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Abstract
The identification of cognates in natural lan-
guages is a crucial part of automatic translation
lexicon construction and other multilingual lexi-
cal tasks. We present new methods for multilin-
gual cognate identification using the global infer-
ence framework of Integer Linear Programming.
While previous approaches to cognate identifica-
tion have focused on pairs of natural languages,
we provide a methodology that directly forms
sets of cognates across groups of languages. We
show improvements over simple clustering tech-
niques that do not inherently consider the tran-
sitivity of cognate relations. Furthermore, we
show that formulations that jointly link cog-
nates across groups of natural languages achieve
higher performance than traditional pairwise ap-
proaches. We also describe applications of our
technique to other important problems in multi-
lingual natural language processing.
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1 Introduction

Cross-language cognate information is an important
component of multilingual lexical resources. Cognates
are words with similar form and meaning across nat-
ural languages. For example, the word for “heart” in
Italian (cuore), Spanish (corazon), Portuguese (cora-
cao), and French (coeur) all derive from the Latin stem
cor. Knowing that correspondence in word spelling
can imply correspondence in word meaning has as-
sisted researchers in automatically creating transla-
tion lexicons [17, 10], sentence-aligning bilingual cor-
pora [24, 19], and finding word correspondences in
statistical machine translation [13, 25]. Knowledge of
cognates is also an important part of human second-
language acquisition; for example, cognates have been
used to assess the readability of foreign language text
by new language learners [28].

Although impressive levels of performance have
been achieved at cognate identification between pairs
of languages [2], there has been little recognition that
cognates are actually a multilingual phenomenon. In-
deed, if we propose that cuore in Italian is cognate

with coeur in French, and separately judge that coeur
is cognate with corazon in Spanish, then we are implic-
itly saying that the Italian cuore and Spanish corazon
are also cognate, since cognation is a transitive relation
across languages. A natural question is whether pair-
wise cognate identification can be improved by consid-
ering transitivity in the identification process.

Most previous approaches to cognate identification
assign scores to pairs of words across two languages.
These scores indicate the likelihood the two words are
cognate, and are usually based on either traditional
measures of string similarity such as edit distance [15]
and longest common subsequence ratio (LCSR) [19],
or are provided by adaptive systems learned from an-
notated training data [26, 20, 2]. The fundamental
issue with these approaches is that while their output
is pairwise similarity scores, the more natural and use-
ful output would be sets of cognates across languages.

In this paper, we propose a cognate identification
technique that operates across groups of natural lan-
guages, and which directly produces cognate sets as
output. We formulate the task as a constrained opti-
mization and find the solution with the global infer-
ence technique of Integer Linear Programming (ILP).
We maximize an objective function that incorporates
the scores of all cognate decisions, subject to the con-
straints that these decisions should respect the tran-
sitivity of cognation across languages. That is, for
all words in any output interconnected set, a positive
cognate decision must exist between each pair of these
words (forming cliques in the graph-theoretic sense).
A similar approach has been taken to partitioning re-
lated pieces of information for natural language gen-
eration [1], and performing coreference resolution [5].

Our work differs from previous techniques that con-
sider cognates over groups of natural languages. Lowe
and Mazaudon [16] use linguist-supplied sound-change
lists to construct protoforms of modern words (the
“comparative method” of language reconstruction),
and then link modern words into cognate sets that
share a common protoform. Oakes [21] uses pairwise
similarity to determine cognates in four languages, but
does not explain how inconsistencies in cognate assign-
ments are resolved. Kondrak et al. [12] use a post hoc
set-formation algorithm to gather groups of highly-
similar potential cognates, but the search for these sets
is greedy and not evaluated for set recall. Our program
finds a global optimum cognate set partitioning in a
single step, without setting clustering parameters or



otherwise requiring user supervision.
We show the benefits of our approach in two sep-

arate application domains. First, given that a collec-
tion of words with the same meaning has been identi-
fied across a group of natural languages, we partition
these words into cognate sets. The ILP system is able
to automatically identify cognate sets with a higher
precision and recall than a comparison approach that
forms sets from interconnected components with post
hoc processing. Thus our system achieves higher per-
formance while simultaneously having greater simplic-
ity and ease of specification than previous approaches
to this task.

