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ABSTRACT Introducing a strong consistency model into NoSQL data storages is one of the most interesting
issues nowadays. In spite of the CAP theorem,manyNoSQL systems try to strengthen the consistency to their
limits to better serve the business needs. However, many consistency-related problems that occur in popular
data storages are impossible to overcome and enforce rebuilding thewhole system from scratch. Additionally,
providing scalability to those systems really complicates the matter. In this paper, a novel data storage
architecture that supports strong consistency without loosing scalability is proposed. It provides strong
consistency according to the following requirements: high scalability, high availability, and high throughput.
The proposed solution is based on the Scalable Distributed Two–Layer Data Store which has proven to be
a very efficient NoSQL system. The proposed architecture takes into account the concurrent execution of
operations and unfinished operations. The theoretical correctness of the architecture as well as experimental
evaluation in comparison to traditional mechanisms like locking and versioning is also shown. Comparative
analysis with popular NoSQL systems like MongoDB and MemCached is also presented. Obtained results
show that the proposed architecture presents a very high performance in comparison to existing NoSQL
systems.

INDEX TERMS NoSQL, NewSQL, SD2DS, consistency.

I. INTRODUCTION
Contemporary applications more and more frequently store
and process large volumes of data. In the case of very large
data sets or data sets operated bymany clients simultaneously,
the limits of classical SQL Relational Database Management
Systems (RDBMS) are usually exceeded. The problem arises
in the case of Internet applications where billions of people
have access to the database. Moreover, a rapidly growing
number of big data applications requires efficient database
architectures supporting scalability and availability for data
analytics.

In such cases, simpler but more efficient datastores are
widely used instead of RDBMS systems. A lot of distributed
datastore systems have been developed so far and they are
usually referred as NoSQL. Such systems usually lack strong
relational data models, ACID transactions (Atomic, Consis-
tent, Isolated and Durable) and strong consistency models,
but offer much higher throughput, efficiency and high scala-
bility instead.
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approving it for publication was Alba Amato .

Consistency is one of the most important features of all
information systems [1]. Its role is especially visible in dis-
tributed systems where its lack may lead to serious prob-
lems (e.g., data loss). However, preserving consistency in
all situations may be a very difficult task. It is important to
remark that some inconsistencies may be tolerable in certain
situations (or for some time ). Because of that, a concept
of consistency model was introduced. A consistency model
describes the system tolerance to inconsistencies. A weak
consistency model implies that the system may tolerate some
inconsistencies. A strong strict consistency model implies
that the system does not tolerate inconsistencies at all.

Database scalability is the ability to scale depending on the
workload. Thus, a highly scalable datastore should efficiently
handle a large amount of data, great volume of requests,
and large sizes of requests. The database may support the
scalability by vertical or horizontal scaling. Vertical database
scalability is adding more capacity to a single machine.
In horizontal database scaling, the capacity is increased
by adding more machines. Only the horizontal scalability
may expand beyond the limit of the single machine, but it
requires a distributed database architecture. Commonly used
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techniques of horizontal scaling are: data replication, data
partitioning, or distributed processing of requests. However,
as it was proved in [2], to achieve horizontal scalability,
availability, and partition tolerance, database systems cannot
impose strong consistency.

In this paper, a highly scalable datastore supporting strong
consistency is presented and evaluated. The datastore is
based on Scalable Distributed Two-layered Data Structures
(SD2DS). SD2DS concept was used to build a scalable and
efficient key–value datastore. Because of the fact that the
data stored in SD2DS may be split into multiple parts and/or
duplicated, the problem of keeping the data consistent is
essential in this case. This paper presents an analysis of
the consistency model of SD2DS. Moreover, two different
approaches to improving the efficiency of the datastore are
presented and evaluated.

The main contributions of this paper are two consistency
models that are used with basic SD2DS architecture. They
allow ensuring strong consistency without affecting the scal-
ability. The first of the developed model ensures the of all
operations that are executed on the system. The second model
is responsible for scheduling only those operations that affect
the content of the datastorage. The contribution of this paper
is as follows:

• analysis of all consistency issues that may arise in
SD2DS based datastore;

• design of scheduling algorithms for supporting strong
consistency in SD2DS;

• theoretical proof of the correctness of those algorithms;
• practical implementation of datastorages based on those
algorithms;

• performance evaluation of those datastorages with com-
parison to the well-known NoSQL systems (mongoDB
and MemCached).

It is also worth to notice that our goal was to augment the
existing SD2DS datastorage conception with mechanisms
that support strong consistency without affecting the scala-
bility rather than to develop a complete system from scratch.

In the following section, the problem of consistency in
NoSQL is discussed further. Sections 3 and 4 describe
the basic properties of Scalable Distributed Data Structures
in single and two–layer design, respectively. Section 5 is
focused on the proposed strong consistency model developed
for SD2DS. In the next section, the enhanced SD2DS is eval-
uated and compared with a few existing NoSQL datastores.
The paper ends with conclusions.

II. PROBLEM STATEMENT
The Relational Database Management Systems have been a
standard way of storing data for many years. Nowadays, they
are actively used even in many newly developed systems.
Databases require the definition of a custom data schema
which must follow some consistency constraints. The assur-
ance of these constraints is guaranteed by the ACID trans-
actions [3]. The ACID abbreviation stands for Atomicity,

Consistency, Isolation and Durability which indicates four
main features of transactions. Each transaction can be consid-
ered as a set of operations that needs to be performed together
on a set of data. The transaction is committed when all
operations have been properly executed. If some operations
could not be executed (when they violate the consistency
constraints) the transaction needs to be rollbacked and all
operations within that transaction need to be reverted [4].
Generally, the transactions in RDBMS can be realized with
one of two basic strategies: optimistic and pessimistic. In the
optimistic approach, it is assumed that each transaction will
not violate the consistency. This assumption requires transac-
tion verification and if the consistency constraints cannot be
satisfied, the transaction needs to be reverted [4]. In contrast,
the pessimistic approach assumes that each transaction can
violate the consistency constraints. Because of that, each
transaction needs to acquire a lock on a data item to ensure
proper execution [4].While reducing the number of rollbacks,
the pessimistic approach has serious drawbacks concerning
performance issues and deadlocks. The deadlocks can be
avoided to some extent by utilizing the two-phase locking
protocol, which indicates that after even one unlocking fur-
ther lock acquisition is impossible [5]. In typical RDBMS
systems the ACID transactions are performed by a transaction
manager which usually does not work efficiently when the
whole system is distributed [3].

One of the most significant limitations of RDBMS systems
is the data capacity [6]. In many modern systems, the sets
of data are so large that they need to be distributed to many
nodes within the cluster [7]. It is one of the main reasons to
give up the RDBMS for the NoSQL systems. In their basic
form, most of the NoSQL systems do not provide a strong
consistency model. The CAP theorem [8] tells that ensuring
strong consistency, availability, and partition tolerance in a
distributed system at the same time is impossible. Because of
that, the strong consistencymodel is often sacrificed in favour
of the two other above mentioned features [9].

The goal of this work is to develop a highly scalable archi-
tecture of NoSQL datastore providing strong consistency,
according to the following requirements:

1) High scalability in terms of data capacity - this may
be satisfied only by distributed architecture, where data
will be distributed among nodes of the cluster (horizon-
tal scalability).

2) High scalability in terms of the volume of requests -
this may be achieved by distributed/parallel processing
of requests.

3) Strong consistency model - the strong consistency
should be proven for all basic operations: READ,
WRITE, DELETE and UPDATE.

4) High availability - the architecture should ensure that
each request will result in a response.

