential for NewSQL
systems to manage critical data which requires both
liveness and safety guarantees. The implementation of
NewSQL systems meets the second challenge:

Is it possible to achieve high scalability with
ACID?



• Architecture. Traditional database vendors employ
new techniques to explore the scalability of the sym-
metric multiple processing (SMP) architecture and the
massively parallel processing (MPP) architecture. How-
ever, because of the inherent deficiencies due to the
resources contention, the scalability of such architec-
tures is not comparable with NoSQL systems. Some
NoSQL systems based on the Bigtable [1] and MapRe-
duce framework [4] utilize the shared-nothing infras-
tructure to provide high scalability. A set of systems
with high-level declarative languages, including Yahoo!
Pig [9] and Facebook Hive [13], are realized to compile
queries into the MapReduce framework on the Hadoop
platform.

To achieve high performance and scalability, innova-
tive software architecture should be applied to NewSQL
systems, then we need to consider:

Is it possible to scale out commonly used single
server database system design?

We have developed a highly scalable NewSQL system,
called Rubato DB [17] with satisfactory solutions for the
challenges as mentioned above, by applying the principles
as following:

• Exploring the close integration of data partitioning
and relational data model to eschew data skew for
transactions.

• Obtaining high scalability with the MapReduce [4] sevice-
oriented architecture.

• Scaling out the concurrency control protocol for ACID
based on timestamps rather than any locking mecha-
nism.

• Overcoming the weakness of BASE through stronger
consistency models such as BASIC [16].

The implementation of Rubato DB combines and extends
the ideas from:

hybrid data partitioning, staged-event driven ar-
chitecture (SEDA) [15], data-intensive MapRe-
duce framework [4], and distributed timestamp-
based concurrency control;

and using innovative technologies such as

Formula based protocol, software instruction, lazy
loading, dynamic timestamp ordering, multiple
communication protocols.

Rubato DB is a highly scalable NewSQL database sys-
tem running on a collection of commodity servers that sup-
ports various consistency guarantees1 including the tradi-
tional ACID and BASE, and a novel consistency level in
between, i.e., BASIC [16]; and conforms with the SQL2003;
and has been used in some commercial applications.

The proposed demo is to demonstrate and verify the per-
formance and scalability of Rubato DB under both TPC-C
benchmark [14] and YCSB benchmark [3]. More specifically,
the demonstration will allow demo attendees to try out Ru-
bato DB for the following objectives:
1The name Rubato, (from Italian rubare, “to rob”), in music,
means subtle rhythmic manipulation and nuance in perfor-
mance. It describes the practice of Rubato DB for support-
ing various consistencies with freedom.

1. Feasible Configuration. To deploy Rubato DB on a
collection of commodity servers, ranging from 1 to 16.

2. Data Loading. To load large size of data distributed
across numbers of nodes automatically according to
pre-defined data partitioning schema.

3. High Scalability. To demonstrate the linear scal-
ability of Rubato DB for typical OLTP applications
requiring the ACID properties under TPC-C bench-
mark.

4. Various Consistency Levels. To compare perfor-
mances of Rubato DB with either BASE or BASIC
properties and other NoSQL systems with BASE prop-
erties under YCSB benchmark.

A friendly Graphical User Interface will be provided in the
proposed demo to enable demo attendees to choose different
experiments and deployment configurations, and to display
performance results and internal working loads.

The rest of the paper is organized as follows. Section 2
describes the architecture of Rubato DB and some of its key
features; and Section 3 outlines the experiment setups and
the demonstration we plan to show. The conclusion is in
Section 4.

2. OVERVIEW OF RUBATODB
Rubato DB is a scalable NewSQL database system sup-

porting relational data model for data-centric applications.
The main architectural components of Rubato DB are de-
picted in Figure 1 [17]. We firstly give a brief overview of
the several essential Rubato DB components as below, be-
fore describing the contents of our demonstration.

