
Phonetic alignment and similarity

Grzegorz Kondrak
Department of Computing Science
University of Alberta
Edmonton, AB T6G 2E8, Canada
Phone: +1 780 492 1779
Fax: +1 780 492 1071
E-mail: kondrak@cs.ualberta.ca

April 4, 2003

Abstract. The computation of the optimal phonetic alignment and the phonetic similarity be-
tween words is an important step in many applications in computational phonology, including
dialectometry. After discussing several related algorithms, I present a novel approach to the
problem that employs a scoring scheme for computing phonetic similarity between phonetic
segments on the basis of multivalued articulatory phonetic features. The scheme incorporates
the key concept of feature salience, which is necessary to properly balance the importance
of various features. The new algorithm combines several techniques developed for sequence
comparison: an extended set of edit operations, local and semiglobal modes of alignment, and
the capability of retrieving a set of near-optimal alignments. On a set of 82 cognate pairs, it
performs better than comparable algorithms reported in the literature.

Keywords: cognates, dialects, features, phonetic alignment, phonetic similarity

1. Introduction

The ability to quantify the phonetic similarity between words is important in
many applications in both diachronic and synchronic phonology, including
dialectometry. (In most context, the notions ofword similarityandword dis-
tanceare interchangeable.) A recent study (Heeringa et al., 2002) confirms
that word-based methods for dialect comparison perform better than corpus-
based methods that ignore word-boundaries. Such methods usually estimate
word similarity as a (weighted) sum of the similarity between corresponding
phonetic segments, and therefore depend crucially on their correct alignment.
In contrast with word similarity, which is a rather subjective notion, we can
usually establish the correct alignment with a high degree of confidence. An
objective evaluation is therefore easier for an alignment algorithm than for a
similarity algorithm.

Phonetic alignment is often an objective in itself. Usually, the strings to
be aligned represent forms that are related in some way: a pair of cognates,
or the underlying and the surface forms of a word, or the intended and the
actual pronunciations of a word. Alignment of phonetic strings presupposes
transcription of sounds into discrete phonetic segments, and so differs from
matching of utterances in speech recognition. On the other hand, it has much

© 2003Kluwer Academic Publishers. Printed in the Netherlands.

final.tex; 7/04/2003; 10:16; p.1

2 Grzegorz Kondrak

in common with the alignment of proteins and DNA sequences. Many meth-
ods developed for molecular biology can be adapted to perform accurate pho-
netic alignment. This is not entirely surprising considering that both words
and molecular sequences are made of a limited set of segments that undergo
evolutionary changes and splits.

Both the word similarity and the word alignment algorithms usually con-
tain two main components: a metric for measuring distance between phonetic
segments and a procedure for finding the optimal alignment. The former is
often calculated on the basis of phonological features that encode certain
properties of phonetic segments. An obvious candidate for the latter is a well-
known algorithm for string alignment (Wagner and Fischer, 1974), which is
based on the dynamic programming1 principle. The algorithm simultaneously
calculates the similarity between two strings and their optimal alignment.
Depending on the application, either of the results, or both, can be used.

In this paper, I present a new approach to the alignment of phonetic strings,
and compare it to several other approaches that have been reported in the
literature. The new approach combines various techniques developed for se-
quence comparison with a scoring scheme for computing phonetic similarity
on the basis of multivalued articulatory features. An evaluation on a set of
cognates demonstrates that it performs better than comparable algorithms.
The method is applicable not only to the alignment of cognates but also to
any other contexts in which it is necessary to align phonetic strings.

2. Related algorithms

In this section, I review several algorithms for calculating the phonetic align-
ment and/or similarity that have been reported in the literature. Some proper-
ties of the algorithms are summarized in Table I. The labelexplicit identifies
the intended function of the algorithm, while the labelimplicit marks the
functionality that is present but not overtly used.

Covington (1996) developed an algorithm for the alignment of cognates
on the basis of phonetic similarity. In a follow-up paper (1998), he extended
the algorithm to align words from more than two languages. His algorithm
consists of a specially designed evaluation metric and a depth-first search
procedure for finding the minimal-cost alignment. The evaluation metric is a
function that specifies the substitution cost for every pair of segments, and a
context-dependent insertion/deletion (indel) cost. The total cost of a particular
alignment is calculated by summing the costs of all substitutions and indels.
I discuss Covington’s approach in more detail in Sections 3.2 and 5.1.

1 Dynamic programming is a technique of efficiently solving problems by combining
previously computed solutions to smaller sub-problems.

final.tex; 7/04/2003; 10:16; p.2

Phonetic alignment and similarity 3

Table I. Comparison of phonetic alignment/similarity algorithms.

Algorithm Calculation Calculation Dynamic Phonological

of alignment of distance progr. features

Covington (1996) explicit implicit no no

Somers (1998) explicit no no multivalued

Gildea & Jurafsky (1996) explicit implicit yes binary

Kessler (1995) implicit explicit yes multivalued

Nerbonne & Heeringa (1997) implicit explicit yes binary

Oakes (2000) explicit explicit yes multivalued

Somers (1998) proposed a special algorithm for aligning children’s ar-
ticulation data with the adult model. He implemented three versions of the
algorithm, which use different methods to compute the cost of substitution:
the ‘CAT’ version based on binary articulatory features, the ‘FS/P’ version
based on perceptual features, and the ‘Lad’ version based on multivalued
features. There is no explicit penalty for indels. The algorithm, which depends
heavily on the alignment of stressed vowels, is described in (Somers, 1999).
After running ‘CAT’ on Covington’s test data, he concludes that, in terms of
accuracy, it is as good as Covington’s algorithm. In Section 3.1, I point out a
weakness in Somers’s algorithm.