5) High throughput - in many existing approaches high
efficiency is achieved through applying weaker con-
sistency models. The main goal of our approach is to
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provide high throughput without giving up the strong
consistency of the datastore.

III. RELATED WORKS
NoSQL systems may be assigned depending on the utilized
model of data to one of fourmain categories: column-oriented
(e.g., Cassandra [10]), key–value (e.g. memcached [11]),
document (e.g. MongoDB [12]) and graphs (e.g. Neo4j [13]).
Most of the NoSQL systems support a very weak consistency
model which follows the concept of Basically Available,
Soft state, Eventually consistent (BASE) [2] model. Eventual
Consistency (EA) means that the state of the system will
become consistent if no furthermodifications occur [14]. This
implies that at some points in time the state of the system
may be inconsistent. The models based on eventual consis-
tency are usually developed on the top of the anti-entropy
protocols [15] (like epidemic algorithms [16]) which try to
minimize the changes between the state of datastore nodes.
Causal Consistency [17] is a stronger model than EA but it
is usually used for maintaining multiple replicas of data [18].
A good overview of consistency models of NoSQL databases
can be found in [19].

Nowadays, the NoSQL data storages are used in more and
more applications. The weak consistency models start to be
insufficient in many real–world implementations. For exam-
ple, Facebook needs to change the internal data storage [10] in
order to achieve better consistency [20]. The need to develop
stronger consistency models is increasingly visible [21] even
for social network systems [22]. The justification created by
the CAP theorem becomes insufficient for many applications
and leads to many critical considerations because the lack
of consistency is more and more severe [23]–[25]. This led
to the emergence of a new trend in NoSQL world called
NewSQL [26]. NewSQL systems allow to create Online
Transactional Processing (OLTP) solutions on the base of
distributed datastorages [27]. The first NoSQL systems that
support stronger consistency models (like Calvin [28], Mega-
store [29] and Spanner [30]) were mostly built on the top
of the already developed systems (for example by adding
Multiversion Concurrency Control [31]). The new standard of
consistency model was developed and is described as Basic
Availability, Scalability, Instant Consistency (BASIC) [32].
It eliminates the eventual consistency model in favour of
better consistency models. Already developed datastores use
different algorithms for keeping data sets consistent, e.g.,
locking, versioning, or write-through strategy. In each case,
introducing those mechanisms has a strong influence on the
performance of the whole system. Additionally, many of
those systems cannot be run on commodity hardware due
to special hardware demands (like GPS signals or access to
atomic clocks) for performing synchronization [30].

One of themost recognizable examples of NewSQL, ensur-
ing a strong consistency model, is VoldDB [33]. However,
it can only execute predefined operations in the form of stored
procedures. It was also optimized only for very simple trans-
actions (so-called single–node and one–shot transactions).

Furthermore, it does not provide any advanced process-
ing methods and does not ensure scalability. RubatoDB
[34] is one of the most promising system. It can support
BASE, BASIC as well as ACID consistency models. It uses
timestamp–base concurrency as well as two–phase commit
protocol to ensure consistency. The performance of the Ruba-
toDB is comparable to other NewSQL systems, but is much
lower than the other commonly used systems. Furthermore,
the performance is obviously correlated with the chosen con-
sistency model. In spite of the fact that those systems are
distributed, they may now be considered as RDBMS [27].

Consistency in distributed systems can be provided by one
of the existing protocols that were designed during many
years of research [35]. Two–phase commit [4] is one of the
most recognizable examples. It allows to ensure the same
system state between many participants. It consists of two
stages. In the first stage, all participants perform voting.
The second stage is executed only if every participant is ready
to accept changes. The two–phase commit protocol was suc-
cessfully implemented in many systems despite some serious
limitations. One of the main drawbacks of this protocol is
the risk of failure. The protocol fails even if one of the par-
ticipants does not work correctly. Furthermore, it requires a
special element, called the coordinator, to perform the whole
operation. Failures in the coordinator node could really affect
the whole system. The three–phase commit protocol [36] was
designed to eliminate some of those drawbacks concerning
faulty participants. It introduces the third stage that allows
to resolve the state of the system even if some participants do
not work correctly. The Paxos protocol [37] is the extension of
such protocol that allows to maintain consistency while toler-
ating faults. It is a distributed consensus algorithm that allows
to make a commit, even in a faulty environment. Despite
the correctness and many additional variants of this protocol
[38], [39] it is rarely used in developed systems due to its
complication. Because of that, its simplified versions were
developed for easier implementation [40], [41]. However,
the complexity of those algorithms makes them suitable only
for coarse-grained configurations, like in ZooKeeper [42] or
Chubby [43], and they are not well suited for ensuring con-
sistency for a single data item.

In the last years, there have been many attempts to build
a fully scalable database that could provide an acceptable
level of consistency known previously from RDBMS sys-
tems. Currently used systems such as MIDDLE-R [44],
Postgres-R [45] or RocksDB [46] seriously suffer from a
trade-off between consistency and scalability. In that case,
consistency is often sacrificed.Many different definitions and
approaches to scalability further complicate this matter. The
term workload scalability is defined as the ability to scale
relative to the number of clients simultaneously operating
on the system. Its variant elasticity represents the ability
to handle changing workload. Additionally, the term data
scalability means that it is possible to scale relative to the
total size of the stored data. Current state of the art systems
solve the problems related to scalability using replication.
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Mostly they are developed using existing RDBMS engines
with specialized replicated back-end storage [46] or addi-
tional middleware level [47]. Those replication-based solu-
tions may be organized both as Master-slave or Multi-master
systems [47]. Consequently, more specialized consistency
mechanisms are needed to improve/support those systems.
Multi-master systems need to use complex quorum algo-
rithms. However, they can still suffer from problems with
changing configurations (adding and removing slave nodes).
Synchronization of replicas can be organized both as eager or
lazy. The lazy approach is not typically suited for preserving
strong consistency. On the other hand, eager approach may
drastically influence performance as well as scalability. It
is often the case that slaves are updated sequentially and
that what drastically influences scalability [48]. The com-
munication overhead between replicas (for data and synchro-
nization messages) also has a negative impact on scalability
(e. g. group communication) [44]. The synchronous updates
may also cause deadlocks with probability proportional to x3,
where x is a number of replicas. All in all, to provide strong
consistency (with eager synchronization), only few replicas
can be used [49]. To sum up, the currently available solutions
are based on extending existing solutions. Unfortunately,
some of their drawbacks are left without proposing suitable
corrective solutions, which could allow to maintain consis-
tency at a higher level. Typically, the existing non-replicated
transaction manager can be still a serious bottleneck [46].
Most of the currently developed systems are optimized for
a very narrow class of applications and are far away from
the universality known from traditional RDBMS systems.
According to [49] a very promising solution to preserve
both scalability and consistency is to prepare dedicated algo-
rithms to perform client scheduling. Such a novel approach
to maintaining consistency without loosing scalability for
Big Data will be the subject of this paper. To the authors’
best knowledge, this work is the first one that deals with
inconsistency issues in multi–layered datastore architecture.
Moreover, this work provides first complete solution to those
problems maintaining a very good efficiency and data scala-
bility at the same time.

IV. SCALABLE DISTRIBUTED DATA STRUCTURES
Scalable Distributed Data Structures (SDDS) [50] were
developed for storing and processing large sets of data. This
is mainly achieved by storing the data in RAMof a distributed
system. The data distributed among many multicomputer
nodes may also be efficiently processed by many machines
simultaneously.

The data stored in an SDDS are divided into records. Each
record is uniquely identified with a key, usually in the form of
unsigned integer value. Each node stores a limited number of
records in RAM, in a fixed–size container called bucket. The
capacity of each bucket is equal. A node may store multiple
buckets if it has enough RAM. All buckets form a single,
consistent structure called file.

