
Context-Dependent Upper-Con�dence Bounds for Directed Exploration

Overview

I We propose an incremental, model-free exploration algorithm with fast-converging upper-confidence bounds, called UCLS.
I We derive confidence intervals around action-values for LSTD, and use it to provide a directed exploration signal during control

by tracking the bounds with a slowly changing policy.

Motivation for Directed Exploration

Common approaches to exploration like optimistic initial-
ization are not always viable. Hence, we would like a
mechanism for directed exploration in reinforcement learn-
ing. For instance if we have access to uncertainty, Û (s, a),
around mean estimates Q̂(s, a), action selection can be
greedy w.r.t. Q̂(St, a) + Û (St, a), which provides a high-
confidence upper-bound for the best possible action in the
state St.

Let Q̃t = Q̂t + Ût, and let πt be the policy induced by greedy
action selection on Q̃t. Then, this process of action selec-
tion converges to a policy that is optimal under a defined
density:

Q∗ = argmax
Q∈Q

∫
S×A

d(s, a)Q(s, a)dsda

This requires three key assumptions:
I Stochastic Optimism: A�er some point T > 0, for all

t ≥ T , E[Q̃t(S,A)] ≥ E[Q∗(S,A)].
I Shrinking Confidence Interval Radius: E[Ût(S,A)] ≤ f (t)

for some non-negative function f with f (t) → 0.
I Convergent Action Values:

��E[Q̂t(S,A) − Qπt(S,A)]
�� ≤ g(t)

for some non-negative function g with g(t) → 0.

Optimistic Values Theorem states that under these 3 as-
sumptions:

Regret(T ) def
=

T∑
t=1
E[Q∗(S,A)] − E[Qπt(S,A)] ≤

T∑
t=1

f (t) + g(t)

Confidence Interval Bounds for Policy Evaluation

Given the noise w.r.t. the optimal estimator w∗,
rt+1 = (xt − γxt+1)>w∗ + νt

and a finite set of samples, T , with ν̄T
def
= 1

T
∑T−1

t=0 ztνt, we show that

the following holds with probability at least 1 − p:

x>w∗ ≤ x>wT

+

√
p+1
p

√
x>E[A+Tν̄Tν̄>TA

+>
T ]x + O

(
E[(x>ϵ∗T)

2]
)

(1)

Further, if we assume νt ∼ N(0,σ 2) , and z̄T
def
= 1

T
∑T−1

t=0 zt, we show

that the following holds with probability at least 1 − p:

x>w∗ ≤ x>wT

+ σ
√

p+1
p

√
x>E[A+T z̄T z̄

>
TA
+>
T ]x + O

(
E[(x>ϵ∗T)

2]
)

(2)

Control with Confidence Interval Bounds

The bounds derived are for a stationary policy. But during control,
the policy is slowly changing, and therefore, we slowly track these
upper-bounds resulting in:
I Upper-Confidence Least Squares (UCLS) - for bound in Equation

(1).
I Global Variance-Upper Confidence Bound (GV-UCB) - for bound

in Equation (2).

Results: Comparing State-of-the-Art Exploration Methods

We compare UCLS against algorithms that use
other approaches to estimate confidence intervals:
I DGPQ - using GPs. [1]
I LSPI-Rmax - using a measure of knownness. [2]
I RLSVI - using Bayesian Linear Regression. [3]
I UCBootstrap - using bootstrapped confidence

intervals. [4]
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Results: Advantage of Contextual Variance

This study contrasts the advantage of contextual variance estimates
(UCLS) over global variance estimates (GV-UCB).
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UCLS-Linear: An E�ective Linear Complexity Variant
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I Pros: (1) lower computational complexity, (2) may be more amenable to
changing representations.

I Cons: (1) while the performance of the two algorithms is comparable,
UCLS-L experiences more regret (e.g. River Swim, Puddle World), (2) two
hyper parameters that need to be tuned.

Conclusion & Future Work

I Context-based exploration is a promising direction for designing
sample-e�icient learning algorithms. UCLS is a principled application of
this motivation within the LSTD learning framework.

I Further lines of research include: (1) UCLS/UCLS-L with other stationary
and changing representations, (2) other approaches to promote
context-based exploration at a grounded or abstract level.
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