Gildea and Jurafsky (1996) align phonetic strings in their transducer in-
duction system. The system induces phonological rules directly from a large
corpus of corresponding underlying and surface word-forms. The authors
found that a pre-alignment of the forms greatly improves the performance
of the system. Because the surface forms are generated directly from the
underlying forms by the application of a few simple phonological rules, the
pre-alignment algorithm need not be sophisticated. The evaluation metric is
based on 26 binary features. The cost of substitutions is a straightforward
Hamming distance2 between two feature vectors. The cost of indels is set at
one quarter of the maximum possible substitution cost.

Kessler (1995) tested several different approaches for computing distance
between Irish dialects. The dialects were represented by wordlists, each con-
taining about 50 concepts. The most sophisticated method employs twelve
multivalued phonetic features. The numeric feature values are assigned ar-
bitrarily, and all features are given the same weight. The distance between
phonetic segments is calculated as the difference averaged across all twelve
features. The cost of indels is not specified in the paper. Kessler found that

2 Hamming distance between two vectors is the number of elements that need to be
changed to obtain one vector from the other.

final.tex; 7/04/2003; 10:16; p.3

4 Grzegorz Kondrak

the feature-based method performed worse than a simpler phoneme-based
method, which employed a binary identity function between phonemes.

Nerbonne and Heeringa (1997) investigated the problem of measuring
phonetic distance between Dutch dialects. The distance between two dialects
is estimated by taking the sum of Levenshtein distances3 between two sets
of corresponding words. The cost of indels is set at half the average of all
substitutions. The computed distance is normalized by dividing its value by
the length of the longer word. The authors found that, for measuring dis-
tance between phonemes on the basis of features, the Manhattan distance is
preferable to both Euclidean distance and Pearson correlation

Oakes’s (2000) program JAKARTA contains a phonetically-based align-
ment algorithm, whose ultimate purpose is the discovery of regular sound
changes. An impressive array of edit operations covers a number of sound-
change categories. The cost of all the above operations is uniformly set at
1, while the cost of the standard substitution and insertion/deletion is set at
2. The phonetic characteristics of sound are stored by means of just three
features: place, manner, and voicing, of which the first two have more than
two values. However, the similarity between phonetic segments is estimated
by checking the identity of the feature values only; there is no notion of the
relative distance between various places or manners of articulation. Distinct
phonetic segments can have identical feature assignments.

3. Finding the optimal phonetic alignment

Given two strings of lengthn andm, the basic dynamic programming algo-
rithm takesO(nm) time to calculate the minimal edit distance plusO(n+m)
time to determine the corresponding alignment. Each element of the tableD
of size (n+ 1)× (m+ 1) holds the minimal distance between a pair of the
initial substrings. The final elementD[n,m] contains the minimal distance
between the entire input strings. The idea is to calculate each element ofD on
the basis of a few neighbouring elements. The optimal alignment can then be
retrieved formD by tracing back through the elements until the root element
D[0,0] is reached.

The dynamic programming algorithm is fast and seems to be optimal for
the task of aligning phonetic strings. Nevertheless, both Somers and Cov-
ington opt for other search strategies. In this section, I argue that this is
unwarranted.

3 Levenshtein distance is the minimum number of substitutions and insertions/deletions
necessary to convert one string into another.

final.tex; 7/04/2003; 10:16; p.4

Phonetic alignment and similarity 5

3.1. GREEDY SEARCH IS NOT ENOUGH

Somers’s algorithm is unusual because the selected alignment is not necessar-
ily the one that minimizes the sum of distances between individual segments.
Instead, it recursively selects the most similar segments, or “anchor points”,
in the strings being compared. Such an approach has a serious flaw. Suppose
that the strings to be aligned aretewosanddivut (Table II). Even though the
corresponding segments are slightly different, the alignment is straightfor-
ward. However, a greedy algorithm that looks for the best-matching segments
first, will erroneously align the twot ’s. Because of its recursive nature, the
algorithm has no chance of recovering from such an error. Regardless of the
method of choosing the anchor points, an algorithm that never backtracks is
not guaranteed to find the optimal alignment.

Table II. A correct and an incorrect alignment of a hypothetical cognate
pair.

t e w o s - - - - t e w o s

d i v u t d i v u t - - - -

Somers (2000) argues that his alignment algorithm works very well on
the children’s articulation data, where the stressed vowel is a reliable anchor
point. This strategy is rather risky in the context of the alignment of cognates,
where stress is too volatile to depend on. Even dialects of the same language
may have different stress rules. For example, stress regularly falls on the
penultimate syllable in most varieties of Polish, but on the initial syllable in
the Tatra mountains dialect. Somers (1999) nevertheless applies his algorithm
to the alignment of cognates. In Section 7, I will examine the alignments
reported in that paper.

3.2. EXHAUSTIVE SEARCH IS TOO MUCH

The alignment problem is characterized by a small number of elements and
a limited number of interactions between them. Unsurprisingly, applying a
depth-first search to this problem results in the same operations being per-
formed repeatedly in various branches of the tree. Covington provides the fol-
lowing arguments for adopting depth-first search rather than a more efficient
dynamic programming approach.