Secondly, we show that our system also achieves
higher precision and recall on the pairwise identifica-
tion task compared to using a similarity measure alone.
We demonstrate this both for finding cognates among
words known to be translations, and for automatic
translation lexicon induction, where cognates are to
be identified between two lexicons based purely on or-
thographic similarity. For the latter situation, our re-
sults are directly applicable to the lexicon induction
approach of Mann and Yarowsky [17]. We use an ILP
formulation that includes natural constraints such as
one-to-one cognate mappings and cross-language tran-
sitivity. Remarkably, this system achieves gains of up
to twenty percent in precision (for equivalent levels
of recall) over an unconstrained system that uses the
string similarity measure alone. On the other hand,
the automatic lexicon induction task also highlights
some current computational limitations; we provide
approximation strategies for cases where the the opti-
mal solution cannot be found in reasonable time.

The paper is organized as follows. In Section 2, we
describe the traditional pairwise approach to cognate
identification and explain its limitations. Section 3
introduces our multilingual ILP approach to cognate
clustering and describes experiments and results that
validate the model empirically. In Section 4, we show
how an extended version of the ILP formulation can
be applied to automatic lexicon induction, and again
analyze our formulation experimentally. Section 5
presents our ideas for future work, including new ap-
plications of cognate sets as bridge languages in the
“multipath” approach of Mann and Yarowsky [17]. We
also outline a multilingual ILP-based approach to word
alignment in statistical machine translation.

2 Pairwise Cognate Discovery

In this section, we describe the key components of
current cognate identification systems. As mentioned
in the introduction, cognates are words with simi-
lar form and meaning across natural languages. In
the linguistic sense, cognates may also include words
with a common ancestor but which no longer have a
consistent meaning. However, for practical purposes,
most work in computational linguistics has focused
on translational cognates: similarly-spelled words that
have a common origin and interpretation.1 Relevant
work therefore includes not only systems that find

1 In all of our experiments, all gold-standard cognate sets are
composed of words with common meaning that have been
judged to be cognate by linguists (see Section 3.2).

ancestrally-related cognates [11], but loan-word bor-
rowings [7] and even proper name transliterations [8].
These computational approaches to cognate identifi-
cation generally consist of two key components:

1. a semantic indication of the likelihood the two
words have the same meaning, and

2. an orthographic similarity measure based on the
similarity of the words’ spellings

For languages with available lexical resources, the
first component may simply be a bilingual dictionary;
words share the same meaning if and only if they are
mutual translations in the translation lexicon. For
resource-poor languages, semantic similarity models
based on context or frequency similarities have been
used instead [23], and for closely related languages,
cognates have been detected without the use of any
semantic similarity module at all: cognates are de-
tected using only the orthographic string similarity
measure [17]. In Section 3, we look at the case where
a translation lexicon is available, while in Section 4 we
consider using string similarity alone.

A typical orthographic similarity measure is an effi-
cient, real-valued function of pairs of words from two
different languages. The measure should return higher
scores for pairs more likely to be cognate, and lower
scores for words likely to be unrelated. To make de-
cisions based on this measure, we must set a thresh-
old and classify pairs above the threshold to be cog-
nate, and those below to be unrelated. Higher thresh-
olds result in higher-precision, lower-recall systems,
while lower thresholds catch more cognates but with
a greater number of false positives.

Melamed [19] uses the Longest Common Subse-
quence Ratio (LCSR) as the cognate orthographic sim-
ilarity measure. The LCSR of two words is equal to
the length of the longest common letter subsequence
between the two words, divided by the length of the
longer word. Hence the range of the LCSR function
is between zero (for words sharing no letters) and one
(for identical words). For example, the LCSR between
the Italian word cuore and the French word coeur is
0.6. This word pair will be classified as cognate if the
classification threshold is below 0.6. While dynamic
programming algorithms exist to compute traditional
similarity measures like LCSR efficiently, these un-
trained approaches do not capture the regular sound
correspondences between a pair of languages that help
identify words of common origin.

