Unsupervised Labeling of Noun Clusters

Theresa Jickels and Grzegorz Kondrak

Department of Computing Science,
University of Alberta,
Edmonton, AB, T6G 2E8, Canada
{theresa,kondrak}@cs.ualberta.ca
http://www.cs.ualberta.ca/ kondrak

Abstract. Semantic knowledge is important in many areas of natural
language processing. We propose a new unsupervised learning algorithm
to annotate groups of nouns with hypernym labels. Several variations
of the algorithm are presented, including a method that utilizes seman-
tic information from WordNet. The algorithm’s results are compared
against an independently-developed labeling method. The evaluation is
performed using labels assigned to noun clusters by several participants
of a specially designed human study.

1 Introduction

Ontologies, also known as semantic networks and lexical databases, are impor-
tant resources in natural language processing. These resources all encode a spe-
cific type of semantic knowledge. Constructing them manually is expensive and
time-consuming. In this paper, we focus on the task of automatic construction
of ontologies from large corpora of texts.

A well-known example of a hand-built ontology is WordNet [8]. Lexical en-
tries in WordNet are organized into comprehensive networks of synonym sets
(synsets). Words that have more than one meaning (polysemous words) may
participate in several different synsets. The synsets are linked by various lezxical
relations. The principal lexical relation in WordNet is hypernymy, the is-a rela-
tion between nouns. For example, bird is a hypernym of robin. Hyponymy is the
inverse of hypernymy. The hypernymy/hyponymy links form the backbone of
the noun hierarchy. They link each synset to its immediately more general and
more specific synsets. A chain of hypernymy links can be traversed from each
synset to one of the eleven abstract concepts that are at the top of the hierarchy.

The labeling of groups of nouns can be seen as automatic identification of
hyponymy relations. We do not differentiate between instances and hyponyms.
For example, the set of terms (table, chair, desk, sofa, dresser, bookcase) can
be labeled with the term furniture. For a group of movie titles such as (Deep
Impact, Armageddon, Godzilla, Titanic, Truman Show), possible labels include
movie, or film. By providing a label for a set of terms, we implicitly define a
number of hypernymy relations between the label and the terms in the set.



We propose an unsupervised algorithm for the purpose of labeling groups of
nouns. It addresses a specific subset of the problem of automatic gathering of
semantic relations. Since the algorithm is unsupervised, it can produce labels
quickly, and without the prohibitive cost of human involvement in annotating
training data.

The principal features that we use for labeling noun clusters are dependency
relations, which are syntactic relationships between words in a sentence. For ex-
ample, from the sentence “Smith, the chairman, is a workaholic”, we can extract
the nominal subject relation (N:subj:N') between Smith and workaholic, and the
appositive relation (N:appo:N) between Smith and chairman. The presence or
lack of a minus sign indicates whether the head of the relationship is the right or
left noun. For example, the above appositive relation is denoted as a N:appo:N
relation in the context of the word Smith, and a -N:appo:N relation in the con-
text of the word chairman. We use dependency relations extracted from a corpus
by a dependency parser Minipar [6] to build clusters of nouns.

The noun clusters that are labeled by our algorithm are constructed using the
Clustering by Committee method [10]. The basic idea behind the method is to
select a small number of representative terms (a committee) that form the core
of each cluster. This approach prevents polysemous concepts from interfering
with the cluster creation. The algorithm can be summarized as follows. For
each element, a small number of its closest neighbors are identified. Next, the
algorithm defines as many cluster committees as possible, but discards those that
are too similar to other committees. Finally, each element in the data is assigned
to its most similar cluster.

The applications of noun labeling include question answering and named en-
tity classification. In generating an answer to a question such as “Who was the
first prime minister of Canada?”, it may be very helpful to know that there
exist a hypernymy relationship between Sir John A. Macdonald and prime min-
ister. Given the named entity Carnegie Mellon, it is more useful to classify it
specifically as a university than as an organization.