First, the strings being aligned are relatively short, so the efficiency of
dynamic programming on long strings is not needed. Second, dynamic
programming normally gives only one alignment for each pair of strings,
but comparative reconstruction may need then best alternatives, or all that
meet some criterion. Third, the tree search algorithm lends itself to mod-

final.tex; 7/04/2003; 10:16; p.5

6 Grzegorz Kondrak

ification4 for special handling of metathesis or assimilation. (Covington,
1996)

I am not convinced by Covington’s arguments. If the algorithm is to be of
practical use, it should be able to operate on large bilingual wordlists. Most
words may be quite short, butsomewords happen to be rather long. For exam-
ple, the vocabulary lists of Algonquian languages contain many words that are
longer than 20 phonemes. In such cases, the number of possible alignments
exceeds 320, according to Covington. Even with search-tree pruning, such a
combinatorial explosion of the number of nodes is likely to cause a painful
slow-down. Moreover, combining the alignment algorithm with some sort of
strategy for measuring phonetic similarity between a number of dialects is
likely to require comparing thousands of words against each other. Having a
polynomially bound algorithm in the core of such a system is crucial. In any
case, since the dynamic programming algorithm involves neither significantly
larger overhead nor greater programming effort, there is no reason to avoid
using it even for relatively small data sets.

The dynamic programming algorithm is not only considerably faster than
tree search but also sufficiently flexible to accommodate the proposed modi-
fications without compromising its polynomial complexity. In the following
section, I demonstrate that it is possible to retrieve from the edit distance table
D the set ofk best alignments, or the set of alignments that are withinε of the
optimal solution, and that the basic set of editing operations (substitutions and
indels) can be augmented to include both transpositions of adjacent segments
(metathesis) and compressions/expansions.

4. Extensions to the basic dynamic programming algorithm

In this section, I describe a number of extensions to the basic dynamic pro-
gramming algorithm, which have been proposed primarily to address issues
in DNA alignment, and I show their applicability to phonetic alignment.

4.1. RETRIEVING A SET OF BEST ALIGNMENTS

At times, it may be desirable to find a number of alternative alignments that
are close to the optimum rather than a single best alignment. Myers (1995)
describes a modification of the basic dynamic programming algorithm that
produces all alignments that correspond to distances below the threshold
score ofd+ ε, whered is the optimal distance. The alignments are retrieved
recursively from the edit distance tableD, with the current partial alignment
maintained on a stack.

4 Covington does not elaborate on the nature of the modification.

final.tex; 7/04/2003; 10:16; p.6

Phonetic alignment and similarity 7

In order to find thek-best alignments, the edit distance tableD can be
viewed as a graph with nodes corresponding to the elements in the table, and
the arc lengths set according to the edit distance function. A recently proposed
algorithm (Eppstein, 1998) discovers thek-shortest paths connecting a pair of
nodes in a directed acyclic graph in timeO(e+k), wheree is the number of
edges in the graph.

4.2. STRING SIMILARITY

An alternative way of evaluating the affinity of two strings is to measure their
similarity, rather than the distance between them. The similarity of two strings
is defined as the sum of the individual similarity scores between aligned seg-
ments. A similarity scoring scheme normally assigns large positive scores
to pairs of related segments; large negative scores to pairs of dissimilar seg-
ments; and small negative scores to indels. The optimal alignment is the one
that maximizes the overall score. The basic dynamic programming algorithm
can be adapted to compute the similarity by simply modifying it to select the
minimum, rather than the maximum, partial score.

The similarity approach is closely related to the distance approach. In fact,
it is often possible to transform one into the other. An important advantage
of the similarity approach is the possibility of performinglocal alignmentof
strings, which is discussed next.

4.3. LOCAL AND SEMIGLOBAL ALIGNMENT

Informally, the optimallocal alignment(Smith and Waterman, 1981) of two
strings is the highest scoring alignment of their substrings. This notion is
particularly useful in applications where only certain regions of two strings
exhibit high similarity. For example, the local alignment of Creeāpakos̄ıs
and Foxwāpikon̄oha ‘mouse’ (Table III) matches the roots of the words and
leaves out the unrelated affixes. (Double bars delimit the aligned substrings.)
Such an affix-stripping behaviour is impossible to achieve with global align-
ment.

It should be clear why the switch from distance to similarity is not just
a trivial change of terminology. If we tried to identify corresponding sub-
strings by minimizing distance, we would almost always end up with empty
or identical substrings. This is because the distance between any substrings
that are less than perfect matches will be greater than zero. In contrast, a well-
designed similarity scheme which rewards good matches and penalizes poor
matches will allow regions of similarity to achieve meaningful lengths.

Semiglobal alignmentis intermediate between local and global alignment.
The idea is to assign a similarity score of zero to any indels at the beginning
or the end of the alignment. Unlike in local alignment, the unmatched sub-
strings that do not contribute to the total score cannot occur simultaneously

final.tex; 7/04/2003; 10:16; p.7

8 Grzegorz Kondrak

Table III. Various kinds of alignment.

global: ‖ - ā p a k o s ı̄ s - - - - ‖
‖ w ā p i k o - - - n ō h a ‖

local: ‖ ā p a k o ‖ s̄ıs

w ‖ ā p i k o ‖ nōha

semiglobal: ‖ ā p a k o s ı̄ s ‖
w ‖ ā p i k o - - - ‖ nōha

half-local: ‖ - ā p a k o ‖ s̄ıs

‖ w ā p i k o ‖ nōha

in both strings. The practical effect for cognate alignment is that a spurious
affix can be separated from only one of the words being compared. Note that
the unaligned segments do not affect the similarity score of the two strings,
which would be the case if global alignment was used instead.

Another possible combination of local and global alignment, which I de-
cided to callhalf-local alignment, is useful in aligning cognates. It is designed
to reflect the greater relative stability of the initial segments of words in
comparison with their endings.