Records of the SDDS are addressed using various methods
like Linear Hashing (LH*) [51], Range Partitioning (RP*)
[52] or tree-based structures [53]. One of the most effi-
cient addressing methods is LH*, which may be used in the
two-layer version of the SDDS. It is presented in section V.

For the sake of scalability, SDDS uses a distributed direc-
tory instead of a centralized one. Each node accessing the
data, called a client, maintains its own local directory, called
a file image. Because the number of buckets in a file changes
during the evolution of the file, clients’ images may become
outdated. In such a case, a client may commit an addressing
error while trying to access a wrong bucket. Incorrectly
addressed messages are redirected by buckets using so called
forwarding. In the worst case, LH* will allow to reach the
correct destination bucket after two additional messages sent
between buckets. More details of LH* are given in [51].

Basic SDDS supports simple data operations such as
INSERT,UPDATE, RETRIEVE andDELETE. Since a single
bucket holds all information about a record, all basic opera-
tionsmay be considered as atomic. Asmore andmore data are
inserted into the SDDS file, a bucket may become overfilled.
Before it happens, a new, empty bucket is created and about
half of the capacity of the overloaded bucket is moved into a
new one. Such a process is called a bucket split. Analogously,
buckets may be merged if more and more records are deleted
and the space of the bucket is not used efficiently.

The decision whether a bucket should be split (or it should
be merged with another bucket) may be undertaken in two
ways. SDDS RP* uses a decentralized algorithm, where a
bucket decides whether to split on its own [52]. On the other
hand, SDDS LH* uses an additional file component called
a Split Coordinator (SC). In the latter case, an overloaded
bucket sends to the SC a special message called collision.
Next, the SC decides whether and which bucket should split.

Themain drawback of the SDDS is the performance during
the split operation. Because in each split the half of the bucket
content must be transferred, at least 33% of all data transfers
is consumed by these operations [54]. It can be a serious issue
in applications with big data velocity that requires a lot of
splits during operations. Additionally, performing a split on
large records also consumes a lot of network transfer.

V. SCALABLE DISTRIBUTED TWO-LAYERED DATASTORE
The Scalable Distributed Two-layered Data Structures
(SD2DS) [54] were introduced to overcome the disadvan-
tages of single-layered structures. They allowed to develop
an efficient datastore for large files [55], [56]. Apart from
improving the split performance, they also allow to intro-
duce other features like throughput scalability [57], [58] or
anonymity [59], [60]. We have already applied the SD2DS
concept into content search datastore [61]–[63] and scalable
IoT system [64]. The datastore is continuously integrated
with many Big Data analysis mechanisms [65], [66]. But all
mentioned above applications of SD2DS did not support the
data consistency.
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FIGURE 1. Architecture of Scalable Distributed Two-layered Datastore.

The overall architecture of SD2DS is presented in Fig. 1.
The data items, stored in SD2DS, are called components
and are divided into two elements: component header and
component body. The single component is defined as follows:

ck = (hk , bk ) (1)

The header is stored in the first layer of the structure and
contains metadata of the designated component. The most
important part of this metadata is locator which points to the
actual data stored in the component body in the second layer
of the structure. Each component body consists of the stored
data while the component header is described as:

hk = (key, locator) (2)

The whole sets of headers and bodies are defined as
follows:

H = {h0, h1, . . . , hn} (3)

B = {b0, b1, . . . , bn} (4)

All components that are stored in SD2DS, create a file
which is defined as:

F = {c0, . . . , cn} (5)

The bucket is divided into two completely separate contain-
ers: a first layer bucketW i

H and a second layer bucketW i
B. The

W i
H buckets are responsible for storing the headers while the

W i
B are responsible for storing bodies. It is essential to outline

that the first layer and the second layer in SD2DS might be
totally separated and located on different infrastructures. The
first and the second layer buckets are described as follows:

W i
H =

{
hi0, h

i
1, . . . , h

i
n : ∀

j=0,...,n
(hij ⊂ H )

}
(6)

W i
B =

[
bi0, b

i
1, . . . , b

i
m : ∀

j=0,...,m
(bij ⊂ B)

]
(7)

Operations that are performed on SD2DS, require access
to both layers of the structure. The Distributed LH* scheme
is used to correctly address components in the first layer of
SD2DS. It allows to identify the first layer bucket which
contains the header for a given key. All functions, that operate
on SD2DS, need to identify the receiving first layer bucket
by using Hash(k) function which has to fulfill the following
condition:

∀
ck∈C

(
hk ∈ W

Hash(hk .key)
H

)
(8)

The second layer bucket is identified by a hk .locator . The
locator has to satisfy the following condition:

∀
ck∈C

(
bk ∈ W

hk .locator
B

)
(9)
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To properly address the bodies in the second layer,
the Addr(bk ) function was introduced, which follows the
condition:

∀
k

(
Addr(bk ) = hk .locator

)
(10)

It is also worth to notice that headers and their correspond-
ing bodies can be stored in the same server. That variant
can be considered as equal to the original SDDS described
in the previous section. However, dividing headers and bod-
ies in such a way that they are managed separately allows
to overcome a transfer issue that arises when the whole
components are moved during the split operations. In this
form, LH* addressing scheme is applied only to the first
layer that contains relatively small headers. The location of
the component bodies, which are typically much larger than
component headers, never changes. Even when the location
of the header changes, the locator field always points to the
same location of the body. Because of the fact that in typical
implementations the component header is much smaller than
the component body, the transfer needed for split is seriously
reduced. Consequently, the time of split operation is also sig-
nificantly reduced and the whole performance of the storage
is greatly improved.

It is also worth to notice that while a single server can
contain both the first layer bucket and the second layer bucket,
there is no guarantee that both the header and the body of
a single component are located on the same server. Due to
the split operation, the component headers may change their
location (are moved between buckets), while the component
bodies will always reside in the same location.

The basic functionality that should be provided to operate
on SD2DS is based on the following primary operations:
• PUT (k, bk ) = CH → Z1 → Z2 → S defined in
Algorithm 1. Operation is responsible for inserting a
new component into SD2DS. The function new(bk ) was
used to create the new locator for the new component.
The definition of this function is not relevant to this
analysis and is strictly related to the implementation.
TheMAX_CAPACITY_H represents the capacity of the

Algorithm 1 PUT (k, bk ) Inserting Component in SD2DS

CH : i← Hash(k)

Z1 :



if
(
∃
x
(hx ∈ W i

H ∧ hx .key = k)
)
then

STOP
end if
hk .key← k
hk .locator ← new(bk )
W i
H = {hk} ∪W

i
H

Z2 : W
hk .locator
B .append(bk )

S :


if
( ∣∣W i

H

∣∣ > MAX_CAPACITY_H
)
then

Split(W i
H )

end if

Algorithm 2 GET (k) Getting Component From SD2DS

CH : i← Hash(k)

O1 :



if
(
∃
x
(hx ∈ W i

H ∧ hx .key = k)
)
then

h← hx
else
STOP
end if

O2 : result ← W hk .locator
B .find(b : (h, b) ∈ F)

Algorithm 3 DEL(k) Deleting Component From SD2DS

CH : i← Hash(k)

U1 :



if
(
∃
x
(hx ∈ W i

H ∧ hx .key = k)
)
then

h← hx
W i
H = W i

H\{h}
else
STOP
end if

U2 : W h.locator
B .delete(b : (h, b) ∈ F)

Algorithm 4 UPDATE(k, b′i) Updating Component in
SD2DS
CH : i← Hash(k)

O1 :



if
(
∃
x
(hx ∈ W i

H ∧ hx .key = k)
)
then

h← hx
else
STOP
end if

U2 : W h.locator
B .delete(b : (h, b) ∈ F)

Z2 : W
hk .locator
B .append(bk )

first layer bucket while Split(W i
H ) performs the split of

the bucket which follows the steps described in [50].
• GET (k) = CH → O1 → O2 defined in Algorithm 2.
Operation is responsible for retrieving the existing com-
ponent from the SD2DS.

