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Abstract. The determination of recurrent sound correspondences be-
tween languages is crucial for the identification of cognates, which are
often employed in statistical machine translation for sentence and word
alignment. In this paper, an algorithm designed for extracting non-com-
positional compounds from bitexts is shown to be capable of determining
complex sound correspondences in bilingual wordlists. In experimental
evaluation, a C++ implementation of the algorithm achieves approxi-
mately 90% recall and precision on authentic language data.

1 Introduction

All languages change through time. Table 1 gives an example of how much
English has evolved within the last fourteen hundred years. Words that make
up languages undergo sound changes (nū → now) as well as semantic shifts
(‘guardian’ → ‘ward’). Lexical replacement is a process in which lexemes drop
out of usage altogether, and are substituted by other, unrelated words (herigean
→ praise). Morphological endings change and disappear as well (-on in sculon).

Old English: Nū sculon herigean heofonr̄ıces weard
Modern English: Now we should praise heaven-kingdom’s guardian

Table 1. The first verse of Caedmon’s Hymn and its modern English translation.

When two groups of people that speak a common language lose contact with
each other, their respective languages begin to diverge, and eventually become
mutually unintelligible. In such cases, we may still be able to determine that the
languages are genetically related by examining cognates, that is words that have
developed from the same proto-form. For example, French lait, Spanish leche,
and Italian latte constitute a cognate set, as they are all descendants, or reflexes,
of Latin lacte. In general, the longer the time that has passed since the linguistic



split, the smaller the number of cognates that remain as a proof of a genetic
relationship.

Because of gradual changes over long periods of time, cognates often acquire
very different phonetic shapes. For example, English hundred, French cent, and
Polish sto are all descendants of Proto-Indo-European *kmtom (an asterisk de-
notes a reconstructed form). The semantic change can be no less dramatic; for
example, English guest and Latin hostis ‘enemy’ are cognates even though their
meanings are diametrically different. On the other hand, not all similar sounding
words that have the same meaning are cognates. It can be a matter of chance
resemblance, as in English day and Latin die ‘day’, or an instance of a borrow-
ing, as in English sprint and Japanese supurinto. Borrowings are lexical items
that have been incorporated (possibly in modified form) into one language from
another.

An important phenomenon that allows us to distinguish between cognates
and borrowings is the regularity of sound change. The regularity principle states
that a change in pronunciation applies to sounds in a given phonological context
across all words in the language. Regular sound changes tend to produce regular
correspondences of phonemes in corresponding cognates. /d/:/t/ is a regular
correspondence between English and German, as evidenced by cognate pairs
such as day – tag, dry – trocken, and drink – trinken. Table 2 shows contains
examples of a regular sound correspondence between four Romance languages.
I prefer to use the term recurrent sound correspondences because in practice the
matchings of phonemes in cognate pairs are more tendencies than hard-and-fast
rules.

Latin Italian Spanish French

nocte notte noche nuit ‘night’
octo otto ocho huit ‘eight’
lacte latte leche lait ‘milk’
factu fatto hecho fait ‘done’
tectu tetto techo toit ‘roof’

Table 2. An example of a recurrent sound correspondence in related languages.

The determination of recurrent sound correspondences is the principal step
of the comparative method of language reconstruction. Not only does it provide
evidence for the relatedness of languages, but it also makes it possible to dis-
tinguish cognates from borrowings and chance resemblances. However, because
manual determination of recurrent sound correspondences is an extremely time-
consuming process, it has yet to be accomplished for many proposed language
families. A system able to perform this task automatically from unprocessed
bilingual wordlists could be of great assistance to historical linguists. The Re-
construction Engine [14], a set of programs designed to be an aid in language



reconstruction, requires a set of recurrent sound correspondences to be provided
beforehand.

The determination of recurrent sound correspondences is closely related to
another task that has been much studied in computational linguistics, the iden-
tification of cognates. Cognates have been employed for sentence and word align-
ment in bitexts [16], improving statistical machine translation models [1], and
inducing translation lexicons [10]. Some of the proposed cognate identification al-
gorithms implicitly determine and employ recurrent sound correspondences [18,
15].