The organization of this paper is as follows. Section 2 is devoted to the
related work. Section 3 introduces our approach to unsupervised labeling of
noun clusters. Section 4 contains description of the experiments and their results.
Section 5 concludes the paper.

2 Related Work

In this section, we discuss several techniques that have been used in the au-
tomatic gathering of semantic relations, including the method of Pantel and
Ravichandran [9] which addresses virtually the same task as this paper.
Chodorow et al. [4] extract hypernyms from the definitions of nouns in ma-
chine readable dictionaries with the goal of producing a semantic network. Typ-
ically, the head of the definition phrase is taken to be the hypernym of the noun.
For example, if a definition of golden retriever is a golden-haired dog, then dog
would be identified as the hypernym of golden retriever. Heuristic rules are used



to extract the head of the definition, and then the information is worked into a
hierarchical structure, with substantial human involvement.

A later paper by Ide and Veronis [5], examines the progress made with these
methods, with the conclusion that a dictionary by itself is not enough to auto-
matically produce the correct results. This conclusion is attributed to the varied
structure in the dictionary definitions, missing information, and the fact that
different dictionaries produce markedly different hierarchies.

Hearst [3] extracts hypernymy relations directly from text by the means of
syntactic patterns. For instance, a phrase such as dolls, tops and other toys yields
toy as a hypernym of doll. She proposed six different patterns, but used only one
of them for the evaluation against WordNet. Out of 152 hypernymy relations
extracted from an encyclopedia using the pattern, 106 had both terms present
in WordNet, including 61 in existing hypernymy relations.

Fleischman and Hovy [2] propose a feature-based system for classifying names
into a few categories, such as politician, businessman and entertainer. Features
like previous and following n-grams, topic features, and WordNet features were
used to train several classifiers on a semi-automatically produced training set.
The classifiers included decision trees, neural networks, SVM, and a Naive Bayes
classifier. The best results were obtained with the decision tree method, which
achieved 70.4% accuracy.

Caraballo [1] aims at automatically creating a hierarchical semantic lexicon
from a body of text. The hierarchy consists of noun clusters grouped under their
hypernyms. First, groups of similar nouns are extracted from a few syntactic
relationships, such as conjunctions and appositives. The hypernyms are added
during the latter part of the construction. Clustering the nouns with a bottom-
up method produces the general hierarchy, as similar nouns are placed under the
same parent in a binary tree. The percentage of correct hypernyms ranged from
33% under a strict evaluation, to 60% under a lenient evaluation.

Independently of our work, Pantel and Ravichandran [9] proposed a method
for automatically labeling the clusters produced by the Clustering by Committee
method. Their method involves three stages. Stage 1 requires calculating two
vectors for each word in the clusters: a frequency count vector, and a mutual
information vector, which is discounted to reduce the effect of data sparseness.
Stage 2 produces a committee for each cluster, with the goal of isolating the
most representative members of the cluster. Stage 3 forms a signature for each
cluster, derived from the feature vectors of the committee members. The candi-
date labels are selected by considering a set of four dependency relations, which
the authors identified as the most important. The relative scores for possible
labels are calculated using the pointwise mutual information values between the
labels and the dependency relations.

Pantel and Ravichandran tested their method on 1432 noun clusters ex-
tracted from the Aquaint corpus. The results of automatic labeling were eval-
uated by human judges. The top answer was judged correct 72% of the time.
Among the top five answers, a correct label was present in 85.6% of the cases.
No name was produced for 21 (1.5%) of the clusters.



3 Cluster Labeling

Our new algorithm for cluster labeling is an unsupervised learning method, which
removes the need for the time-consuming manual annotation of the data. The
idea is to utilize the labels that are frequently present in the aggregate data.

Consider Table 1, which shows a cluster containing horse-race names taken
from the dependency data. We refer to terms that occur in the dependency
relations as feature words. A term is said to be a feature word of a feature
if it is listed as an instance of that feature. It turns out that good labels for
clusters, such as race in this case, are often present among feature words in their
dependency data. However, most of the feature words are not appropriate as
labels, leaving the problem of how to identify the good labels.