• DEL(k) = CH → U1 → U2 defined in Algorithm 3.
Operation deletes the existing component.

• UPDATE(k, b′i) = CH → O1 → U2 → Z2 defined
in Algorithm 4. Operation performs modification of the
existing component.

Thus, the set of primary operations that can be applied on
SD2DS is defined as:

�=
{
PUT (k, bk ),GET (k),DEL(k),UPDATE(k, b′k )

}
(11)

Primary operations defined in the Algorithms 1–4 consist
of atomic operations, which are executed in sequence. The
specification of sequences uses the ‘‘→’’ operator which
means ‘‘happened before’’, as it was introduced in [67].
The order of atomic operations has to be strictly preserved.
However, it is possible to reverse the order of U2 and
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Z2 within primary operation UPDATE(k, b′i). The proposed
order was chosen to avoid the storing of two versions (the
old and the new one) of component bodies simultaneously.
In case of many simultaneous updates, these old versions of
bodies, still stored in buckets, may cause bucket overflow,
which consequently leads to the allocation of a new bucket
in the second layer of the SD2DS. This new bucket will
become useless after completion of all operations. As a result,
the overall performance as well as memory utilization level
may seriously deteriorate. However, in the later sections the
case with changed order of these operations will also be
considered.

Each operation is initiated by SD2DS client and performs
some actions on both layers of the structure. Because of that,
some atomic operations are executed on the client side, others
are executed on the first layer, and finally others of them
are executed on the second layer buckets. The set of atomic
operations that are executed on the client side is defined as:

OpK = {CH} (12)

The set of atomic operations that are executed on the first
layer is defined as:

Op1 = {Z1,O1,U1, S} (13)

The set of atomic operations that are executed on the sec-
ond layer is defined as:

Op2 = {Z2,O2,U2} (14)

VI. CONSISTENCY MODEL
Introducing a second layer into SDDS may lead to many
problems concerning consistency. Because each function that
operates on SD2DS, requires access to both layers, there is
a serious risk of component inconsistency. We can define
components consistency as follows:
Definition 1: The SD2DS components are consistent

when

∀
k
∃!

hk∈H
∃!
bk∈B

(
(hk , bk ) ∈ F

)
Concurrent or unfinished executions of operations may

lead to situations in which inconsistent components are cre-
ated in the file. We identified three types of inconsistencies
which are defined as follows:
Definition 2: Orphan Header Inconsistency (OHI) is

defined as:

∃
hi∈H

∀
bj∈B

(
(hi, bj) /∈ F

)
Definition 3: Orphan Body Inconsistency (OBI) is defined

as:

∃
bi∈B

∀
hj∈H

(
(hj, bi) /∈ F

)
Definition 4: Duplicated Body Inconsistency (DBI) is

defined as:

∃
hk∈H ;bk ,b′k∈B

(
(hk , bk ) ∈ F ∧ (hk , b′k ) ∈ F

)

Complementary Duplicated Header Inconsistency will
never occur in a properly working system because of the
condition that is checked in Z1 operation. Thus, this type of
inconsistency will not be considered.

During concurrent execution of operations, a kind of tem-
poral inconsistency, called here Deleted Component Incon-
sistency (DCI), may also occur. It is not considered as the
SD2DS inconsistency, but if it occurs it does not allow to
finish GET (k) functions properly. DCI occurs during the
GET (k) function, when there was (hk , bk ) ∈ F during execu-
tion of O1 operation and (hk , bk ) /∈ F during the execution of
O2 operation.This problem is defined as follows:
Definition 5: Deleted Component Inconsistency (DCI) is

defined as:

∃
GET (k)

(
GET (k) = CH→O1→O2

)
∧ O1 : (hk , bk )∈F

∧ O2 : (hk , bk ) /∈ B

A. CONCURRENT EXECUTION OF OPERATIONS
Concurrency is considered as a vital feature for transactional
execution of operations [27]. During sequential and com-
pleted executions of operations, it is not possible to cause
any inconsistencies in the SD2DS. However, in real world
implementation, it is not acceptable to execute all opera-
tions sequentially. The existence of many clients that operate
simultaneously on SD2DS may cause that operations may
overlap. These overlapping operations may cause OHI , OBI ,
DBI and DCI .

Inconsistencies may be transient or permanent. Transient
inconsistencies arise temporarily during the execution of
some operations and they disappear when the operation will
be completed. Thus, such situations are critical only for
operations executed concurrently with operation causing this
type of inconsistency. Permanent inconsistencies cause that
the SD2DS will be inconsistent after completing operations.
Observations 1–4 summarize all critical situations caused by
inconsistencies that occur during the simultaneous execution
of any two SD2DS primary operations.
Observation 1: Assuming that all operations were exe-

cuted completely during the concurrent execution of any two
primary operations, the OHI is critical only in the following
situations:

• OHI1: during concurrent execution of PUT (k, bk ) =
CH ′→ Z ′1→ Z ′2→ S ′ and GET (k) = CH ′′→ O′′1 →
O′′2 the transient OHI causes error in O

′′

2 , if and only if
Z ′1 → O′′1 and O

′′

2 → Z ′2, when ck /∈ F before execution
of PUT (k, bk );

• OHI2: during concurrent execution of PUT (k, bk ) =
CH ′ → Z ′1 → Z ′2 → S ′ and UPDATE(k, b′k ) =
CH ′′ → O′′1 → U ′′2 → Z ′′2 the transient OHI causes
error in U ′′2 , if and only if Z

′

1 → O′′1 and U
′′

2 → Z ′2,
when ck /∈ F before execution of PUT (k, bk );

• OHI3: during concurrent execution of UPDATE
(k, b′k ) = CH ′ → O′1 → U ′2 → Z ′2 and
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GET (k) = CH ′′→ O′′1 → O′′2 the transient OHI causes
error in O′′2 , if and only if U

′

2→ O′′2 → Z ′2;
• OHI4: during concurrent execution of UPDATE
(k, b′k ) = CH ′ → O′1 → U ′2 → Z ′2 and
UPDATE(k, b′k ) = CH ′′ → O′′1 → U ′′2 → Z ′′2 the
transient OHI causes error in U ′2 (when U

′′

2 → U ′2) or
U ′′2 (when U ′2 → U ′′2 ), if and only if U

′

2 → Z ′′2 and
U ′′2 → Z ′2.

Observation 2: Assuming that all operations were exe-
cuted completely, during the concurrent execution of two
primary operations the OBI is critical only in the following
situations:
• OBI1: during concurrent execution of PUT (k, bk ) =
CH ′→ Z ′1→ Z ′2→ S ′ and DEL(k) = CH ′′→ U ′′1 →
U ′′2 the permanent OBI is caused by Z ′2 and the error
appears in U ′′2 if and only if Z

′

1 → U ′′1 and U
′′

2 → Z ′2,
when ck /∈ F before execution of PUT (k, bk );

• OBI2: during concurrent execution of DEL(k) =
CH ′ → U ′1 → U ′2 and UPDATE(k, b

′
k ) = CH ′′ →

O′′1 → U ′′2 → Z ′′2 the permanent OBI is caused by
Z ′′2 , if and only if O

′′

1 → U ′1 and U
′

2 → Z ′′2 , moreover
error appears in U ′2 (when U

′′

2 → U ′2) or U
′′

2 (when
U ′2→ U ′′2 ).