4.4. AFFINE GAP FUNCTIONS

A gap is a consecutive number of indels in one of the two aligned strings. In
some applications, the occurrence of a gap of lengthk is more probable than
the occurrence ofk isolated indels. In order to take this fact into account, the
penalty for a gap can be calculated as a function of its length, rather than as
a simple sum of individual indels. One solution is to use anaffine function
of the formgap(x)= r + sx, wherer is the penalty for the introduction of a
gap, ands is the penalty for each symbol in the gap. Gotoh (1982) describes a
method for incorporating affine gap scores into the dynamic programming
alignment algorithm. Incidentally, Covington’s penalties for indels can be
expressed by an affine gap function withr = 10 ands= 40.

4.5. ADDITIONAL EDIT OPERATIONS

In addition to substitution and insertion/deletion, another useful edit oper-
ation is compression/expansion, which aligns two contiguous segments of
one string with a single segments of the other string. In the context of the
alignment of cognates, the compression/expansion operation facilitates the
expression of complex phoneme correspondences. For example, in the align-

final.tex; 7/04/2003; 10:16; p.8

Phonetic alignment and similarity 9

ment of stems of Italianlatte and Spanishleche, the rightmost alignment
in Table IV is the most accurate. Note that emulating compression as a se-
quence of substitution and deletion is unsatisfactory because it cannot be
distinguished from an actual sequence of substitution and deletion.

Table IV. An example of the compression/expansion edit operation.

l a t t l a t t l a tt

l e č - l e - č l e č

Oommen (1995) formally defines the string alignment algorithm that in-
corporates the compression/expansion operation. The operation of transpo-
sition of adjacent segments can also be integrated into the dynamic pro-
gramming algorithms, much along the same lines as in the case of com-
pression/deletion. The details of the necessary modifications are given in
(Lowrance and Wagner, 1975) and (Oommen and Loke, 1997).

5. Comparing phonetic segments

The distance/similarity function is of crucial importance in the phonetic align-
ment. The numerical value assigned by the function to a pair of segments is
referred to as the substitution cost (in the context of distance), or as the sub-
stitution score (in the context of similarity). The function can be extended to
cover other edit operations, such as insertions/deletions and compressions/ex-
pansions. The most elementary distance function assigns a zero cost to iden-
tical segments and a unary cost to non-identical segments. Such a function
is simple to implement, but will perform poorly on phonetic alignment. This
section is concerned with the problem of designing a better function, which
would encode the knowledge about universal characteristics of sounds.

5.1. FEATURE-BASED METRICS

Covington (1996), for his cognate alignment algorithm, constructed a special
distance function. It was developed by trial and error on a test set of 82
cognate pairs from various related languages. The distance function is very
simple; it uses no phonological features and distinguishes only three types of
segments: consonants, vowels, and glides. Many important characteristics of
sounds, such as place or manner of articulation, are ignored, which implies
that [m] and [h] are assumed to be as similar as [t] and [th], and bothyachtand
will are treated identically as a glide-vowel-consonant string. The function’s
values for substitutions, which range from 0 for two identical consonants to
100 for two segments with no discernible similarity, are listed in the “penalty”
column in Table V. The penalty for an indel is 40 if it is preceded by another

final.tex; 7/04/2003; 10:16; p.9

10 Grzegorz Kondrak

indel, and 50 otherwise. Covington (1998) acknowledges that his distance
function is “just a stand-in for a more sophisticated, perhaps feature-based,
system”.

Although Covington calls his distance function an “evaluation metric”, it
does not satisfy all metric axioms. The zero property is not satisfied because
the function’s value for two identical vowels is greater than zero. Also, the
triangle inequality does not hold in all cases.

Both Gildea and Jurafsky (1996) and Nerbonne and Heeringa (1997) base
their distance functions on binary features. Phonetic segments are represented
by binary vectors in which every element stands for a single articulatory
feature. Such a representation allows one to distinguish a large number of
phonetic segments. The distance between two segments can be defined as the
Hamming distance between two feature vectors, that is, the number of binary
features by which the two sounds differ. A distance function defined in such
a way satisfies all metric axioms.

It is interesting to compare the values of Covington’s distance function
with the average Hamming distances produced by a feature-based metric. For
the calculations, I adapted a fairly standard set of binary features from Hart-
man (1981), with the addition of two features: [tense] and [spread glottis].
Twenty-five letters of the Latin alphabet (all butq) were taken to represent a
sample set of most frequent phonemes.

Table V shows Covington’s “penalties” juxtaposed with the average fea-
ture distances between pairs of segments computed for every clause in Cov-
ington’s metric. By definition, the Hamming distance between identical seg-
ments is zero. The distance between the segments covered by clause #3 is also
constant and equal to one (the feature in question being [long] or [syllabic]).
The remaining average feature distances were calculated using the sample set
of 25 phonemes. In order to facilitate comparison, the rightmost column of
Table V contains the average distances rescaled between the minimum and
the maximum value of Covington’s metric.

The correlation between Covington’s penalties and the average Hamming
distances is very high (0.998), which demonstrates that feature-based phonol-
ogy provides a theoretical basis for Covington’s manually constructed dis-
tance function.

5.2. SIMILARITY AND DISTANCE

Although all algorithms listed in Table I measure relatedness between phones
by means of adistancefunction, such an approach does not seem to be the
best for dealing with phonetic segments. The fact that Covington’s distance
function is not a metric is not an accidental oversight; rather, it reflects certain
inherent characteristics of phones. Since vowels are in general more volatile
than consonants, the preference for matching identical consonants over iden-

final.tex; 7/04/2003; 10:16; p.10

Phonetic alignment and similarity 11

Table V. The clause-by-clause comparison of Covington’s distance function and a
feature-based distance function.