Furthermore, nothing about previous semantic and
orthographic similarity measures requires that multi-
lingual cognate decisions be consistent. Suppose we
have identified a group of words with common mean-
ing, such as the Romance language words for just, right
given in Fig. 1, and we would like to form cognate sets
based on their computed similarities. If we decide to
label all words as cognate with LCSR greater than or
equal to a threshold of 0.50, we are left with the follow-
ing curious conclusion: drept and direito are cognate,
as are direito and derecho, but drept and derecho are
not. How can we best handle such inconsistencies?

A simple approach would be to add all links be-
tween all pairs of words that are in an interconnected
subgraph. For a threshold of 0.50, this does correctly



French: juste Portuguese: direito
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Fig. 1: LCSR graph for Romance words corresponding to English “ just, right.” Links with LCSR ≥ 0.50 are
marked with solid lines.

group the words into their true cognate sets. However,
suppose the overall threshold for cognate decisions is
not 0.50, but 0.43, adding the drept and derecho link as
well as the giusto and direito pair. In this case, we have
now interconnected all components of the graph, such
that our approach will incorrectly classify words as di-
verse as the French juste and the Spanish derecho as
cognates. Ideally, our computational procedure should
know that it is better to add certain links (like drept-
derecho) but not others (like giusto-direito), based on
any implied cognate similarities. In the following sec-
tion, we show how Integer Linear Programming pro-
vides such an approach.

3 Cognate Set Partitioning

In this application, we are presented with sets of words
that share the same meaning, from a group of natural
languages. Each set has one word from each language,
like the set in Fig. 1. Our task is to identify which
words in each set are cognate, that is, to partition the
set into groups of cognates. Thus, we are automating
the second step in cognate set formation; given words
with common meaning, we use our orthographic sim-
ilarity measure to detect those with a common ori-
gin. Determining cognates given known word corre-
spondences is one of the fundamental tasks performed
by linguists in the process of language reconstruction.

3.1 ILP Formulation

A linear program seeks to maximize an objective func-
tion over a set of variables, subject to a set of lin-
ear constraints. In Integer Linear Programming (ILP),
these variables are further constrained to be integers.
In general, finding solutions to integer linear programs
is NP-hard [4, page 777], but in practice efficient
solvers are available. We follow Roth and Yih [22]
in using binary-{0, 1} ILP variables to represent the
decisions made by our system, and optimize as our
objective function the sum of the costs/scores of the

decisions that we make. The partitioning formulation
we use is based on the work of Barzilay and Lapata [1].

We first consider how to use an ILP formulation for
the standard pairwise approach to cognate identifica-
tion. Suppose we have identified a set M of pairs of
words that share a common meaning between two lan-
guages. Let x〈i,j〉(m) be a binary variable represent-
ing a cognate decision for the mth pair of common-
meaning words from language pair 〈Li, Lj〉. The vari-
able x〈i,j〉(m) will be 1 when we affirm that the pair
are cognates, and 0 when we decide the words are not.
The standard approach is to classify each pair as cog-
nate if their orthographic similarity is above a thresh-
old, t. Let the similarity between the two words be
s〈i,j〉(m). We would like to associate a positive weight
to an affirmative cognate decision when the pair has
similarity above the threshold, and a negative weight
to affirmative decisions when the similarity is below
the threshold. The opposite should hold for negative
decisions. Thus let the value of each positive deci-
sion be c+

〈i,j〉(m) = (s〈i,j〉(m) − t) and the value of

each negative decision be c−〈i,j〉(m) = (t − s〈i,j〉(m)).