Observation 3: Assuming that all operations were exe-
cuted completely, during the concurrent execution of the two
primary operations the DBI is critical only in the following
situations:
• DBI1: during concurrent execution of PUT (k, bk ) =
CH ′→ Z ′1→ Z ′2→ S ′ and DEL(k) = CH ′′→ U ′′1 →
U ′′2 the transient DBI occurs after Z2 before U2, if and
only if U ′′1 → Z ′1 and Z

′

2→ U ′′2 , when ck ∈ F;
• DBI2: during concurrent execution of PUT (k, bk ) =
CH ′ → Z ′1 → Z ′2 → S ′ and UPDATE(k, b′k ) =
CH ′′→ O′′1 → U ′′2 → Z ′′2 the permanent DBI is caused
by operations Z2′ and Z2′′, if and only if Z ′1 → O′′1 and
U ′′2 → Z ′2, moreover error appears in U

′′

2 ;
• DBI3: during concurrent execution of UPDATE
(k, b′k ) = CH ′ → O′1 → U ′2 → Z ′2 and
UPDATE(k, b′k ) = CH ′′ → O′′1 → U ′′2 → Z ′′2 the
permanent DBI is caused by operations Z2′ and Z2′′,
if and only if U ′2 → Z ′′2 and U ′′2 → Z ′2, moreover
error appears in U ′2 (when U

′′

2 → U ′2) or U
′′

2 (when
U ′2→ U ′′2 ).

Observation 4: Assuming that all operations were exe-
cuted completely during the concurrent execution of the two
primary operations, the DCI is critical only in the following
situation:
• DCI1: during concurrent execution of DEL(k) =
CH ′ → U ′1 → U ′2 and GET (k) = CH ′′ → O′′1 → O′′2
the DCI causes the error in O′′2 , if and only if O

′′

1 → U ′1
and U ′2→ O′′2 .

B. UNCOMPLETED OPERATIONS
In the previous section, we assumed that all primary oper-
ations were executed completely (the whole sequence of

atomic operations were executed). In practice, we cannot
fulfill this requirement because all atomic operations that
are executed are initiated by client applications. Client pro-
cesses may be unexpectedly terminated or even may work
maliciously. Because of that, additional inconsistencies may
occur due to incorrect working clients. All inconsistencies
that may occur because of the uncompleted operations, are
summarized in observation 5. The operator→| indicates the
interruption of the execution of an operation in such a way
that all atomic operations on the right of this operator are not
executed.
Observation 5: In the case of uncompleted operations,

the inconsistencies arise only in the following situations:

• END1: in the case of uncompleted PUT (k, bk ) operation
OHI arises if and only if CH → Z1→| Z2→ S;

• END2: in the case of uncompleted DEL(k) operation
OBI arises if and only if CH → U1→| U2;

• END3: in the case of uncompletedUPDATE(k, b′k ) oper-
ation OHI arises if and only if CH → O1→ U2→| Z2.

C. PRESERVING THE STRONG CONSISTENCY IN SD2DS
Consistency in SD2DS may be provided using classical
methods. In our previous work [68] we applied locking and
versioning mechanisms. Both methods provide consistency
only to some extent. Neither locking nor versioning deals
with uncompleted operations. Moreover, these methods have
severe drawbacks. The locking may lead to very serious prob-
lems like client starving and deadlocks. On the other hand,
versioning consumes a lot of memory. The next versions have
to be stored and in most cases they are not used at all. This
might be a serious problem in cloud computing environments
with pay–per–use model.
Due to the shortcomings of existing techniques, we decided

to develop dedicatedmethods, especially suitable for SD2DS,
that deal with the consistency problems caused by concurrent
execution of operations as well as uncompleted operations.
The main idea is based on proper scheduling of atomic opera-
tions. Based on our consistency analysis presented in previous
sections, we developed scheduling methods that avoid the
critical situations identified in Observations 1-4.

D. SCHEDULING OF ATOMIC OPERATIONS
To prevent from inconsistencies caused by concurrent exe-
cution of operations, we introduced a scheduling mechanism
that is based on the sequence numbers (SN k ). The sequence
number is generated separately for each component in the
first layer of the structure according to the Algorithm 5.
Because only one bucket is responsible for managing each
component, the Algorithm 5 will return monotonic and rising
values which can be used during scheduling operations in
the second layer. The first operation that is executed on the
component always is PUT (k, bk ), so for this operation SN k

equals 0.
The second layer follows the Algorithm 6 to schedule all

operations that have to be executed to process the component
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Algorithm 5 Sequence Number Generation in the First Layer
of SD2DS: SEQ(k, ω)
Input: k - key, ω - primary operation
Output: result - sequence number
1 : if (ω = PUT (k, bk )) then
2 : SN k

H ← 0
3 : result ← SN k

H
4 : else if (ω = UPDATE(k, b′k )) then
5 : SN k

H ← SN k
H + 2

6 : result ← SN k
H − 1

7 : else
8 : SN k

H ← SN k
H + 1

9 : result ← SN k
H

10 : end if

Algorithm 6 Scheduling in the Second Layer of SD2DS
Input: k - key, SN - sequence number, op2 - atomic operation
(op2 ∈ Op2)
Output: result - ERROR or OK or WAIT
1 : if (SN = 0 ∧ op2 = Z2) then
2 : execute op2
3 : SN k

B← 0
4 : GOTO NEXT
5 : else if (SN 6= 0 ∧ SN = SN k

B + 1) then
6(EXEC) : execute op2
7 : SN k

B← SN k
B + 1

8(NEXT) : if
(
∃

(x,o)∈Qk
(x = SN k

B + 1)
)
then

9 : sn← x
10 : op2← o
11 : Qk ← Qk\{(x, o)}
12 : GOTO EXEC
13 : else
14 : result ← OK
15 : end if
16 : else if (SN 6= 0 ∧ SN > SN k

B + 1) then
17 : Qk ← Qk ∪ {(SN , op2)}
18 : result ← WAIT
19 : else
20 : result ← ERROR
21 : end if

body in sequence ordered by SN k . The basic idea is to
preserve the same order of execution of operations, both in
the first and the second layer of the SD2DS. To achieve
this, the SN k should be stored in the first (SN k

H )as well as
the second layer (SN k

B) of SD2DS. Algorithm 6 checks if the
current operation can be executed. It is possible to execute the
current atomic operation if all previous atomic operations that
were initiated in the first layer were completed. The operation
is stored in the queueQk if it should be postponed. Otherwise,
the operation is completed and also the next operations (if
any), with the following SN k will be executed immediately
after.

Theorem 1 proves that using Algorithms 5 and 6 it is
possible to avoid all critical situations caused by inconsis-
tencies OHI , OBI , DBI and DCI . At this point, we assume
that all primary operations are executed completely, so all
corresponding atomic operations are properly executed.
Theorem 1: Let ω′, ω′′ ∈ � be primary operations

that will be executed on ck , and SEQ(k, ω′) = SN ′kH ,
SEQ(k, ω′′) = SN ′′kH . All critical situations caused by OHI ,
OBI , DBI and DCI inconsistencies will be eliminated if the
operations are executed completely and are scheduled using
the Algorithm 6.

Proof: According to Observation 1OHI inconsistencies
may cause four critical situations OHI1–OHI4:
• Assume that ω′ = PUT (k, bk ) and ω′′ = GET (k).
If Z ′1 → O′′1 then SN ′kH < SN ′′kH , therefore according to
Algorithm 6 Z ′2→ O′′2 , this means that OHI1 will never
occur.