Clause in Covington’s Covington’s Average Rescaled

distance function penalty Hamming average

distance distance

1 “identical consonants or glides” 0 0.0 0.0

2 “identical vowels” 5 0.0 0.0

3 “vowel length difference only” 10 1.0 12.4

4 “non-identical vowels” 30 2.2 27.3

5 “non-identical consonants” 60 4.81 58.1

6 “no similarity” 100 8.29 100.0

tical vowels is justified. This insight cannot be expressed by a metric, which,
by definition, assigns a zero distance to all identical pairs of segments. Nor
is it certain that the triangle inequality should hold for phonetic segments. A
phone that has two different places of articulation, such as labio-velar [w],
can be close to two phones that are distant from each other, such as labial [b]
and velar [g].

In my approach, I employ the similarity-based approach to comparing seg-
ments (cf. section 4.2). The similarity score for two phonetic segments indi-
cates how similar they are. Under the similarity approach, the score obtained
by two identical segments does not have to be constant. Another important
advantage of the similarity approach is the possibility of performinglocal
alignment of phonetic strings, which is discussed in section 4.3. In local, as
opposed to global, alignment, only similar substrings are matched, rather than
entire strings. This often has the beneficial effect of separating inflectional
and derivational affixes from the roots. Such affixes tend to make finding the
proper alignment more difficult. It would be unreasonable to expect affixes
to be stripped before applying the algorithm to the data, because one of the
very reasons to use an automatic aligner is to avoid analyzing every word
individually.

5.3. MULTIVALUED FEATURES

Although binary features are elegant and widely used, they might not be opti-
mal for phonetic alignment. Their primary motivation is to classify phonolog-
ical oppositions within a language rather than to reflect universal characteris-
tics of sounds. In a strictly binary system, sounds that are similar often differ
in a disproportionately large number of features. For instance, [y], which
is the initial sound of the wordyou, and [Ã], which is the initial sound of

final.tex; 7/04/2003; 10:16; p.11

12 Grzegorz Kondrak

the wordJew, have an astounding nine contrasting feature values; yet the
sounds are close enough to be habitually confused by speakers whose first
language is Spanish. It can be argued that allowing features to have several
possible values results in a more natural and phonetically adequate system.
For example, there are many possible places of articulation, which form a
near-continuum ranging from [labial] to [glottal],

Ladefoged (1975) devised a phonetically-based multivalued feature sys-
tem. This system was adapted by Connolly (1997) and implemented by So-
mers (1998). It contains about twenty articulatory features, some of which,
such asPlace, can take as many as ten different values, while others, such
asNasal, are basically binary oppositions. For example, the featureVoicehas
five possible values: [glottal stop], [laryngealized], [voice], [murmur], and
[voiceless]. Feature values are mapped to numerical values in the[0,1] range.

The main problem with both Somers’s and Connolly’s approaches is that
they do not differentiate the weights, orsaliences, that express the relative
importance of individual features. For example, they assign the same salience
to the featurePlaceas to the featureAspiration, which results in a smaller
distance between [p] and [k] than between [p] and [ph]. In my opinion, in
order to avoid such incongruous outcomes, the salience values need to be
carefully differentiated; specifically, the featuresPlaceandMannershould
be assigned significantly higher saliences than other features.

Although there is no doubt that not all features are equally important in
classifying sounds, the question of how to how to assign salience weights to
features in a principled manner is still open. Nerbonne and Heeringa (1997)
experimented with weighting each feature by information gain but found
that it actually had a detrimental effect on the quality of alignments. Kessler
(1995) mentions the uniform weighting of features as one of possible reasons
for the poor performance of his feature-based similarity measure. Coving-
ton (1996) envisages “using multivariate statistical techniques and a set of
known ‘good’ alignments” for calculating the relative importance of each
feature, but provides no specific details.

In my opinion, it seems feasible to derive the saliences automatically
from a large corpus of aligned cognates by adapting methods developed for
molecular biology (Durbin et al., 1998). Unfortunately, such a representative
training set is not readily available because the task of establishing the correct
alignment of cognates by hand is very time-consuming. Moreover, any selec-
tion of the training data would bias the similarity function towards particular
languages.

An important advantage of the feature-based metrics is a small number
of parameters. It would be ideal to have, as stated by Kessler (1995) in his
computational analysis of Irish dialects, “data telling how likely it is for
one phone to turn into the other in the course of normal language change.”
Such universal scoring schemes exist in molecular biology under the name

final.tex; 7/04/2003; 10:16; p.12

Phonetic alignment and similarity 13

of Dayhoff’s matrices for amino acids (Dayhoff et al., 1983). However, the
amount of data available in dialectology is many orders of magnitude smaller
than what has already been collected in genetics. Moreover, the number of
possible sounds is greater than the number of amino acids. The International
Phonetic Alphabet, which is a standard for representing phonetic data, con-
tains over 80 symbols, most of which can be modified by various diacritics.
Assembling a substitution matrix of such size by deriving each individual
element is not practicable. In the absence of a universal scoring scheme for
pairs of phonetic segments, the calculation of similarity scores on the basis
of articulatory phonetic features with salience coefficients is a good working
solution.

6. ALINE

ALINE is an implementation of the phonetic alignment approach advocated
in this paper. The program incorporates many of the ideas discussed in pre-
vious sections. Similarity rather than distance is used to determine a set of
best local alignments that fall withinε of the optimal alignment. The set of
operations contains insertions/deletions, substitutions, and expansions/com-
pressions. but not transpositions, which have been judged too sporadic to
justify their inclusion in the algorithm. Multivalued features are employed
to calculate similarity of phonetic segments. Affine gap functions seem to
make little difference in phonetic alignment when local comparison is used,
so the algorithm makes no distinction between clustered and isolated indels.