Cluster Features Feature words

Preakness Stakes -N:before:N 23

Preakness day 19

Belmont Stakes start 2

Travers race 2

Santa Anita Derby -N:subj:N 80

Kentucky Derby race 51

Florida Derby run 7
goal 7
event 8
victory 3
start 2
history 2

Table 1. Sample dependency data for a noun group

Our algorithm learns weights for each feature in order to pick out the good
labels from the rest of the data. It is not merely a case of choosing the most
common feature or the most frequently occurring feature word. Our solution
is to assign variable weights to features, which reflect their relative importance
with respect to the likelihood of containing appropriate cluster labels. We refer
to these weights as feature scores. Each iteration of the algorithm redistributes
the feature scores to better represent their values in relation to possible labels.
As a feature score increases (or decreases) through iterations, so do the label
scores of the feature words associated with that feature. As a result, the feature
scores of important features are amplified by the presence of good labels in that
feature, while unimportant features are given low scores. Consequently, the good
labels are more likely to be present in features with high scores than in features
with low scores.



3.1 The Algorithm

The input to our unsupervised labeling algorithm is the dependency data of the
clusters, and the list of features. The dependency data are extracted with the
LaTaT package [7]. The output of the training process is a feature score for each
feature f in the feature set F. The labeling is performed on the basis of the
feature scores computed by the algorithm. The final output is a ranked list of
possible labels for each cluster.

1) For each fin Fdo
2) FS(f):=1
end for

3) Repeat
4) For eachfin Fdo
5) FS(f):=0

end for
6) For each Cluster in the training set do
7 For each feature word a in the cluster do

LS(a) = FS(f
8) (@)= 3 FS(f)
C(f.a)
end for
9) For eachf inFdo
10) FS(f)=FS(f)+ S LS(a)
cfra)
end for

end for
11) o= Z\FS‘(f)b—FS(f)\
12) For eachfinFdo

=l rq

13) FS(f):= g:':S,(f)lrs*.(f)

end for
14) Until 5=0
15) For each Cluster in the testing set do
16) Label:= Max(LS(a) = ZFS(f)}

('Z(La)
17) Print Label
end for

Fig. 1. The cluster labeling algorithm.

The algorithm is shown in Figure 1. First, the feature scores FS(f) are initial-
ized (lines 1-2). The main loop (lines 3-14) encompasses the learning process.
During an iteration, the label scores LS(a) for each feature word are calculated
by summing the scores of the features in which the feature word occurs (lines
7-8). (The predicate C(f,a) is true if and only if the feature f has a as a feature
word.) For each feature, a temporary score (FS’(f)) accumulates the label scores



of each feature word in that feature (lines 9-10). After each cluster has had the
values calculated, the feature scores of each feature are replaced with the nor-
malized temporary score (lines 12-13). The iterative learning process continues
until the feature scores converge. In principle, a threshold might be set for con-
vergence, but in practice the values for the feature scores have always converged,
so the algorithm stops when the values of the feature scores stop changing. The
feature word with the maximum sum of feature scores is selected as the final
cluster label (lines 15-17).

3.2 Variations on the Basic Method

The algorithm described in the previous section to automatically assigns weights
to all features for the purpose of selecting labels. We also experimented with
methods that use fixed subsets of features with equal weights. The baseline ap-
proach is to use all the available features. The second set, referred to as Answer
Distribution Features (ADF), contains four features and their complements that
we identified as the most important on the basis of the analysis of our devel-
opment set. The final set, referred to as PRF, is composed of the four features
selected by Pantel and Ravichandran [9] in their labeling method. The ADF and
PRF feature sets are shown in Table 2.

The ADF subset: | -N:appo:N, -N:subj:N, -N:conj:N, -N:nn:N,
N:appo:N, N:subj:N, N:conj:N, N:nn:N
The PRF subset: | N:appo:N, -N:subj:N, -N:like:N, -N:such as:N

Table 2. The feature subsets used in the experiments.