If we are using LCSR as the similarity function with
t = 0.5, the value of a positive cognate decision for
the Italian word cuore and the French word coeur is
c+
I,F (m) = 0.1. The value of a negative decision is

c−I,F (m) = −0.1. Our ILP formulation is to maximize

the sum of the value scores over the x〈i,j〉(m) variables:

max
∑

m∈M

c+
〈i,j〉(m)x〈i,j〉(m) + c−〈i,j〉(m)(1 − x〈i,j〉(m))

subject to:

x〈i,j〉(m) ∈ {0, 1} ∀m ∈ M

Subject to no further constraints, the solution to this
optimization is simply having all variables be 1 when



the orthographic similarity score is above the thresh-
old (and the value is thus positive) and all variables
be 0 when the orthographic similarity score is below
the threshold (and the value thus negative), which is
exactly the standard outcome. Note also, as in all ap-
proaches in this section, the assignment of variables for
one meaning is independent of all others, and hence we
could have solved |M | independent integer linear pro-
grams and gotten the same output.

To enforce transitivity among decisions in sets of
natural languages, we move from an ILP optimiza-
tion for a pair of languages to one for all pairs within
a set, adding transitivity requirements as constraints.
Suppose our set M now includes words identified as
having a common meaning among N different natural
languages, e.g. L1, L2...LN . Let S be the set of indices
for all unique pairs of languages: S = {〈i, j〉 : 1 ≤ i <
j ≤ N}. Our ILP formulation is now:

max
∑

〈i,j〉∈S

∑

m∈M

(c+
〈i,j〉(m)x〈i,j〉(m)

+c−〈i,j〉(m)(1 − x〈i,j〉(m)))

subject to:

x〈i,j〉(m) ∈ {0, 1}

x〈i,j〉(m) ≥ x〈i,k〉(m) + x〈k,j〉(m) − 1

x〈i,j〉(m) ≥ x〈i,k〉(m) + x〈j,k〉(m) − 1

x〈i,j〉(m) ≥ x〈k,i〉(m) + x〈k,j〉(m) − 1

x〈i,j〉(m) ≥ x〈k,i〉(m) + x〈j,k〉(m) − 1

∀m ∈ M, ∀〈i, j〉, 〈i, k〉, 〈k, i〉, 〈j, k〉, 〈k, j〉 ∈ S

The new constraints explicitly require that if x〈i,k〉(m)
is 1 and x〈k,j〉(m) is 1, then x〈i,j〉(m) must also be 1
in order to satisfy the inequality, forcing the closing
of the transitive link. Thus the output decisions must
form fully-interconnected cliques between words wher-
ever positive output decisions are made. Due to the
constraints, the optimal solution may add links that
are not present in the standard approach for the same
threshold. For example, if the sum of the value scores
for a set of interconnected positive links is greater
than the negative values incurred by adding the tran-
sitive closure links, then these negative links will be
added. In practice, however, we find the transitivity
constraints have more of a conservative effect: links
that would have been made in the standard approach
are not made, because these would require adding
quite negative values in order to satisfy transitivity.
A lower threshold is needed to achieve the same re-
call, but this comes with higher precision.

There are many benefits to choosing an ILP ap-
proach for cognate clustering. We do not need to
specify the number of clusters or perform any post-
processing on our output; cognate clusters are formed
naturally as the output that maximizes our objective
function. Also, open-source and commercial linear
programming solvers can find solutions to these kinds
of problems quickly and efficiently. Finally, we can use
advances in optimization and insights from other ILP

applications to promote advances within the study of
cognates.

3.2 Experiments

Our first set of experiments test the above formulation
for finding sets of cognates in five Romance languages:
Italian, Spanish, Portuguese, French, and Romanian.
Our gold-standard data comes from the Comparative
Indoeuropean Data Corpus [6]. The corpus contains
word lists of 200 basic meanings for 95 speech varieties
from the Indoeuropean family of languages, together
with cognation judgements. Each word is represented
in an orthographic form without diacritics using the 26
letters of the Roman alphabet. We extract all 200 sets
of words and the corresponding cognate judgements
for our five Romance languages.