Although it may not be immediately apparent, there is a strong similarity
between the task of matching phonetic segments in a pair of cognate words,
and the task of matching words in two sentences that are mutual translations.
The consistency with which a word in one language is translated into a word
in another language is mirrored by the consistency of sound correspondences.
The former is due to the semantic relation of synonymy, while the latter follows
from the principle of the regularity of sound change. Thus, as already asserted
by Guy [5], it should be possible to use similar techniques for both tasks.

The method of determining complex recurrent sound correspondences that
I present here adopts the approach proposed in [13]. The idea is to relate cor-
respondences between sounds in wordlists to translational equivalences between
words in bitexts (bilingual corpora). The method induces models of sound cor-
respondence that are similar to models developed for statistical machine trans-
lation. It has been shown [13] that the method is able to determine recurrent
sound correspondences with high accuracy in bilingual wordlists in which less
than 30% of the pairs are cognates. However, in the one-to-one model employed
by the method, links are induced only between individual phonemes. This is a
serious limitation because recurrent sound correspondences often involve clus-
ters of phonemes. Many-to-many correspondences, such as the ones shown in
Table 2, may either be only partially recovered or even completely missed by the
algorithm.

This paper presents an extension of the approach described in [13], which
overcomes its main limitation by adapting the algorithm for discovering non-
compositional compounds (NCCs) in bitexts proposed by Melamed [16]. In Sec-
tion 2, I review previous work on determination of recurrent sound correspon-
dences. Melamed’s approach to inducing models of translational equivalence is
discussed in Section 3. Section 4 describes the algorithm for discovering non-
compositional compounds. Section 5 contains some implementation details. Sec-
tion 6 describes the data used for the experimental evaluation, and Section 7 is
devoted to the evaluation itself.

2 Related Work

In a schematic description of the comparative method, the two steps that pre-
cede the determination of recurrent sound correspondences are the identification
of cognate pairs [12], and their phonetic alignment [11]. Indeed, if a compre-



hensive set of correctly aligned cognate pairs is available, the recurrent sound
correspondences could be extracted by simply following the alignment links.
Unfortunately, in order to make reliable judgments of cognation, it is necessary
to know in advance what the recurrent sound correspondences are. Historical
linguists solve this apparent circularity by guessing a small number of likely
cognates and refining the set of correspondences and cognates in an iterative
fashion.

Guy [5] outlines an algorithm for identifying cognates in bilingual wordlists
which is based on recurrent sound correspondences. The algorithm estimates
the probability of phoneme correspondences by employing a variant of the χ2

statistic on a contingency table, which indicates how often two phonemes co-
occur in words of the same meaning. The probabilities are then converted into
the estimates of cognation by means of some experimentation-based heuristics.
Only simple, one-to-one phoneme correspondences are considered. The paper
does not contain any evaluation on authentic language data, but Guy’s program
COGNATE, which implements the algorithm, is publicly available. The program
does not output an explicit list of recurrent sound correspondences, which makes
direct comparison with my method difficult.

Oakes [17] describes a set of programs that together perform several steps of
the comparative method, from the determination of recurrent sound correspon-
dences in wordlists to the actual reconstruction of the proto-forms. Word pairs
are considered cognate if their edit distance is below a certain threshold. The edit
operations cover a number of sound-change categories. Sound correspondences
are deemed to be regular if they are found to occur more than once in the data.
The paper describes experimental results of running the programs on a set of
wordlists representing four Indonesian languages, and compares those to the re-
constructions found in the linguistic literature. Section 7 contains a comparison
of the recurrent sound correspondences identified by JAKARTA and the ones
discovered by my method.

Because the tasks of determination of recurrent sound correspondence and
the identification of cognates are intertwined, some of the bitext-related algo-
rithms implicitly determine and employ recurrent sound correspondences. Tiede-
mann [18] considers automatic construction of weighted string similarity mea-
sures from bitexts. He includes three lists of the most frequent character “map-
pings” between Swedish and English, which correspond to his three mapping ap-
proaches (single characters, vowel and consonant sequences, and non-matching
parts of two strings). However, because genetic cognates in the data seem to
be outnumbered by borrowings, the lists contain few genuine correspondences.
Mann and Yarowsky [15] take advantage of language relatedness in order to
automatically induce translation lexicons. In their search for cognates, they dis-
cover most probable character “substitutions” across languages. In the provided
French–Portuguese examples, phonologically plausible correspondences b:v, t:d
mix with mere orthographic regularities c:q, x:s.