Figure 1: RubatoDB system architecture

2.1 Socket Monitor
Rubato DB runs on a collection of servers as one database

management system, with a single socket monitor to estab-
lish and record the connection states for all client requests.

The socket monitor adopts a loading control schema, called
lazy loading, to reduce data contention and to minimize un-
necessary rollbacks. The socket monitor maintains two lists
of clients: a list of active clients with active transactions,
and a list of requesting clients whose requests are waiting to
be evaluated. The socket monitor will not process any re-
quest when the oldest waiting transaction is not among the
oldest 20% ones base on the following practical principle:



If all the current requests have higher potential
to conflict with other requests, the system should
rather wait awhile for new requests with lower
conflict potential to arrive.

2.2 SQL Engine
Rubato DB’s SQL engine is used to process all the SQL

queries, including aggregate functions and nested queries,
updates, and all other requests according to SQL2003.

The SQL engine is composed as a set of staged grid mod-
ules, each of which is a self-contained software module con-
sisting of an incoming request queue, as illustrated in Fig-
ure 2. Threads within each staged grid module operate by
pulling a sequence of requests, one at a time, off the input
queue, invoking the application-supplied event handler (e.g.
parser, optimizer, query, update, etc) to process requests,
and dispatching outgoing results by enqueuing them on the
request queues of outgoing staged grid module, located ei-
ther in the same server or another server within LAN. Each
request to the system will be processed in a relay-style by
being passed from one staged grid module to the next one
until it is completed. Both parallelism and pipeline execu-
tion are supported by the engine.

A set of software instructions are employed to carry the
operation’s backpack with its private state and data. The
instruction with a uniform format is the only packet flow-
ing through different staged grid modules. To improve the
performance, multiple communication protocols are utilized
depending on the source and destination locations of stages
and/or system resources.

Figure 2: Staged Modules of SQL Engine

2.3 Transaction Manager
The transaction manager, consisting of Transaction stage

and Formula DB, is responsible for coordinating data access
on multiple nodes based on a novel formula protocol for con-
currency (FPC) to ensure serializability. It is the transaction
manager that performas all the transactional operations, in-
cluding pre-commit (necessary for distributed concurrency),
commit, and rollback.

The FPC is a novel implementation of the classical Multi-
version Timestamp Concurrency Control Protocol [12], with
two distinct features:

1. Instead of using multiple versions of updated data items,
FPC uses formulas stored in memory (associated with
the updated data items) to represent the multiple val-
ues of updated data items, which will reduce overhead
of storing multiple data versions.

2. The timestamp ordering of transactions may be altered
to allow a transaction with older timestamp to read the
data item updated by a later transaction, as long as

the serializability is respected, which will increase the
degree of concurrency.

The two parts of the transaction manager perform their
respective responsibilities:

(a) Transaction stage. A dedicated stage grid module that
is located in every grid server and is responsible for all
the basic transactional operations including pre commit,
commit and rollback of the transaction manager.

(b) Formula DB. A thread-free layer on the top of the Berke-
ley DB such that all disk accesses in Rubato DB are
through Formula DB.

Three different consistency levels are supported by Rubato
DB:

1. ACID. The strongest end of the consistency spectrum
for the transactional functionalities.

2. BASE. The most notable weak consistency model used
by NoSQL systems [2, 5, 8]. The BASE can be sum-
marized as: the system responses basically all the time
(Basically Available), is not necessary to be always
consistent (Soft-state), but has to come to a consis-
tent state eventually (Eventual consistency) [10].

3. BASIC. Rubato DB is not limited to merely ACID
that is too strong and BASE which is too weak, but
rather supports BASIC, a spectrum between these two
extreme. BASIC stands for Basic Availability, Scal-
ability, Instant Consistency [16]. BASE and BASIC
provide different choices between the model that is
faster but requiring extra efforts to deal with incon-
sistent results and the model that delivers consistent
results but is relatively slower with higher latency.