For all approaches we use LCSR as our orthographic
similarity measure, s〈i,j〉(m), and vary the thresh-
old, t, from 0.0 to 1.0. We choose LCSR because
it is an efficiently-computable, unsupervised similar-
ity measure, frequently used in cognate identification
research [19, 26, 11, 10]. We use lp solve, a free, open-
source (integer) linear programming solver to perform
the optimization.2 It solves integer programs using the
“Branch-and-bound” algorithm [22]. All cognate clus-
tering optimizations returned a solution in less than a
minute of computation.

We evaluate our approaches in two ways. First, we
evaluate the ILP system at extracting the gold stan-
dard cognate sets. We calculate our system’s set pre-
cision, πs, as the proportion of sets proposed by our
system which are also sets in the gold standard. The
set recall, ρs, is the proportion of gold standard sets
that our system correctly proposes. For a particular
threshold, our evaluation measure is the set F-score:

Fscore = 2
πsρs

πs + ρs

We compare the ILP method to an approach that
builds cognate sets from interconnected words in the
LCSR-induced graph. That is, we link components
that are above the LCSR threshold, and then pro-
pose as cognate sets all interconnected sub-graphs.
For example, in Figure 1, the two sets would be
{giusto,juste} and {derecho,direito,drept}.

Our second evaluation considers the average pair-
wise precision and recall of the cognation decisions.
This is the typical cognate identification evaluation for
previous pairwise approaches [11, 20]. Precision is the
percentage of pairwise positive cognate decisions that
are also in the gold standard (i.e., the proposed pair
are in the same gold-standard cognate set). Recall is
the percentage of true pairwise cognate decisions that
are also identified by our system. For a particular
threshold, we calculate precision and recall separately
for each of the ten language pairs, and return the av-
erage values. We compare the ILP system that makes
these decisions jointly across all languages to a system
that makes decisions based purely on the LCSR.

2 Available at http://lpsolve.sourceforge.net/
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Fig. 2: Pairwise average cognate identification
precision-recall (%), within common-meaning sets, for
the ten Romance languages pairs

3.3 Results

We varied the range of the LCSR threshold and ob-
tained maximum set F-score values of 61.6% by the
ILP system and 57.7% by the system that builds sets
from interconnected words. Thus with a simple, un-
trained measure, we can achieve approximately 4%
higher maximum performance by considering transi-
tivity constraints as part of a constrained optimiza-
tion, rather than forcing transitive closure afterwards
by having all interconnected components be in the
same cognate set.

Beyond forming cognate sets, Fig. 2 shows that
the ILP system can also achieve higher pairwise cog-
nate identification precision than a pure LCSR-based
system, for virtually all levels of identification recall.
Thus even for the usual objective of detecting cognates
between a single pair of languages, making those deci-
sions within a joint optimization over a number of lan-
guages can actually achieve higher performance. This
motivates the application we study in the following
section, where we seek cognates between two languages
without an indicator of semantic similarity.

4 Translation Lexicon Induction

We now expand our ILP formulation to consider the
task of finding cognates between any two word pairs
in a pair of natural languages. Like in the approach of
Mann and Yarowsky [17], this can be used to automat-
ically induce a translation lexicon; any pair of words
are judged to be translations if they have a given level
of orthographic similarity. The total set of translation
pairs produced in this way gives the output lexicon.

4.1 ILP Formulation

We must now index our variables over all words in one
language and all words in the other, not just for those
with common meaning. Thus let x〈i,j〉(u, v) again be

a binary variable, but now representing a cognate de-
cision between the uth and vth words in language Li

and language Lj , respectively. Also let the similar-
ity and value scores range over u and v: s〈i,j〉(u, v)

and c
+/−
〈i,j〉 (u, v). In Section 3.1, it was as if u = v for

all variables (and thus the only index needed was m).
These expanded variables and functions can be used in
place of their previous versions in the Section 3.1 for-
mulations. Subject to no transitivity constraints, the
optimizer will again set every cognate decision to true
that is above the similarity threshold. Now, one word
in one language could be linked to multiple words in
another, if there are multiple pairs scoring above the
similarity threshold. A more restrictive ILP formu-
lation would constrain the decisions such that every
word in one language can link to at most one other
word in the paired language. We call this the one-
to-one (1:1) constraint and encode it in the following
formulation:

max
∑

〈i,j〉∈S

∑

u∈Li

∑

v∈Lj

(c+
〈i,j〉(u, v)x〈i,j〉(u, v)