Knight and Graehl [9] in their paper on back-transliteration from the Japa-
nese syllabic script katakana to the English orthography consider the sub-task of



aligning the English and Japanese phonetic strings. They apply the estimation-
maximization (EM) algorithm to generate symbol-mapping probabilities from
8,000 pairs of unaligned English–Japanese sound sequences. It is possible to
view the sound pairs with the highest probabilities as the strongest recurrent
correspondences between the two languages. Naturally, the existence of those
correspondences is an artifact of the transliteration process, rather than a con-
sequence of a genetic language relationship. Nevertheless, it may be possible to
employ a similar approach to discover recurrent sound correspondences in gen-
uine cognates. A drawback of the alignment model presented in the paper is an
asymmetric, one-to-many mapping between the English and Japanese sounds,
and a restricted set of edit operations that excludes both insertions and deletions.
These restrictions are designed to make the models less expensive to compute.

3 The Word-to-Word Model of Translational Equivalence

In statistical machine translation, a translation model approximates the proba-
bility that two sentences are mutual translations by computing the product of
the probabilities that each word in the target sentence is a translation of some
source language word. A model of translation equivalence that determines the
word translation probabilities can be induced from bitexts. The difficulty lies in
the fact that the mapping, or alignment, of words between two parts of a bitext
is not known in advance.

Algorithms for word alignment in bitexts aim at discovering word pairs that
are mutual translations. A straightforward approach is to estimate the likelihood
that words are mutual translations by computing a similarity function based on
a co-occurrence statistic, such as mutual information, Dice coefficient, or the χ2

test. The underlying assumption is that the association scores for different word
pairs are independent of each other.

Melamed [16] shows that the assumption of independence leads to invalid
word associations, and proposes an algorithm for inducing models of trans-
lational equivalence that outperform the models that are based solely on co-
occurrence counts. His models employ the one-to-one assumption, which for-
malizes the observation that most words in bitexts are translated to a single
word in the corresponding sentence. The algorithm, which is related to the
expectation-maximization (EM) algorithm, iteratively re-estimates the likelihood
scores which represent the probability that two word types are mutual transla-
tions. In the first step, the scores are initialized according to the G2 statistic [4].
Next, the likelihood scores are used to induce a set of one-to-one links between
word tokens in the bitext. The links are determined by a greedy competitive
linking algorithm, which proceeds to link pairs that have the highest likelihood
scores. After the linking is completed, the link counts are used to re-estimate the
likelihood scores. Three translation-model re-estimation methods are possible:
Method A calculates the likelihood scores as the logarithm of the probability
of jointly generating the pair of words, Method B uses auxiliary parameters to
represent an explicit noise model, and Method C conditions the auxiliary pa-



rameters on various word classes. The re-estimated likelihood scores are then
applied to find a new set of links. The process is repeated until the translation
model converges to the desired degree.

As demonstrated in [13], it is possible to adapt Melamed’s algorithm to the
problem of determining recurrent sound correspondences. The main idea is to
induce a model of sound correspondence in a bilingual wordlist, in the same way
as one induces a model of translational equivalence among words in a parallel
corpus. After the model has converged, phoneme pairs with the highest likelihood
scores represent the most likely recurrent sound correspondences.

The most important modification to the original algorithm is the substitution
of the approximate competitive-linking algorithm of Melamed with a variant
of the well-known dynamic programming algorithm [11], which computes the
optimal alignment between two strings in polynomial time. Insertion and deletion
of segments is modeled by employing an indel penalty for unlinked segments,
rather than by null links used by Melamed. The alignment score between two
words is computed by summing the number of induced links, and applying an
indel penalty for each unlinked segment, with the exception of the segments
beyond the rightmost link. In order to avoid inducing links that are unlikely to
represent recurrent sound correspondences, only pairs whose likelihood scores
exceed a set threshold are linked.

The algorithm for the determination of recurrent sound correspondences
was evaluated on 200-word lists of basic meanings representing several Indo-
European languages. The results show that the method is capable of determin-
ing recurrent sound correspondences in bilingual wordlists in which less than
30% of pairs are cognates, and that it outperforms comparable algorithms on
the related task of the identification of cognates.