• Assume that ω′ = PUT (k, bk ) and ω′′ =

UPDATE(k, b′k ). If Z
′

1 → O′′1 then SN ′kH < SN ′′kH ,
therefore according to Algorithm 6 Z ′2 → U ′′2 , this
means that OHI2 will never occur.

• Assume that ω′ = UPDATE(k, b′k ) and ω′′ = GET (k).
If U ′2 → O′′2 then SN ′kH + 2 ≤ SN ′′kH . After executing
U ′2 the SN k

B will be equal to SN ′kH . If the next opera-
tion issued for execution will be O′′2 then, according to
Algorithm 6 this operation will be added to queue Qk as
(SN ,O′′2) where SN > SN k

B + 1. Hence, the operation
Z ′2 with assigned SN = SN ′kH + 1 = SN k

B + 1 will be
executed first, i.e. Z ′2→ O′′2 . This means that OHI3 will
never occur.

• Assume that ω′ = UPDATE(k, b′k ) and ω′ =

UPDATE(k, b′′k ) and that ω′was issued for execution as
the first. Thus, according to Algorithm 5: SN ′kH + 2 ≤
SN ′′kH . After issuing operationsU ′2 andU

′′

2 , operationU
′

2
will be scheduled for execution as the first, and SN k

B =

SN ′kH . Assume that the operation U ′′2 will be issued
before Z ′2. Then, it will be added to the Qk as (SN ,U ′′2 )
where SN > SN k

B + 1. Since Z ′2 will be scheduled as
(SN ′kH +1,Z

′

2) regardless of the order of the request, thus
the only possible order is U ′2 → Z ′2 → U ′′2 → Z ′′2 .
Similarly, when ω′′will be issued for execution as the
first, the only possible order is U ′′2 → Z ′′2 → U ′2 → Z ′2.
This means that OHI4 will never occur.

Therefore, the above analysis proves that the Algorithm 6
eliminates all critical situations that may be caused by OHI
inconsistencies.

In a similar way, we may prove that the Algorithm 6 elimi-
nates all critical situations identified in
Observations 2-4, i.e. that in all cases the only possible orders
of execution will be the following:
• OBI1, if Z ′1→ U ′′1 then Z ′2→ U ′′2 ;
• OBI2, if O′′1 → U ′2 then Z

′′

2 → U ′2.
• DBI1, if U ′′1 → Z ′1 then U

′′

2 → Z ′2;
• DBI2, if Z ′1→ O′′1 then Z

′

2→ U ′′2 ;
• DBI3, if U ′2→ Z ′′2 then Z ′2→ U ′′2 .
• DCI1, if O′′1 → U ′1 then O

′′

2 → U ′2;
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Thus, the Algorithm 6 eliminates all inconsistencies
in SD2DS caused by concurrent executions of primary
operations. �
Algorithm 6 schedules all atomic operations, even when

there is no possibility to violate SD2DS consistency. Usually
in NoSQL data storages, the operations of component retriev-
ing are the most frequently used. As far as the GET (k) func-
tions do not introduce any inconsistencies they do not have to
be scheduled in such a way. In those cases the performance
of the whole scheduling mechanism may be significantly
increased. Thus, we modified the scheduling method to elim-
inate unnecessary ordering of operations. The Algorithm 7
performs scheduling only operations that modify components
in SD2DS. To achieve this we introduced a sequence number
of the last modification of the specified component (SNM k ).
It indicates the last operation that performs a component
modification (adding, modifying and deleting). If all opera-
tions that modify the component are completed, the getting
operations may be executed in any order. To perform this the
SNM k should be stored in the first layer (SNM k

H ) as well as
in the second layer (SNM k

B). GET (k) operations that should
be postponed are rejected to eliminate any locks.

E. RESTORING UNFINISHED PRIMARY OPERATIONS
Unfinished operations may violate the consistency of
SD2DS, but they may also cause blocking of the execution
of Algorithms 6 and 7. To prevent those problems, additional
mechanisms for detecting and restoring unfinished operations
were introduced. To detect unfinished operations the SN k

numbers are used. After predefined time the first layer of the
SD2DS asks the second layer if the operation corresponding
to SN k number has been properly executed. If not, the first
layer is responsible for restoring the unfinished operation.
In the case of the GET (k) function, if operation O2 has not
been executed, no additional actions are required. All other
operations have to be restored whenever any critical situation
identified in Observation 5 occurs. In the case END1, if the
operation Z2 has not been executed, the U1 operation has to
be executed to cancel PUT (k, bk ) and to revert to a previous
state. In the case END2 the U2 operation has to be executed
again, to finishDEL(k). It should be noted that the case END3
is indivertible. But it will be possible tomakeUPDATE(k, b′k )
reversible, if the sequence of atomic operation is changed into
UPDATE ′(k, b′k ) as follows:

CH → O1→ Z2→ U2 (15)

Because of modifications of UPDATE(k, b′k ) introduced
by equation (15) the END3 situation will never occur, but
the new situation may cause inconsistency, according to the
following observation:
Observation 6: In the case of uncompleted UPDATE ′

(k, b′k ) the inconsistency arises only in the following
situation:
• END′3: DBI arises if and only if CH → O1 →

Z2→| U2.

Algorithm 7 Partial Scheduling in the Second Layer of
SD2DS
Input: k - key, SN - sequence number, SNM - sequence num-
ber of the last modification, op2 - atomic operation (op2 ∈
OP2)
Output: result - ERROR or OK or WAIT
1 : if (SN = 0 ∧ op2 = Z2) then
2 : execute op2
3 : SN k

B← 0
4 : SNM k

B← 0
5 : GOTO NEXT
6 : else
7(EXEC) : if (SN 6= 0 ∧ SNM k

B = SNM∧
8 : op2 = O2) then
9 : execute op2
10 : SN k

B← SN k
B + 1

11 : GOTO NEXT
12 : else if

(
SN 6= 0 ∧ SN k

B + 1 = SN∧
13 : (op2 = Z2 ∨ op2 = U2)

)
then

14 : execute op2
15 : SN k

B← SN k
B + 1

16 : SNM k
B = SN k

B
17 : GOTO NEXT
18 : else if (SN 6= 0 ∧ SN > SN k

B + 1) then
19 : Qk ← Qk ∪ {(SN , op2)}
20 : result ← WAIT
21 : else
22 : result ← ERROR
23 : STOP
24 : end if end if end if end if
25(NEXT): if

(
∃

(x,o)∈Qk
(x = SN k

B + 1)
)
then

26 : SN ← x
27 : op2← x
28 : Qk ← Qk\{(x, o)}
29 : GOTO EXEC
30 : end if
31 : result ← OK

It may be noted that END′3 is the only situation which
has to be reverted in case of uncompleted UPDATE(k, b′k )
operation. Thus operation U2 has to be executed to finish
UPDATE(k, b′k ) and revert to a consistent state. Algorithms 6
and 7 will prevent from any inconsistencies in the case of
concurrent function execution even when the implementation
of UPDATE(k, b′k ) will be replaced with UPDATE ′(k, b′k ).

Algorithm 8 provides the full procedure for detecting and
restoring the unfinished operations. It has to be executed after
each primary operation that was executed by the first layer of
the SD2DS and before the next operation that refers to the
same component.

Theorem 2 proves that Algorithm 8 eliminates all inconsis-
tencies caused by unfinished operations.