Figure 3 illustrates the various consistency levels sup-
ported by Rubato DB together with different tolerance for
fault or network partition.

Figure 3: Generalized CAP Theorem [16]

2.4 Storage Manager
Rubato DB uses a hybrid data storage partition solution

to allow a table to be partitioned vertically and horizontally
and stored separately over different grid nodes.



Figure 4: Hybrid partition of Storage Manager

Figure 5: Grid partition illustration

Storage manager uses Berkeley DB for all disk accesses to
direct attached storages (DAS). All tables and their parti-
tions if any are stored on local disk as a Berkeley DB file.
To obtain maximum performance, when a table is created
according to the schema, the storage manager provides fa-
cilities for users to specify fine-gained hybrid storage parti-
tioning based on application semantics and query workload.

As depicted in Figure 4, the column partition enables
users to store a single relation as a collection of disjoint
(none-key columns) vertical partitions of different groups.
Columns frequently accessed together are clustered into the
same frequent column group, while columns seldom accessed
are categorized into static column groups. Compression can
be also applied to take the benefits of column-oriented lay-
out. The grid partition is used to deploy data on multiple
nodes and thus provides scale-out capability.

Rubato DB applies a tree-based schema for grid partition-
ing, as demonstrated in Figure 5. Tuples in every descen-
dent table are partitioned according to the ancestor that
they descend from. As a consequence, data accessed within
a transaction will be located in the same data node [6, 7].
This tree structure implies that corresponding to every row
in the root table, there are a group of related rows in the
descendant tables. All rows inherent from the same root are
guaranteed to be co-located.

3. DEMONSTRATION
The proposed demo is to demonstrate and verify the per-

formance of Rubato DB under both TPC-C and YCSB bench-
mark tests [3, 14]. The demonstration will allow demo at-
tendees to try out Rubato DB for the following objectives:

1. Feasible Configuration. How to deploy Rubato DB
on a collection of commodity servers?

2. Data Loading. How to load large size of data dis-

tributed across numbers of nodes automatically ac-
cording to the predefined data partitioning schema?

3. High Scalability. What is the scalability of Rubato
DB for the typical OLTP applications requiring the
ACID properties?

4. Various Consistency Levels. What are performance
comparisons between Rubato DB with either BASE
or BASIC properties and other NoSQL systems with
BASE property for big data applications?

A graphical user interface for Rubato DB will be provided
to facilitate users to explore Rubato DB.

3.1 Setup Details
All the demo will be conducted on a collection of four

(4) commodity servers with 4 quad-core Intel Xeon CPUs,
64 GB of main memory, SATA disks configured in RAID0,
running Linux Ubuntu 12.04 LTS.

For simplicity, each server may be used as 1 to 4 nodes,
that is, Rubato DB may be configured and then deployed
on all four servers as 16 nodes such that all nodes will be
connected only through the TCP/IP protocol.

Our demo is based on two well-known representative bench-
marks. We use the TPC-C [14] benchmark’s set of trans-
actions, database schema, and pre-generated data as our
target domain for demo about OLTP workloads. All the
demos conducted are according to the TPC-C specification.
In addition, demo attendees can also take the Yahoo! Cloud
Serving Benchmark (YCSB) [3] on Rubato DB. The num-
ber of operations per second will be reported with varying
distribution of read/write operations.

In order to demonstrate most important features of Ru-
bato DB within a limited time, we have pre-load all the
initial databases as per the benchmark specifications.

For the TPC-C benchmark, we have populated 2000 ware-
houses, and all TPC-C tables are column-partitioned in to
frequent and static column groups; and then grid-partitioned
across different nodes according to a schema structure. The
number of warehouses deployed is proportional to the sys-
tem size chosen by the attendee.

For YCSB which is relatively simple, we define a multi-
column structure for each record, which consists of one key
column of integer type and 20 data columns of text type.
We pre-load 100 million 1KB records on each node, resulting
120GB of raw data per node.