+c−〈i,j〉(u, v)(1 − x〈i,j〉(u, v)))

subject to:

x〈i,j〉(u, v) ∈ {0, 1}

x〈i,j〉(u, v) ≥ x〈i,k〉(u, w) + x〈k,j〉(w, v) − 1

x〈i,j〉(u, v) ≥ x〈i,k〉(u, w) + x〈j,k〉(v, w) − 1

x〈i,j〉(u, v) ≥ x〈k,i〉(w, u) + x〈k,j〉(w, v) − 1

x〈i,j〉(u, v) ≥ x〈k,i〉(w, u) + x〈j,k〉(v, w) − 1
∑

t∈Lj

x〈i,j〉(u, t) ≤ 1

∑

t∈Li

x〈i,j〉(t, v) ≤ 1

∀u ∈ Li, ∀v ∈ Lj , ∀w ∈ Lk

∀〈i, j〉, 〈i, k〉, 〈k, i〉, 〈j, k〉, 〈k, j〉 ∈ S

The summation constraints ensure that at most one
positive cognate decision is possible from all the words
in one language to a single word in another. Without
the transitivity constraints, our formulation is similar
to the maximum-weight bipartite matching linear pro-
gram given by Taskar et al. [25] for word alignment in
statistical machine translation. Note that in our opti-
mal solution, not every word in a given language will
link with a word in one of the other languages; only
those words with at least one positively-scoring poten-
tial pair-word will participate in a cognate pair. Note
also that whether to enforce a one-to-one constraint
depends on the ultimate application. For noisy trans-
lation lexicon induction, it makes sense to only out-
put the single most likely translation for each word in
each language. However, this constraint can be relaxed
to link each word with at most two or more possible
translations. In preliminary experiments for our task,
a one-to-two constraint resulted in higher maximum
recall at the expense of some precision (but still well
above the precision of the pure LCSR approach).
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Fig. 3: LCSR values for cross-product of Spanish-
Portuguese lexicons

4.2 Experiments

We evaluate the above approach on the same data used
in Section 3, ignoring the common-meaning informa-
tion and now having ILP variables for linking every
word in every language to every word in every other
language. Our evaluation metric is again the average
cognate identification precision-recall across the ten
Romance language pairs. Note that although we eval-
uate over pairs of languages, once again these pairwise
decisions are actually made simultaneously over all ten
language pairs by optimizing the given ILP formula-
tion. Three systems are compared: defining cognate
pairs in terms of LCSR alone (labelled LCSR in our
figure), defining cognate pairs with the above ILP pro-
gram but only using the one-to-one constraints (LCSR
+ 1:1 ), and then with both one-to-one and transitivity
constraints (LCSR + 1:1 + transitivity).

The feasibility of lexicon induction without semantic
information depends on the orthographic similarity of
cognates in the specific Romance language pair. To il-
lustrate, we provide temperature plots of the LCSR be-
tween every word pair for Spanish-Portuguese in Fig. 3
and French-Romanian in Fig. 4. Words with common
meaning lie on the diagonal. The first 39 Spanish-
Portuguese diagonal pairs and the first 88 French-
Romanian diagonal pairs are not cognate while the re-
mainder are. Lexicon induction can be visualized as a
process whose goal is to assign “1” to the word pairs on
the diagonal and “0” to off-diagonal entries. Clearly,
this task is easier if the diagonal entries have higher
LCSR than other pairs. Notice that in our figures, not
only are there more Spanish-Portuguese cognates, but
the ones which are cognate also seem to have a higher
LCSR, facilitating the lexicon induction process.