4 Discovering Non-Compositional Compounds in Bitexts

The algorithm proposed in [13] can only discover recurrent sound correspon-
dences between single phonemes. This limitation, which is directly inherited
from Melamed’s original algorithm, may prevent the algorithm from detecting
many more complex correspondences, such as the ones in Table 2. A quite simi-
lar problem exists also in the statistical machine translation. Non-compositional
compounds (NCCs) are word sequences, such as “high school”, whose meaning
cannot be synthesized from the meaning of its components. Since many NCCs
are not translated word-for-word, their detection is essential in most NLP appli-
cations.

As a way of relaxing the one-to-one restriction, Melamed [16] proposes an
elegant algorithm for discovering NCCs in bitexts. His information-theoretic ap-
proach is based on the observation that treating NCCs as a single unit rather
than as a sequence of independent words increases the predictive power of statis-
tical translation models. Therefore, it is possible to establish whether a partic-
ular word sequence should be considered a NCC by comparing two translation
models that differ only in their treatment of that word sequence. For the objec-



tive function that measures the predictive power of a translation model Pr(s, t),
Melamed selects mutual information:

I(S;T ) =
∑
s∈S

∑
t∈T

Pr(s, t) log
Pr(s, t)

Pr(s)Pr(t)
,

where S and T represent the distributions of linked words in the source and
target texts, and s and t are word tokens.

Melamed’s approach to the identification of NCCs is to induce a trial transla-
tion model that involves a candidate NCC and compare the model’s total mutual
information with that of a base translation model. The NCC is considered valid
only if there is an increase of the mutual information in the trial model. The
contribution of s to I(S;T ) is given as:

i(s) =
∑
t∈T

Pr(s, t) log
Pr(s, t)

Pr(s)Pr(t)
.

In order to make this procedure more efficient, Melamed proposes inducing the
translation model for many candidate NCCs at the same time.

A complex gain-estimation method is used to guess whether a candidate
NCC is useful before inducing a translation model that involves this NCC. Each
candidate NCC xy causes the net change ∆xy in the objective function, which
can be expressed as:

∆xy = i′(x) + i′(y) + i′(xy)− i(x)− i(y),

where i and i′ are predictive value functions for source words in the base transla-
tion model and in the trial translation model, respectively. i′(x) is estimated on
the assumption that the links involving x will not change in the trial translation
model unless y occurs to the right of x:

i′(x) = i(x : RC 6= y),

where (x : RC 6= y) denotes the set of tokens of x whose right context is y.
Similarly,

i′(y) = i(y : LC 6= x),

where LC denotes word context to the left. Finally, i′(xy) is estimated as follows:

i′(xy) = i(x : RC = y) + i(y : LC = x).

Given parallel texts E and F , the algorithm iteratively augments the list of
NCCs. The iteration starts by inducing a base translation model between E and
F . All continuous bigrams which are estimated to increase mutual information
of the translation model are placed on a sorted list of candidate NCCs, but for
each word token, only the most promising NCC that contains it is allowed to
remain on the list. Next, a trial translation model is induced between E′ and
F , where E′ is obtained from E by fusing each candidate NCC into a single



token. If the net change in mutual information gain contributed by a candidate
NCC is greater than zero, all occurrences of that NCC in E are permanently
fused; otherwise the candidate NCC is placed on a stop-list. The entire iteration
is repeated until reaching an application-dependent stopping condition.

The method was evaluated on a large English–French bitext containing tran-
scripts of Canadian parliamentary debates (Hansards). In one experiment, after
six iterations the algorithm identified on both sides of the bitext about four
hundred NCCs that increased the mutual information of the model. Another
experiment, which is particularly relevant for the application discussed in this
chapter, showed that the method was capable of discovering meaningful NCCs in
a data set consisting of spellings and pronunciations of English words (for exam-
ple, ph was determined to be a NCC of English spelling because it consistently
“translates” into the sound /f/). However, the full NCC recognition algorithm
was not tested in any real application.