3.2 Demonstration Details
The proposed demonstration will perform both TPC-C

and YCSB benchmarks on various configurations, including
the number of nodes (scalability), the number of warehouses
(the work load for TPC-C), and weights in read/write (the
workload for YCSB). The following table summarizes the
results displayed for various tasks and/or configurations.

Task Nodes Work load Display

TPC-C 1-16
100-2000 tmpC

(warehouses) CPU/Memory Usage

YCSB 1-12
0% - 10% Throughput

(write operations) Latency



3.3 User Interaction
To facilitate interaction with Rubato DB during the demon-

stration, a friendly graphical user interface is provided, as
shown in the mock-up in Figure 6.

Figure 6: Graphical User Interface of Rubato DB

The interface consists of the following panels.

1. Configuration Panel:

This panel enable users to choose

(a) the demo tasks: TPC-C or YCSB tests;

(b) the number of nodes, from 1 to 16 nodes;

(c) the workload: the number of warehouses for TPC-
C and the read/write weight for YCSB;

(d) the different consistency levels: ACID, BASIC,
BASE.

2. Performance Monitor Panel:

This panel displays the demo performance, including
the number of transactions/minute (TPC-C) or the
number of operations/second (YCSB), the CPU time
and the memory usage, and the running status of each
node.

3. Historical Graph Panel:

It is used to visualize the change curve of throughput
as well as the CPU time and memory usage of each
node, as specified by the user.

4. SQL Panel:

An SQL console is provided for users to query the Ru-
bato DB as well to manipulate workload control.

3.4 Performance Expectation
Demo attendees can obtain the performance of Rubato

DB using the GUI. Here we provide the expected perfor-
mance results so that attendees can make the comparison
and verify the features of Rubato DB.

Figure 7 demonstrates that the performance (tpmC) of
the TPC-C benchmark test of Rubato DB increases from
5000 concurrent clients (500 warehouses) running on a sys-
tem instance with 1-node, to 67,000 concurrent clients (6700

warehouses) running on a system instance with 16 nodes.
The result under the TPC-C benchmark test clearly shows
that:

The performance of Rubato DB scales up
linearly with the increase of the number of
nodes deployed.The rollback ratio is stable
at a low level.

Figure 7: Expected Results of TPC-C Benchmark

Figure 8: Expected Throughout Comparison of
YCSB

For the results of YCSB, though users can set any propor-
tion for read/write operation, we present the performance
for a typical read-intensive workloads: read intensive (90%
read and 10% write operations).

Also, we present the comparison with Cassandra2 [8]: an
open-source key-value store clone of Dynamo [5], HBase3:
an open-source bigtable-like system [1]. The experiments
are conducted with the number of nodes as 1, 2, 4, 8 and 12.
This result sets shown in Figure 9 can clearly demonstrate
that:

The performance and scalability of Rubato
DB is comparable with that of other pop-
ular scalable NoSQL system.

By demonstrating the performance of Rubato DB with
BASIC properties, we can also show that RubatoDB with

2http://cassandra.apache.org/
3http://hbase.apache.org/



Figure 9: Expected Latency Comparison of YCSB

BASIC properties still preserves near-linear scalability with
increasing throughput and flat latency, same as systems with
BASE. We can conclude that:

The cost induced by BASIC is acceptable
comparing with the extra efforts needed to
manipulate the inconsistent soft states for
BASE. BASIC pays a reasonable price for
a higher consistency than BASE.

4. CONCLUSION
We present a demonstration of Rubato DB, a scalable

NewSQL system, showcasing the main feature of scalability
with various consistency properties from ACID to BASE,
which provides a positive answer to the question on the
trade-off between scalability and consistency.

The development of NewSQL database systems is a topic
with strong interest over recent years and with a great po-
tential impact on data management, especially in the face of
big data challenges. With experiments and explorations on
our pioneering Rubato DB system, we are exploiting road
for the design and implementation of the new generation of
database systems.
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