ALINE is written in C++ and runs under Unix.5 It accepts a list of word
pairs from the standard input, and produces a list of alignments and their
similarity scores on the standard output. The behavior of the program is
controlled by command-line parameters:ε sets the threshold of acceptable
near-optimal alignments;Cskip, Csub, andCexp are the maximum scores for
indels, substitutions, and expansions, respectively; andCvwl determines the
relative weight of consonants and vowels; The default values areε = 0,Cskip

= –10,Csub = 35,Cexp = 45, andCvwl = 10. Although local comparison is the
default, the program can be re-compiled to perform global and semiglobal
alignment.

ALINE employs the dynamic programming approach to compute the sim-
ilarity table using theσ scoring functions defined in Table VI. The best align-
ments are than retrieved recursively from the similarity table. Phonetic seg-
ments are encoded as vectors of feature values. The functiondiff(p,q, f)
returns the difference between segmentsp andq for a given featuref . For
a more detailed description of ALINE, see (Kondrak, 2002).

5 ALINE is publicly available athttp://www.cs.ualberta.ca/∼kondrak/.

final.tex; 7/04/2003; 10:16; p.13

14 Grzegorz Kondrak

Table VI. Scoring functions.

σskip(p) = Cskip

σsub(p,q) = Csub−δ(p,q)−V(p)−V(q)

σexp(p,q1q2) = Cexp−δ(p,q1)−δ(p,q2)−V(p)−max(V(q1),V(q2))

where

V(p) =
{

0 if p is a consonant
Cvwl otherwise

δ(p,q) = ∑
f∈R

diff(p,q, f)×salience(f)

where

R =
{

RC if p or q is a consonant
RV otherwise

Table VII enumerates the features that are currently used by ALINE and
their salience settings.RV andRC are feature sets fully specified in Table VII:
RV contains features relevant for comparing two vowels, whileRC contains
features for comparing other segments. A special featureDouble, which has
the same possible values asPlace, indicates the second place of articula-
tion. When dealing with double-articulation consonantal segments, only the
nearest places of articulation are used.

Feature values are encoded as floating-point numbers in the range[0,1].
The numerical values of four principal features listed in Table VIII are taken
from Ladefoged (1975), who established them on the basis of experimental
measurements of distances between vocal organs during speech production.
The remaining features have exactly two possible values, 0.0 and 1.0. The fact
that the scheme is based on articulatory phonetics does not necessarily imply
that it is optimal for phonetic alignment. Similar feature schemes of Con-
nolly (1997) and Kessler (1995) also employ discrete ordinal values scaled
between 0 and 1. The former author incorporates and expands on Ladefoged’s
proposal, while the latter simply selects the values arbitrarily.

The salience values in Table VII and the default values of the command-
line parameters have been established by trial and error on a small set of
alignments that included the alignments of Covington (1996). By no means
should they be considered as definitive, but rather as a starting point for future
refinements. It is worth noting that assigning equal weight to all features,
although superficially more elegant, does not address the problem of unequal
relevance of features.

final.tex; 7/04/2003; 10:16; p.14

Phonetic alignment and similarity 15

Table VII. Features used in ALINE and their salience settings.

Feature Salience RC RV Feature Salience RC RV

Syllabic 5 + + Place 40 + -

Voice 10 + - Nasal 10 + +

Lateral 10 + - Aspirated 5 + -

High 5 - + Back 5 - +

Manner 50 + - Retroflex 10 + +

Long 1 - + Round 5 - +

Table VIII. Multivalued features and their values.

Place bilabial = 1.0, labiodental= 0.95,dental= 0.9, alveolar = 0.85,retroflex
= 0.8, palato-alveolar= 0.75, palatal = 0.7, velar = 0.6, uvular = 0.5,
pharyngeal= 0.3,glottal = 0.1.

Manner stop= 1.0,affricate= 0.9,fricative = 0.8,approximant= 0.6,high vowel=
0.4,mid vowel= 0.2,low vowel= 0.0.

High high= 1.0,mid= 0.5,low = 0.0.

Back front = 1.0,central= 0.5,back= 0.0.

The feature system proposed here is highly dynamic in the sense that the
similarity matrix can be modified by changing feature saliences or numerical
values within features. Such modifications are important as it would be unre-
alistic to expect a single set of values to be optimal for all types of languages.
The flexibility of the system makes it possible to adapt the similarity matrix
to the data.

7. Evaluation

For the evaluation, I adopted the set of 82 cognate pairs compiled by Cov-
ington (1996), which contains mainly words from English, German, French,
Spanish, and Latin. In spite of some defects, Covington’s set became some-
thing of a benchmark when Somers (1999), in order to demonstrate that his
and Covington’s alignments are of comparable quality, applied his algorithm
to the set. In order to perform a fair and consistent comparison, I refrained
from making any corrections in the set of cognates. Note that a program that
performs well on aligning cognates across distinct languages is also likely to
perform well on a relatively easier task of aligning words across dialects.

The evaluation involves the alignment algorithms of Covington (1996),
Somers (1999), and Oakes (2000), as well as ALINE and an emulation of

final.tex; 7/04/2003; 10:16; p.15

16 Grzegorz Kondrak

an algorithm based on binary features. Oakes’s program JAKARTA has been
provided by the author. I re-implemented Covington’s aligner from the de-
scription given in his article, and verified that my version produces the same
alignments. Somers’s alignments were reconstructed from the description of
the differences between his and Covington’s results, complemented by my
understanding of the behaviour of his algorithm. The “binary” program uses
the basic dynamic programming algorithm and a distance metric based on the
set of binary features adapted from Hartman (1981).