Another difficulty presented by an ILP formulation

 0

 0.2

 0.4

 0.6

 0.8

 1

Romanian word

F
re

nc
h 

w
or

d

 0  20  40  60  80  100 120 140 160 180 200
 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

Fig. 4: LCSR values for cross-product of French-
Romanian lexicons

to automatic lexicon induction is the sheer size of the
problem. We now have 2002 variables for each of the
ten language pairs, so 400,000 in total. The total
number of possible variable combinations is obviously
quite large and thus we depend heavily on the effi-
cient search of our ILP solver. Even more daunting,
there are 2003 transitivity constraints for each of the
30 unique triples of languages, for a total of 240 million
constraints. Declaring these constraints in advance to
our program is obviously infeasible.

We address this issue with two key techniques. First
of all, it is clear that only a few of the 240 million
transitivity constraints need be applied for a given op-
timal solution; our one-to-one constraint, for exam-
ple, considerably limits the number of possible out-
put pairings (and hence transitive triples) in the opti-
mal solution. Thus instead of declaring the constraints
in advance, we run our optimization, see which con-
straints are violated among our positive cognate de-
cisions (which can be checked quite efficiently), and
then add these constraints to the ILP for the next it-
eration. We run the algorithm until no new violations
are detected. This is similar to the constraint gener-
ation approach used to detect SVM constraint viola-
tions by Tsochantaridis et al. [27]. Secondly, we reduce
the burden of solving the ILP by instead solving the
equivalent linear program relaxation (with variables
now allowed to be any real-number between zero and
one), and then rounding the output to the nearest in-
teger. This is advantageous because, unlike integer
programs, linear programs are solvable in polynomial
time [4, page 777]. For their quadratic assignment ap-
proach to word alignment within translated sentences,
Lacoste-Julien et al. [14] found that solving a relaxed
ILP leads to no difference in performance from solving
the original ILP formulation.
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Fig. 5: Pairwise average cognate identification
precision-recall (%), for automatic lexicon induction,
for the ten Romance languages pairs

4.3 Results

In Fig. 5 we provide the experimental results. First of
all, adding the one-to-one constraints strongly boosts
performance over the pure LCSR system. At some lev-
els of recall, gains in precision of over 20% are achieved.
We found the gains in closely-related languages were
greater than the gains in more distant pairs; how-
ever for a given threshold some improvement consis-
tently occurred across all the languages. Note that the
pure LCSR system can lower its threshold to the point
where every word pair is deemed to be cognate. Hence
very low precision values can be computed up to 100%
recall. The constraints on the ILP systems, on the
other hand, prevent arbitrarily adding low-precision
links, making computing precision for higher levels of
recall impossible. This is why the constrained solu-
tions do not reach recall above 50% in Fig. 5.

The system that uses both one-to-one and tran-
sitivity constraints achieves even higher precision at
equivalent values of recall. For example, for an LCSR
threshold of 0.70 (30% recall and 75% precision on the
plot), it has about 4% higher precision than the LCSR
+ 1:1 system. For lower thresholds (all subsequent
points on the plot with higher recall / lower preci-
sion), we found our ILP solver could simply not find an
optimal LCSR + 1:1 + transitivity solution in reason-
able time. For lower thresholds, there are more active
constraints and more potentially high-scoring cognate
pairings. Thus for thresholds below 0.70, we instead
solve the linear program relaxation (as described in
Section 4.2) and round the variables to zero or one.
We find the relaxed LCSR + 1:1 + transitivity solu-
tion maintains its gains over the LCSR + 1:1 system
for all levels of recall.

These results strongly demonstrate the benefits of
an ILP formulation for automatic lexicon induction.
Using the same orthographic similarity measure as a
naive approach that links words above the threshold,
we can find cognates with higher precision and re-
call when using a constrained ILP formulation. We
plan to investigate whether using more powerful ILP

software and developing improved approximation al-
gorithms can further boost performance.