WordNet is a useful source of hypernymy relations.! For all terms in a given
cluster, we recursively collected all WordNet hypernyms up to the top of the hier-
archy. Then, we intersected the set of hypernyms with the output of our learning
algorithm. We refer to this combined approach as the intersection method.

We also experimented with two other methods of improving the accuracy of
the algorithm: filtering out low-frequency feature words, and considering only
clusters containing mostly names. However, in both cases, the accuracy gains on
the development set did not translate into substantial improvements on the test
set.

4 Experimental Setup and Results

The entire data consisted of 1088 clusters. We used the first one hundred clusters
as the development set. The test set was constructed by randomly selecting
one hundred clusters form the remaining data. The training set consisted of all
available clusters, except the ones included in the test set.

! For accessing WordNet, version 2.0, we used the QueryData interface [11].



4.1 Evaluation

We conducted a study in order to produce the answer key to our test set, and
to examine human performance on the task of classifying clusters. Eight partic-
ipants were asked to come up with one or more labels for all clusters in the test
set. without accessing any external resources nor conferring with other partici-
pants.

For example, for the set of terms {din, noise, roar, sound, rumble, sonic
boom, explosion, buzz, hum, noise level, cacophony, echo, drone, clatter, flash,
loud noise, thunder, gunfire, whir}, the participants of the study provided the
following labels: sound (4 times), noise (2), audio (1), decibel (1), level of noise
(1), noise pollution (1), and can hear these (1). For comparison, the algorithm
described in Section 3 produces the following labels and scores: sound 113.4,
noise 106.5, light 74.9, rework 70.6, echo 68.7, all 64.8, scream 63.4, hiss 63.4,
smoke 63.4, band 63.4.

Several of the participants indicated that the labeling was quite difficult. The
average number of labels given by a participant was .96 per cluster. Agreement
between labels from different testers was at 42.8%. This was calculated as the
average number of participants who agree on a label that is the result for the
highest number of participants. In some instances the most common response
was “no label”. There were no instances where all the participants assigned the
same label to a cluster, but there were several where no two participants gave
the same label.2

The performance of various methods was measured by computing precision
and recall against the labels provided by the participants of the study. A cluster
label was considered correct if it was proposed by at least one of the participants.
Precision was the percentage of generated labels that were correct. Recall was
calculated as the percentage of clusters that were assigned at least one correct la-
bel. The maximum possible recall was 86%, because none of the human-proposed
labels occurs in the dependency data for 14% of the clusters.

Our evaluation method is different from the one adopted by Pantel and
Ravichandran [9]. They presented human evaluators with a list of possible labels
that included the top five labels generated by their algorithm, one label proposed
by an independent annotator, and up to five names extracted from WordNet.
The evaluators were asked to judge the labels as correct, partially correct, or in-
correct. In contrast, our evaluation approach did not restrict the choice of labels
to a fixed list. In order to perform a fair comparison, we asked the authors of
the other labeling algorithm to run it on our test set. The results are discussed
in the following section.

4.2 The Test Set Results

Figure 2 shows the results of various methods on the test set. In most cases.
the graph has data points corresponding to recall and precision for the following

2 The complete cluster data and detailed results of the study are publicly available at
http://www.cs.ualberta.ca/ kondrak



numbers of possible labels returned: 1, 2, 4, 8, 10, 14, 18, 20. The intersection
between WordNet and our iterative training method is represented by data points
for 1 and 5 labels returned, reflecting a small size of the majority of intersection
sets. The results of Pantel and Ravichandran have data points for 1, 2, and 3
labels returned. The pure WordNet method, which produces an unordered set
of hypernyms, is represented by a single data point.

N
.

70 7

65 =+

25 o=

P
l

Precision

N
o
t

10

0

10 20 30 40 50 60 70 80
Recall

—e—Baseline Results —8— ADF Feature Set —— PRF Feature Set —%— Basic Method

—+— Intersection Method O Pure WordNet —0— P&R Results

Fig. 2. Results on the test set.