It is also worth to notice that in all cases, the restoring
of unfinished primary operation according to 8 consists of
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Algorithm 8 Checking of Unfinished Functions in the Sec-
ond Layer of SD2DS
Input: k - key, SN - sequence number, ω ∈ � -
Output: result - FIXED or NOTHING
1 : if

(
∃
x
(hx ∈ W i

H ∧ hx .key = k)
)
then

2 : j← x
3 : else
4 : STOP
5 : end if
6 : if

(
SN k

B < SN ∧ ω = PUT (k)
)
then

7 : execute U1 on W
Hash(hj.key)
H

8 : GOTO FIX
9 : else if

(
SN k

B < SN ∧ ω = DEL(k)
)
then

10 : execute U2 on W
Addr(hj.locator)
B

11 : GOTO FIX
12 : else if

(
SN k

B = SN − 1∧
13 : ω = UPDATE ′(k, b′k )

)
then

14 : execute U2 on W
Addr(hj.locator)
B

15 : GOTO FIX
16 : else if

(
SN k

B < SN ∧ ω = GET (k)
)
then

17 (FIX) : SN k
B = SN

18 : result ← FIXED
19 : else
20 : result ← NOTHING
21 : end if

just a single operation that is performed on the second layer
bucket of SD2DS. That is why this operation will be always
faster than a single primary operation performed by the
client. It does not need to contain an address calculation (CH
operation) as well as communication between the client and
the first layer bucket. In the most optimistic variant, when
no restoration is needed, this algorithm will only need to
ensure communication between the first and the second layer
buckets. This communication is performed by a very simple
message that is far smaller than a typical message used in
SD2DS that contains the component’s body.
Theorem 2: Let ω′ ∈ � be primary operation that will

be executed on ck , and SEQ(k, ω′) = SN ′kH . All critical
situations caused by END inconsistencies will be eliminated
if the operations are checked using the Algorithm 8.

Proof: According to the Observations 5 and 6 inconsis-
tencies may cause three critical situations END1, END2 and
END′3:

• Assume that ω′ = PUT (k, bk ). If CH ′ → Z ′1 →| Z ′2 →
S ′ then SN ′kB < SN ′kH , therefore according to Algorithm 8
additional U1 operation will be executed on WHash(k)

H ,
this means that END1 will never occur.

• Assume that ω′ = DEL(k). If CH ′ → U ′1 →| U ′2 then
SN ′kB < SN ′kH , therefore according to Algorithm 8 addi-
tionalU2 operation will be executed onW

Addr(hk .locator)
B ,

this means that END2 will never occur.

• Assume that ω′ = UPDATE ′(k, b′k ). If CH
′
→ O′1 →

Z ′2 →| U ′2 then SN
′k
B = SN ′kH − 1, therefore according to

Algorithm 8 additionalU2 operation will be executed on
WAddr(hk .locator)
B , this means that END′3 will never occur.

�

VII. PERFORMANCE ANALYSIS
In this section, we have carried out a theoretical analysis
of the performance of our SD2DS data store. By analysing
Algorithms 1–4 we have concluded that the computational
complexity of primary operations is influenced mostly by
three factors: message passing time (T ), processing time of
the component on the first layer bucket (P1) and processing
time of component on the second layer bucket (P2). In the
case of a T we assumed that it is an average value. This
transmission time is not dependent on the internal data store
structure and is the same for data storages of any kind.

Firstly, we analysed the time complexity in terms of the
overall number of components that are stored in SD2DS.
By analysing Algorithms 1–4 we concluded that the time
complexity of PUT (k, bk ) operation can be described as:
3T + P1 + P2 in the most optimistic case. In the case that
the Split event was notified, the time complexity will be
described as: 5T+P1+P2. In the case ofGET (k) andDEL(k)
operations, the time complexity is expressed as 3T +P1+P2.
In the case ofUPDATE(k, b′i), the time complexity is defined
as 3T + P1 + 2P2. Assuming that the size of buckets is
constant, the time of P1 and P2 is independent from the
overall number of components, so the time complexity is
expressed O(1) in this matter.
Next, we performed the analysis of the impact of the whole

Split operation. It is worth to notice that this operation is not
frequent in the typical SD2DS functioning. It only applies to
the situation when the whole structure is growing. Assuming
W is a size of the first layer bucket, the Split operation is
performed after inserting W/2 components (in the case of
the first Split it will be performed afterW insertions). In that
case, to insert an overall number of C components, the Split
operations will be executed 2C

W − 1 Split times. During each
Split operationW/2 component bodies are transmitted, so the
total number of transmissions will beC−W/2. Thus, the time
required for split operations is linearly dependent on the size
of the datastore and the computational complexity of each
Split is O(1).
Different versions of the presented SD2DS vary only in

terms of the time of P1. Because of that, the differences in
their performance are basically independent on the C .
On the other hand, the performance complexity can be

analysed in terms of the number of clients that simultaneously
operate on the data store (N ). Assuming that each bucket is
located on a different server and the overall number of servers
is equal S, the average load can be expressed as N/S. This
expression applies when N � S, which indicated that each
server is loaded with many requests. In another case, most
servers handle requests with maximal performance.
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Since the presented analysis shows that all complexities are
at most linear, SD2DS can provide a decent level of horizontal
scalability. It is also worth to notice that SD2DS can also
provide vertical scalability by fine tuning the size of each
buckets to the server resources (their memory capacities in
particular). Alternatively, it is also possible to run multiple
buckets on the same server. The fact that bigger buckets con-
tain more components can influence the time of performance
of the split operation (there will be more body buckets to
transfer). More importantly, bigger buckets may cause the
performance to drop faster as the overall number of clients
and the processing time grow. Additionally, the processing
time will become slower as more time will be needed to
search the component. Those two drawbacks are common in
other architectures. That is why inmost NoSQL andNewSQL
horizontal scaling over vertical scaling is preferred. That is
why in our work we focused mostly on this issue.

VIII. EVALUATION
The developed architecture was implemented as a prototype
datastore. Both scheduling methods were implemented as
SD2DSBS (Algorithm 6) and SD2DSPS (Algorithm 7). For
evaluation purposes SD2DS datastores based on component
locking (SD2DSCL) and component versioning (SD2DSCV )
were also developed.We ran these implementations on a mul-
ticomputer cluster that consisted of 16 nodes. Each machine
served one first layer and one second layer bucket. Additional
10 machines were used to run the client processes. These
nodes were connected through 1GiB/s Ethernet. While faster
network solutions are typically available in modern clusters,
we decided to choose a more pessimistic, slower option in
our experiments and used Ethernet connection in all experi-
ments. Current applications of SD2DS are not limited to the
environment that runs on a single cluster. Both SD2DS layers
can be divided into two separate infrastructures. Additionally,
in our previous works we also utilized SD2DS in peer-to-
peer networks [59], [60]. To cover all of these applications,
we decided to perform all experiments on commonly avail-
able 1GiB/s Ethernet.

We took special precautions to avoid any distortions that
could influence our experimental results. All experiments
were repeated at least once to make sure that they were not
dependent on any internal or external factors. The cluster that
was used to carry out the experiments was isolated for the
time of evaluation in such a way that no other services were
running during the experiments. Because of that, we mini-
mized not only the additional resources load on nodes but also
other network transfers.

In the experimental section, we focused mostly on the
comparison and evaluation of our main contribution, which
is our scheduling mechanisms. Those mechanisms are used
on each operation on the datastore and affect all its func-
tionality. On the other hand, the mechanism for restoring
unfinished primary operations in non-malicious environment
is not frequent. This mechanism may affect the data store
only due to some problems on the client side. Additionally,

due to its nature, restoring unfinished primary operation does
not need the calculation of component address and operation
performed on the first layer, so it affects data store less than
typical client’s operations.