7.1. QUALITATIVE EVALUATION

Some of the alignments produced by Covington’s algorithm give clues about
the weaknesses of his approach. In Spanisharbol and Frencharbre, his align-
er fails to match [r] with [l]. The reason is that it has only a binary notion
of identity or non-identity of consonants, without any gradation of similarity.
This lack of discernment also causes an occasional proliferation of alternative
alignments.

The version that Somers applied to the cognate data set (CAT) employs
binary, rather than multivalued, features. Since CAT distinguishes between
individual consonants, it sometimes produces more accurate alignments than
Covington’s aligner. However, because of its unconditional alignment of the
stressed vowels, CAT is guaranteed to fail in all cases when the stress has
moved in one of the cognates.

In spite of its comprehensive set of edit operations, Oakes’s JAKARTA
makes many elementary mistakes: it frequently aligns consonants with vow-
els, postulates unusual sound changes with no foundation, and has a tendency
to align the shorter words with the suffixes of the longer words.

The program based on binary features makes two types of mistakes. First,
it fails to align phonetic segments, such as [v] and [w] in Englishwhat and
Germanwas, that are quite similar but differ with respect to many binary
features (eight in this case). Second, because of its global alignment strategy,
when aligning words of different length, it has a tendency for postulating gaps
of indels inside the shorter word.

With the exception of a few mistakes, ALINE does a good job both on
closely and remotely related language pairs. In many cases, ALINE correctly
discards inflectional affixes, posits the operation of compression/expansion to
account for the cases of diphthongization of vowels, and produces a single,
correct alignment where Covington’s aligner vacillates between alternatives.

7.2. QUANTITATIVE EVALUATION

In order to make the comparison of alignment algorithms more rigorous, I
constructed the set of true alignments (“gold standard”) for Covington’s set
of cognates to the best of my knowledge. For the comparison, I adopted

final.tex; 7/04/2003; 10:16; p.16

Phonetic alignment and similarity 17

Table IX. Evaluation of alignment algorithms on Covington’s data set.

Subset Number Score

of pairs Covington Somers Oakes Binary Kondrak

Spanish–French 20 19.0 17.0 15.0 18.8 20.0

English–German 20 18.0 18.0 16.0 18.0 18.5

English–Latin 25 18.1 19.5 9.0 13.0 24.0

Fox–Menomini 10 9.0 9.0 9.0 9.3 9.5

Other 7 4.7 3.0 4.0 5.0 6.0

Total 82 68.8 66.5 53.0 64.2 78.0

a straightforward scoring scheme. One point is awarded for every correct
uniquealignment. In the cases ofk > 1 alternative alignments, the score is
1
k if one of them is correct, and 0 otherwise. In order to make the playing
field even, complex correspondences, such as compression/expansion, were
treated as optional. The results of the manual evaluation are given in Table IX.

ALINE is a clear winner in the comparison, achieving over 95% accuracy.
Somers’s results are almost as good as Covington’s, which, as Somers (1999)
points out, “is a good result for CAT [. . .] considering that Covington’s algo-
rithm is aimed at dealing with this sort of data.” The program based on binary
features generates mostly accurate alignments for closely related languages,
but falters on the difficult English–Latin cognates. Oakes’s JAKARTA scores
well below the rest.

8. Computing phonetic similarity with ALINE

Besides finding the optimal alignment, ALINE also produces an overall simi-
larity score, which is the sum of the individual scores between corresponding
phonetic segments. One way of normalizing the overall score returned by
ALINE so that it falls in the range[0,1] is to divide it by the length of the
longer word multiplied by the maximum possible similarity score between
segments. The normalized similarity score can be used as a general phonetic
word similarity measure.

A possible application of ALINE is in the estimation of the relative “close-
ness” between languages or dialects, Table X shows the average normal-
ized phonetic similarity between cognates belonging to four Algonquian lan-
guages. The data was automatically extracted from an electronic version of an
etymological dictionary (Hewson, 1993). Interestingly, the average similarity
values given in Table X imply a different relationship between the languages
than the total number of shared cognates.

final.tex; 7/04/2003; 10:16; p.17

18 Grzegorz Kondrak

Table X. The number of shared cognates and the average phonetic
cognate similarity for four Algonquian languages (nouns only).

Languages Number of Average

cognates similarity

Fox Menomini 121 .607

Fox Cree 130 .616

Fox Ojibwa 136 .626

Menomini Cree 239 .620

Menomini Ojibwa 259 .590

Cree Ojibwa 408 .699

The results of the evaluation described in the previous section show that,
overall, ALINE produces better alignments than other algorithms. However,
the evaluation was performed on a relatively small set of cognates. In the ab-
sence of a more comprehensive test set, a better form of evaluation would be
to apply ALINE to a task on which its performance could be easily appraised.
An example of such a task is the identification of cognates from a dictionary-
type data, where a normalized phonetic similarity between two words serves
as an indicator of the likelihood of cognation. In (Kondrak, 2002), I show that
ALINE performs well on the cognate identification task.

9. Conclusion

I presented a novel approach to the alignment of phonetic strings. The pho-
netic similarity between phonetic segments is computed on the basis of mul-
tivalued articulatory features, under the assumption that sounds produced
in a similar way are likely to correspond to each other. The features are
weighted according to their relative importance. The optimal alignment is cal-
culated using the dynamic programming algorithm that incorporates several
enhancements including an extended set of edit operations and the capabil-
ity of retrieving a set of near-optimal alignments. ALINE, the program that
implements the new approach, is publicly available.