The algorithm presented in Section 3 performs substantially better than the
baseline and the PRF feature set, except when only one label is returned. How-
ever, it does not do better than the ADF Feature Set. The pure WordNet method
yields a high recall rate of 70%, combined with a low precision rate of 9.3%. Com-
pared to our results, the algorithm of Pantel and Ravichandran, which makes
extensive use of word mutual information vectors, appears to achieve similar
recall, but with higher precision. However, our intersection method yields much
higher precision at a comparable recall level.



4.3 Discussion

The overall accuracy of most of the approaches tested on the Test Set is quite
low. The labels assigned by humans were often compound phrases, while the
automated methods generate mostly single word labels. In addition, many of
the human labels are too general, and some are plain wrong. While most names
are easily labeled as referring to people by the human participants, the specific
professions or roles that those people have in common are not so easily identified.
There were frequent cases of an algorithmic method identifying more specific la-
bels than the human participants. For example, in the case of a cluster including
names Tim Couch, Peyton Manning and Doug Pederson, only one person gave a
relatively specific label: sportsman. The remaining participants provided general
labels such as people, an inaccurate one (football), or no label at all. In contrast,
the top label generated by our algorithm was quarterback.

5 Conclusion

We proposed a new unsupervised learning algorithm for labeling clusters of nouns
with hypernyms. The algorithm uses only the dependency information for the
clusters, and does not require annotated data. We investigated several variations
of the algorithm, including an intersection method that combined the results of
the algorithm with information obtained by WordNet. For the purpose of an un-
biased evaluation of various methods and a comparison with an independently
proposed alternative approach, we conducted a human study that included sev-
eral participants. The results of the experiments indicate that our algorithm does
substantially better than the baseline, and that the combination of the algorithm
with WordNet achieves over 65% precision.

Acknowledgments

Thanks to Dekang Lin for sharing the dependency data and the LaTaT package,
to Patrick Pantel for running his system on our test set, and to the participants
of the human study for devoting their valuable time to labeling the noun clusters.
This research was supported by the Natural Sciences and Engineering Research
Council of Canada.

References

1. Sharon A. Caraballo. 1999. Automatic construction of a hypernym-labeled noun
hierarchy from text. In Proceeding of the 37th annual meeting of the Association for
Computational Linguistics (ACL-99), pages 120-126.

2. M. Fleischman and E. Hovy. 2002. Fine grained classification of named entities. In
19th International Conference on Computational Linguistics (COLING).

3. Marti A. Hearst. 1992. Automatic acquisition of hyponyms from large text corpora.
In 14th International Conference on Computational Linguistics.



4. Martin S. Chodorow; Roy J. Byrd; George E. Heidorn. 1985. Extracting semantic
hierarchies from a large on-line dictionary. In Proceeding of the 23rd annual meeting
of the Association for Computational Linguistics (ACL-85), pages 299-304.

5. Nancy Ide and Jean Veronis. 1994. Knowledge Extraction from Machine-Readable
Dicitionaries: An Evaluation.

6. Dekang Lin. 1998. Dependency-based evaluation of MINIPAR. In Workshop on the
FEvaluation of Parsing Systems.

7. Dekang Lin. 2001. Latat: Language and text analysis tools. In Proceedings of
Human Language Technology Conference, pages 222—227.

8. George A. Miller, Richard Beckwith, Christiane Fellbaum, Derek Gross, and Kather-
ine J. Miller. 1993. Introduction to wordnet: An on-line lexical database.

9. Patrick Pantel and Deepak Ravichandran. 2004. Automatically labeling semantic
classes. In Proceedings of Human Language Technology / North American chapter of
the Association for Computational Linguistics (HLT/NAACL-04), pages 321-328.

10. Patrick Pantel. 2003. Clustering by Committee. Department of Computing Science,
University of Alberta.

11. Jason Rennie. 2000. Wordnet::querydata: a Perl module for accessing the WordNet
database. http://www.ai.mit.edu/people/jrennie/WordNet.