The first experiment concerned the comparison of the effi-
ciency of the proposed scheduling methods with traditional
approaches. To eliminate the split and merge operations,
experiments were limited to UPDATE and GET operations.
Figures 2 and 3 present an average access time to components
of two sizes: 1 MiB and 10 MiB. The comparison was per-
formed using 50 client applications simultaneously accessing
the datastore. Each client was performing either GET (k) or
UPDATE ′(k, b′k ). The number of clients performing GET (k)
andUPDATE ′(k, b′k ) operations are designated as Cr and Cu,
respectively (Cu = 50− Cr ).

FIGURE 2. Access time for components of 1MiB.

In all cases, the architecture SD2DSPS achieved better per-
formance than SD2DSBS . This proves that partial scheduling
gives significant improvement to the basic scheduling. In the
most cases the SD2DSCL architecture is least efficient. This
is caused by the fact that operations lock buckets and in
case of heavy load they can wait really long time to exe-
cute. So, the locking mechanism significantly decreases the
performance of datastores. The performances of SD2DSPS
and SD2DSCV are comparable, but in the most cases the best
performance was obtained for SD2DSCV . The slight vantage
of SD2DSCV is visible mainly for large components. In the
most cases the best performance was obtained when values
of Cr and Cu were similar. Because the UPDATE(k, b′k )
operations perform longer thanGET (k) in the case of the high
value of Cu, the most clients perform updates which slow
down GET (k) as well. In the case of the high value of Cr
faster GET (k) functions may cause an overload of the single
bucket.

The next experiments concerned the scalability of SD2DS
architectures. The Figure 4 presents the results of the
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FIGURE 3. Access time for components of 10MiB.

scalability evaluation of the previously compared architec-
tures. In this experiment, the access time was measured for
datastores consisting of different number of components and
different number of buckets. Each bucket that was used in
these experiments contained 512 components of size equal
10MiB. As it is presented in Figure 4, each proposed archi-
tecture provides very good data scalability. Attaching more
and more buckets with components does not have a negative
influence on the performance of SD2DS. This trend is vis-
ible in all tested architectures, regardless of the consistency
mechanism applied. Those results are also confirmed by the
performance analysis presented in the previous section, since
it is clearly visible that the total number of components does
not influence the access time.

Finally, the most important experiment showing the advan-
tages of the proposed architecture is the comparison with

existing solutions in terms of the performance. Thus, the last
experiment was performed to compare the performance of the
SD2DSBS/SD2DSPS with other well-known NoSQL systems
for storing big sets of data. The comparison was made with
the MongoDB and MemCached systems. Both databases
were developed in C++, just like SD2DS, and allow to store
data in a distributed environment. Additionally, MongoDB
also provides a mechanism to scale the data store in a very
similar way to SD2DS. The results showing the access time
for datastores with components of 1MiB are presented in the
Figure 5 while the results of accessing components of 10MiB
are presented in Figure 6. To use MongoDB as a distributed
datastore, a special query router is used (so calledmongos) as
an interface between the application and the sharded cluster.
In our tests we used a different number ofmongos (1, 2 and 5)
to evaluate their influence to the overall performance. The
mongos can become bottlenecks so the performance of the
MongoDB is far worse than SD2DS even with the 5 mongos
instances. In a typical application, MongoDB stores data in
the form of structured documents that need to be smaller than
16MiB, while SD2DS and MemCached store raw blocked
data. To allow reliable comparison and overcome this differ-
ence between those structures, a special API called GridFS
was used. It allowed to store raw files inside MongoDB
data store. The MemCached system is known for its very
good performance. However, the MemCached is optimized
for storing components that are smaller than 1MiB. While it
enables to store components of arbitrary sizes, MemCached
rejects some requests if they cannot be executed within a
specified time. Experimental results showed that the pro-
posed architecture outperforms both existing solutions.

Figure 6 shows an interesting trend that presents that all
SD2DS variants become slightly slower after the number of
clients exceeds the number of used buckets. After crossing
this point, the presented dependence becomes almost linear,
what confirms the theoretical analysis of the performance.

FIGURE 4. Scalability comparison while getting components of 10MiB.
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FIGURE 5. Efficiency comparison while getting components of 1MiB.

FIGURE 6. Efficiency comparison while getting components of 10MiB.

In the case of the MongoDB, the slower processing time was
mainly caused by the overload of themongos routers. One can
expect that in the case of a MongoDB, the time complexity
is estimated as N/m, where m is the number of mongos and
m� S. In the case of a MemCached, we can expect that the
time complexity is also estimated asN/S. However, it utilizes
the locking mechanism to ensure consistent access [69], what
has a visible impact on its performance.

Figure 7 presents the efficiency comparison in terms of
different component sizes (1MiB, 2MiB, 5MiB, 10MiB).
In the case of all data stores (both SD2DS versions as well
as compared MongoBD and MemCached) there are linear
dependencies between the processing time and the size of the
component. Additionally, the processing time of all SD2DS
versions, even those that provide consistency, grows slower

with the increasing component size in comparison to Mon-
goDB and MemCached.

All above-mentioned experiments allow to formulate the
benefits and limitations of our proposed solutions. Analysis
of the Figures 5 and 6 shows that the best performance of
SD2DS was achieved for components of relatively large size.
The performance for the small components is worse. It is
caused by the influence of the indirect component access
caused by the separation of layers. Additionally, SD2DS in its
current form allows to store only raw blocked data identified
by a key. This organization makes it difficult to perform
advanced data processing and aggregation. On the other hand,
our proposed architectures have a number of advantages. Full
horizontal scalability is one of the most important issues that
should be highlighted here. Additionally, our architectures
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FIGURE 7. Efficiency comparison in relation to component body size.

provide high efficiency even in an environment that is heavily
loaded with clients.

IX. CONCLUSION
In this paper, we proposed a novel architecture for NoSQL
datastores, called SD2DS. We defined all inconsistencies
that can occur during concurrent access to the datastore and
caused by unfinished operations. The following inconsisten-
cies were identified and explained: Orphan Header Inconsis-
tency (OHI), Orphan Body Inconsistency (OBI), Duplicated
Body Inconsistency (DBI) and Deleted Component Incon-
sistency (DCI). We also grouped inconsistencies into two
types: durable and transient. The durable inconsistencies are
connected with the internal state of the SD2DS while the
transient ones may appear only during concurrent execution
of operations.

To cope with the inconsistency in SD2DS we decided to
introduce the novel scheduling mechanisms. By using Algo-
rithms 5, 6 and 7 it is possible to prevent all inconsistencies
caused by the concurrent function execution. Additionally,
a special algorithm (Algorithm 8) was developed to detect
unfinished functions and to restore the SD2DS into a consis-
tent state. It was shown that the proposed scheduling method
is more efficient than component locking and overcomes the
limits of component versioning (by eliminating both the need
of applying locks and storing an additional component body
version) while still preserving comparable performance.

Our prototype implementation of the proposed architec-
ture gave us very good experimental results. First of all,
the experimental results proved that preserving consistency
does not affect the scalability of the datastore. Moreover, our
prototype implementation can still seriously concur with the
popular NoSQL datastores (likeMongoDB andMemCached)
as far as the performance is concerned. Efficiency compar-
ison results that were obtained show that all the proposed
consistency methods outperform popular and well-known

NoSQL systems. Additionally, the experimental results con-
firmed that the proposed mechanisms allow very good data
scalability. They also outperform traditional methods like
component locking and versioning.

To sum up, our work resulted in the development of
a complete NoSQL datastore solution with the following
advantages:

• elimination of all inconsistencies;
• preserving scalability;
• outperforming traditional methods (locking and version-
ing);

• outperforming other NoSQL systems (MongoDB and
MemCached).

In our future work, we plan to apply SD2DS architecture to
develop an efficient scalable distributed datastore. The main
goal of our research is to develop a highly optimized datastore
dedicated to high performance big data analytics.
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