5 Implementation of the Algorithm

The NCC algorithm of Melamed has been adapted to the problem of deter-
mining complex sound correspondences and implemented as a C++ program
named CORDI. The program takes as input a bilingual wordlist and produces
an ordered list of recurrent sound correspondences. Method C discussed in Sec-
tion 3 is used for the inducing of translation models, In Method C, phonemes
are divided into two classes: non-syllabic (consonants and glides), and syllabic
(vowels); links between phonemes belonging to different classes are not induced.

Adjustable parameters include the indel penalty ratio d and the minimum-
strength correspondence threshold t. The parameter d controls the behaviour of
the alignment algorithm by fixing the ratio between the negative indel weight
and the positive weight assigned to every induced link. A lower ratio causes
the program to be more adventurous in positing sparse links. The parameter t
controls the tradeoff between reliability and the number of links. The value of
t implies a score threshold of t · log λ+

λ− , which is a score achieved by a pair of
phonemes that have t links out of t co-occurrences. In all experiments described
below, d was set to 0.15, and t was set to 1 (sufficient to reject all non-recurring
correspondences). The maximum number of iterations of the NCC algorithm
should also be specified by the user, but the algorithm may terminate sooner if
two subsequent iterations fail to produce any candidate NCCs.

The NCC algorithm is adapted with one major change. After inducing a trial
translation model between E′ and F , the original algorithm accepts all candidate
NCCs that contribute a positive net change in mutual information gain. For
the detection of phoneme NCCs, I decided to accept all candidate NCCs that
result in a recurrent sound correspondence that has a likelihood score above the
minimum-strength threshold t described above. I found that the strength of an
induced correspondence better reflects the importance of a phoneme cluster than
the mutual information gain criterion.



6 The Algonquian Data

The test data suitable for the evaluation of the approach outlined above has to
fulfill several requirements: it should be sufficiently large to contain many surviv-
ing cognates, the lexemes should be given in a consistent notation that allows for
an automatic transcription into phonetic form, and, finally, the cognation infor-
mation has to be provided in the electronic form as well, so that the performance
of the program can be measured objectively. The last condition is perhaps the
most difficult to satisfy. Even in the rare cases when machine-readable bilingual
lexicons can be acquired, the cognation judgments would have to be laboriously
extracted from etymological dictionaries. Note that optical scanning of phonetic
symbols or unusual diacritics is is not feasible with the current state of technol-
ogy.

Fortunately, the machine-readable Algonquian data [8] satisfy the above re-
quirements. It consists of two parts that complement each other: the etymological
dictionary, and the vocabulary lists from which the dictionary was produced.

The dictionary, which is also available in book form [7], contains 4,068 cog-
nate sets, including 853 marked as nouns. Each cognate set is composed of a
reconstructed proto-form and the corresponding cognates accompanied by short
glosses in English. Nearly all cognates belong to one of the four principal Algo-
nquian languages (Fox, Menomini, Cree, Ojibwa). The dictionary file is almost
identical with the book version, and required only minimal clean-up. The lex-
emes are already in a phonemic transcription, so no sophisticated grapheme-to-
phoneme conversion was necessary. A simple coding is used to express phonemes
that lack ASCII equivalents: c for /š/, q for the glottal stop, etc. In the exper-
iments described in this section, the dictionary file served as a source of the
cognation information.

Language Dictionary only Dictionary and lists
All words Nouns All words Nouns

Fox 1252 193 4759 575
Menomini 2231 361 8550 1540
Cree 2541 512 7507 1628
Ojibwa 2758 535 6334 1023

Total 8782 1601 27150 4766

Table 3. The size of the Algonquian vocabulary lists.

In contrast with the dictionary, the vocabulary lists can be characterized as
noisy data. They contain many errors, inconsistencies, duplicates, and lacunae.
The Fox file is incomplete. In the Menomini file, three different phonemes (/č/,
/æ/, and the glottal stop) had been merged into one, and had to be painstakingly
reconstructed on the basis of phonotactic constraints. As much as possible, the
entries were cross-checked with the dictionary itself, which is much more consis-



tent. Table 3 specifies the number of unique lexemes available for each language.
It appears that only about a third of the nouns present in the vocabulary lists
had made it into the dictionary.