Apart from finding the optimal alignment, ALINE calculates an overall
phonetic similarity score, which, after normalization by word length, can
serve as a phonetic similarity measure. Thus, the similarity of any two words,
not necessarily cognates, can be quickly computed. ALINE can therefore
be directly applied to dialect classification by computing similarity between
wordlists representing distinct dialects.

final.tex; 7/04/2003; 10:16; p.18

Phonetic alignment and similarity 19

Although originally developed for a specific task of cognate identifica-
tion, ALINE is grounded in general principles of articulatory phonetics. The
program has since proved its usefulness on such diverse applications as identi-
fying easily confusable drug names and evaluating the performance of speech
recognizers. Since the alignment of cognates representing related languages
is not fundamentally different from the alignment of corresponding words
representing distinct dialects, it is hoped that ALINE will turn out to be an
effective tool for dialectologists as well.

Acknowledgements

Thanks to Graeme Hirst, Elan Dresher, Steven Bird, Radford Neal, Suzanne
Stevenson, and Kevin Knight for their comments regarding this work. The
author was supported by the Natural Sciences and Engineering Research
Council of Canada (NSERC) during his Ph.D. research at the University of
Toronto.

References

Connolly, J. H.: 1997, ‘Quantifying target-realization differences’.Clinical Linguistics &
Phonetics11, 267–298.

Covington, M. A.: 1996, ‘An Algorithm to Align Words for Historical Comparison’.Compu-
tational Linguistics22(4), 481–496.

Covington, M. A.: 1998, ‘Alignment of Multiple Languages for Historical Comparison’. In:
Proceedings of the 36th Annual Meeting of the Association for Computational Linguistics
and 17th International Conference on Computational Linguistics. pp. 275–280.

Dayhoff, M. O., W. C. Baker, and L. T. Hunt: 1983, ‘Establishing homologies in protein
sequences’.Methods in Enzymology91, 524–545.

Durbin, R., S. R. Eddy, A. Krogh, and G. Mitchison: 1998,Biological sequence analysis.
Cambridge University Press.

Eppstein, D.: 1998, ‘Finding thek shortest paths’.SIAM Journal on Computing28(2), 652–
673.

Gildea, D. and D. Jurafsky: 1996, ‘Learning Bias and Phonological-Rule Induction’.Compu-
tational Linguistics22(4), 497–530.

Gotoh, O.: 1982, ‘An Improved Algorithm for Matching Biological Sequences’.Journal of
Molecular Biology162, 705–708.

Hartman, S. L.: 1981, ‘A universal alphabet for experiments in comparative phonology’.
Computers and the Humanities15, 75–82.

Heeringa, W., J. Nerbonne, and P. Kleiweg: 2002, ‘Validating Dialect Comparison Methods’.
In: W. Gaul and G. Ritter (eds.):Classification, Automation, and New Media. Proceedings
of the 24th Annual Conference of the Gesellschaft für Klassifikation e. V.pp. 445–452.

Hewson, J.: 1993,A computer-generated dictionary of proto-Algonquian. Hull, Quebec:
Canadian Museum of Civilization.

Kessler, B.: 1995, ‘Computational dialectology in Irish Gaelic’. In:Proceedings of the 6th
Conference of the European Chapter of the Association for Computational Linguistics.
pp. 60–67.

final.tex; 7/04/2003; 10:16; p.19

20 Grzegorz Kondrak

Kondrak, G.: 2002, ‘Algorithms for Language Reconstruction’. Ph.D. thesis, University of
Toronto. Available at http://www.cs.ualberta.ca/∼kondrak.

Ladefoged, P.: 1975,A Course in Phonetics. New York: Harcourt Brace Jovanovich.
Lowrance, R. and R. A. Wagner: 1975, ‘An Extension of the String-to-String Correction

Problem’.Journal of the Association for Computing Machinery22, 177–183.
Myers, E. W.: 1995, ‘Seeing Conserved Signals’. In: E. S. Lander and M. S. Waterman (eds.):

Calculating the Secrets of Life. Washington, D.C.: National Academy Press, pp. 56–89.
Nerbonne, J. and W. Heeringa: 1997, ‘Measuring Dialect Distance Phonetically’. In:

Proceedings of the 3rd Meeting of the ACL Special Interest Group in Computational
Phonology.

Oakes, M. P.: 2000, ‘Computer Estimation of Vocabulary in Protolanguage from Word Lists
in Four Daughter Languages’.Journal of Quantitative Linguistics7(3), 233–243.

Oommen, B. J.: 1995, ‘String Alignment With Substitution, Insertion, Deletion, Squashing,
and Expansion Operations’.Information Sciences83, 89–107.

Oommen, B. J. and R. K. S. Loke: 1997, ‘Pattern recognition of strings with substitutions,
insertions, deletions and generalized transpositions’.Pattern Recognition30(5), 789–800.

Smith, T. F. and M. S. Waterman: 1981, ‘Identification of common molecular sequences’.
Journal of Molecular Biology147, 195–197.

Somers, H. L.: 1998, ‘Similarity metrics for aligning children’s articulation data’. In:Pro-
ceedings of the 36th Annual Meeting of the Association for Computational Linguistics
and 17th International Conference on Computational Linguistics. pp. 1227–1231.

Somers, H. L.: 1999, ‘Aligning Phonetic Segments for Children’s Articulation Assessment’.
Computational Linguistics25(2), 267–275.

Somers, H. L.: 2000, ‘Personal communication’.
Wagner, R. A. and M. J. Fischer: 1974, ‘The String-to-String Correction Problem’.Journal of

the Association for Computing Machinery21(1), 168–173.

final.tex; 7/04/2003; 10:16; p.20