5 Future Work

The ease of specification and the improvement in re-
sults demonstrated in the previous two sections are
strong motivations for further work in developing lex-
ical resources using Integer Linear Programming. Our
next step will be to try our methods on other groups
of languages, and to establish the relationship between
the languages in the formulation and the cognate clus-
tering performance. Beyond further analysis of our
particular system, we now propose three especially
promising general research directions.

First of all, note that aligning the words in five lan-
guages without any knowledge of meaning is perhaps
an extreme situation; in practice, we may have fur-
ther constraints on the alignment. For example, we
may have Foreign-to-English translation dictionaries
available. We could use these to constrain cognate
groupings for words that have the same English trans-
lation. For the languages without translation lexicons,
it would be a matter of adding them to the constrained
cognate groupings based on optimizing their similarity
to all the words in those sets, using our ILP formula-
tion. This would effectively implement the multipath
translation lexicon induction explored by Mann and
Yarowsky [17]. They define a bridge word to be a
word with a known English translation and a high or-
thographic similarity to the target word that we wish
to translate. When there are multiple bridge words
for a given target, their approach does not consider
the similarity between the bridge words themselves,
while our approach would integrate bridge word and
target word similarities into one set-formation process.

Another potential application of our approach is
for word alignment within statistical machine trans-
lation. This provides a very suitable problem for a
transitivity-constrained ILP for several reasons. First
of all, the scope is much smaller: word alignment only
aligns words within aligned sentence pairs, not over
entire vocabularies. Secondly, although this approach
has previously been tackled on a pairwise basis, mul-
tilingual sets of sentences are readily accessible within
multilingual corpora such as the Europarl corpus [9].
Finally, previous attempts at using maximum match-
ing linear programs within word alignment have been
quite successful [25, 14], but they have again been lim-
ited to pairwise cases. Like in cognate identification,
separate pairwise word alignments between a set of
natural language sentences implicitly suggest transi-
tive links between interconnected words. It seems rea-
sonable to expect that constraining these alignments
to form consistent, equivalence-class word sets would
allow for gains in word alignment performance.

Finally, we plan to investigate machine learned or-
thographic and semantic similarity models, such as
those used by Bergsma and Kondrak [2], in place
of simple LCSR. State-of-the-art learned models can
more than double the performance of LCSR at find-
ing translation pairs, and these gains should be addi-
tive with our improvements in clustering. Typically,
partitioning and clustering using ILP have used Max-



imum Entropy-based pairwise models before finding
the optimal sets with ILP [1, 5]. One drawback of
these approaches is that they decouple the pairwise
scoring and the clustering components of the set for-
mation. It may instead be advantageous to use mod-
ern structured learning techniques to discriminatively
derive the pairwise scoring functions that result in the
best clustering performance. These kinds of structured
learning approaches have proven successful in part-of-
speech tagging [3], word alignment [25] and depen-
dency parsing [18].

6 Conclusion

We have presented a multilingual approach to cognate
identification that jointly optimizes cognate cluster-
ing across sets of natural languages. The technique
of Integer Linear Programming is used to find so-
lutions to a cognate-partitioning objective function,
subject to natural constraints added to ensure con-
sistency of decisions across languages. When words
with common meaning have been identified a priori
across five Romance languages, we have shown that
our Integer Linear Programming approach to cognate
set formation results in a four percent gain in cog-
nate set formation F-score, as well as consistent gains
in pairwise precision-recall across all language pairs.
For the task of automatic lexicon induction, we have
shown strong improvements in performance when us-
ing transitivity and one-to-one constraints. Although
our fully-constrained formulation strains the computa-
tional limits of ILP, more work can be done in devel-
oping approximation algorithms or more efficient op-
timizations for our particular problem structure. Fi-
nally, we have outlined several possible future appli-
cations of ILP formulations in developing lexical re-
sources for natural language processing and machine
translation. In particular, our improvements in cog-
nate set creation for lexicon induction have the po-
tential to make a real impact on the development of
electronic resources for resource-poor languages.
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