7 Experimental Evaluation

In order to test the suitability of the NCC approach, an experiment was per-
formed on a subset of the Algonquian data. The goal was to determine recurrent
sound correspondences from noisy wordlists and evaluate them against the set of
correspondences determined by Bloomfield [2, 3]. Because of the large number of
complex 1:2 and 2:2 recurrent sound correspondences, the Algonquian languages
are ideal for testing the NCC approach.

The input data was automatically extracted from the raw vocabulary lists by
selecting all pairs of noun lexemes that had at least one gloss in common. The
end result of such an operation is bilingual wordlists containing both cognate
and non-cognate pairs. The Cree–Ojibwa list served as the development set, and
the Fox–Menomini list as the test set. The Cree–Ojibwa contained 732 pairs,
including 242 (33.1%) cognate pairs. The Fox–Menomini list turned out to be
even more challenging: it contained 397 word pairs, including only 79 (19.9%)
cognate pairs.

Since the vowel correspondences in Algonquian are rather inconsistent, fol-
lowing Hewson [6], I decided to concentrate on consonants and consonant clus-
ters. On the Fox–Menomini data, the algorithm terminated after 12 iterations,
which took several minutes on a Sparc workstation. (Each iteration involves
inducing anew both the base and the trial translation models.)

Table 4 compares the set of 31 correspondences enumerated by Bloomfield,
which is adopted as the gold standard, with the set of 23 correspondences de-
termined by CORDI, and eight correspondences identified by JAKARTA [17].
20 recurrent sound correspondences identified by CORDI are correct, while the
remaining three are wrong and can be traced to alignments of unrelated words.
The resulting precision was therefore 87%.

Bloomfield: p:p t:t k:k s:s h:h h:q č:č š:s n:n m:m t:ht
hp:hp hk:hk ht:qt hk:hk šk:sk č:hč s:hs s:qs
š:qs s:hn s:qn šk:hk p:hp hč:qč k:hk hk:čk
hp:sp hč:hč ht:ht š:hs n:hn

CORDI: p:p t:t k:k s:s h:h č:č š:s p:č n:n m:m t:ht
hp:hp hk:hk ht:qt hk:hk šk:sk č:hč s:hs s:qs
š:qs s:hn s:qn hk:t t:sk

JAKARTA: p:p t:t k:k s:s h:h n:n m:m h:hs

Table 4. The Fox–Menomini consonantal correspondences determined by a linguist
and by two computer programs. The correspondences shown in boldface are valid cor-
respondences that were present in the input set of word pairs.



In order to determine why the number of recurrent sound correspondences
established by Bloomfield was much greater than the number of recurrent sound
correspondences produced by the program, I manually analyzed the 79 cognate
pairs included in the input wordlist. I found that š:hk and p:hp occur twice in
the input, hč:qč occurs once, and the remaining seven complex correspondences
do not occur at all. The h:q correspondence is dubious because it only occurs
within clusters. Since, by definition, recurrent correspondences are those that
occur at least twice, the recall on the test set was in fact 21/23 = 91%.

For comparison, on the same Fox–Menomini list, JAKARTA identifies only
eight consonantal correspondences of which the single complex correspondence
is not in Bloomfield’s set. The resulting precision is comparable at 88%, but the
recall is only 32%.

The results of the experiment are extremely encouraging. The accomplish-
ment of a very high precision and recall on a test set composed of 80% noise
confirms that the iterative statistical approach advocated here is highly robust.
The impressive outcome should, however, be interpreted with caution. Because
of the (unavoidably) small number of target correspondences, the change of a sin-
gle classification makes a difference of about 5% in the resulting precision/recall
figures. Moreover, the decision to ignore vowels and glides helped the program to
focus on the right type of correspondences. Finally, the Algonquian consonan-
tal correspondences are almost context-free, which nicely suits the program’s
principles.

8 Conclusion

I have proposed an original approach to the determination of complex sound
correspondences in bilingual wordlists based on the idea of relating recurrent
correspondences between sounds to translational equivalences between words.
Through induction of statistical models that are similar to those developed for
statistical machine translation, the method is able to recover recurrent sound
correspondences from bilingual wordlists that consist mostly of unrelated pairs.
The results presented here prove that the techniques developed in the context
of statistical machine translation can be successfully applied to a problem in
diachronic phonology. I am convinced that the transfer of methods and insights
is also possible in the other direction.
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