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Abstract. Cognates are words of the same origin that belong to distinct
languages. The problem of automatic identification of cognates arises in
language reconstruction and bitext-related tasks. The evidence of cog-
nation may come from various information sources, such as phonetic
similarity, semantic similarity, and recurrent sound correspondences. I
discuss ways of defining the measures of the various types of similar-
ity and propose a method of combining then into an integrated cognate
identification program. The new method requires no manual parameter
tuning and performs well when tested on the Indoeuropean and Algo-
nquian lexical data.

1 Introduction

Cognates are words of the same origin that belong to distinct languages. For ex-
ample, French lait, Spanish leche, and Ttalian latte constitute a set of cognates,
since they all derive from Latin lactem. In general, the number of cognates be-
tween related languages decreases with time, and the ones that remain become
less similar. Recurrent sound correspondences, which are produced by regular
sound changes, are helpful in distinguishing cognate pairs from accidental re-
semblances. For example, the fact that /d/:/t/ is a recurrent correspondence
between Latin and English (ten/decem, tooth/dentem. etc.) indicates that Latin
die ‘day’ is not cognate with English day.

Depending on the kind of data, the task of cognate identification can be
defined on three levels of specificity:

1. Given a pair of words, such as English snow and German schnee, compute
the likelihood that they are cognate.

2. Given a list of word pairs matched by meanings, such as the one in Table 1,
rank the pairs according to the likelihood that they are cognate.

3. Given a pair of vocabulary lists, such as the one in Table 2, produce a ranked
list of candidate cognate pairs.

A phonetic measure can be computed for any pair of words in isolation (levels 1,
2 and 3), but a longer list of related words is necessary for the determination of



1. ‘all’ alo Fifo
2. ‘and’ unt e
3. ‘animal’ tir kafSo
4. ‘ashes’ ase hi
5. ‘at’ an no
6. ‘back’ riiken §pino
7. ‘bad’ Slext kec
8. ‘bark’ rinde gkolboze
9. ‘because’ vayl sepse
10. ‘belly’ bawx bark

Table 1. An excerpt from the German/Albanian word-pair list [10].

the recurrent sound correspondences (levels 2 and 3), while a semantic measure
is only applicable when words are accompanied by glosses (level 3).

The ultimate goal of the research described in this paper is the fascinating
possibility of performing an automatic reconstruction of proto-languages from
the information contained in the descendant languages. Given dictionaries of
related languages, a hypothetical language reconstruction program would be
able to determine recurrent sound correspondences, identify cognate sets, and
reconstruct their corresponding proto-forms.

The identification of cognates is not only the key issue in language recon-
struction, but is also important in a number of bitext-related tasks, such as
sentence alignment [3,19,21, 24], inducing translation lexicons [11, 18], and im-
proving statistical machine translation models [1]. Most of the applications take
advantage of the fact that nearly all co-occurring cognates in bitexts are mutual
translations. In the context of bitexts, the term cognate usually denotes words
in different languages that are similar in form and meaning, without making a
distinction between borrowed and genetically related words.

Current approaches to cognate identification employ either phonetic/ortho-
graphic similarity measures [2,19,21,23] or recurrent sound/letter correspon-
dences [6,18,26]. However, there have been very few attempts to combine dif-

aniskohocikan string of beads asikan dock, bridge
astkan sock, stocking anaoka’ekkw bark
kamamakos butterfly kipaskosikan medicine
kostaciwin terror, fear kottaciwin fear, alarm
mistyew large partridge, hen memikwan’ butterfly
namehpin wild ginger MISLSSE turkey
napakihtak board namepin sucker

tehtew green toad napakissakw plank
wayakeskw bark tente very big toad

Table 2. Excerpts from the Cree (left) and the Ojibwa (right) vocabulary lists [9].



ferent ways of cognate identification. Yarowsky and Wincentowski [28] boot-
strap the values of edit cost matrix with rough phonetic approximations, and
then iteratively re-estimate the matrix in order to derive empirically observed
character-to-character probabilities. Kondrak [13] linearly combines a phonetic
score with a semantic score of gloss similarity.

In this paper, I present a method of integrating distinct types of evidence for
the purpose of cognate identification. In particular, the combined phonetic and
correspondence-based similarity measures are applied to lists of word pairs, and
the semantic similarity of glosses is added on when dealing with vocabulary lists.
The new method combines various similarity scores in a principled way. In terms
of accuracy, when tested on independently compiled word and vocabulary lists,
it matches or surpasses the results obtained using the method with manually
set parameters [13]. Finally, the method makes it possible to utilize complex,
multi-phoneme correspondences for cognate identification.

The paper is organized as follows. The next three sections provide background
on the measures of phonetic, correspondence-based, and semantic similarity, re-
spectively, in the context of cognate identification. After introducing the method
of combining various measures, I describe and discuss experimental results on
authentic language data. I conclude with a comparison of the method presented
here with another method of identifying cognates.

2 Phonetic Similarity

Surface-form similarity of words can be estimated using orthographic and/or
phonetic measures. Simple measures of orthographic similarity include edit dis-
tance [19], Dice’s bigram similarity coefficient [2], and the Longest Common
Subsequence Ratio (LCSR) [21]. Phonetic measures are applicable if words are
given in a phonetic or phonemic transcription. ALINE [12] is a phonetic word
aligner based on multivalued phonetic features with salience weights. Thanks to
its ability to assess the similarity of individual segments, ALINE performs better
on cognate identification than the orthographic measures that employ a binary
identity function on the level of character comparison [13].

ALINE returns a normalized score in the [0,1] range. The score by itself
can be used to rank candidate pairs with respect to their phonetic similar-
ity. However, in order to combine the phonetic score with the semantic and/or
correspondence-based scores, it is helpful to convert the score assigned to a pair
of words into the probability that they are related. For modeling the distribu-
tion of scores, I adopt the Beta distribution. The Beta distribution is defined
over the domain [0, 1], and has two free parameters A and B. The relationship
between the two parameters and the mean and variance of the distribution is
the following;:

. A ) AB
= = = g = = = = =
A+ B (A+B)2(A+B+1)
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Fig. 1. Distribution of the phonetic scores for the unrelated (left) and the cognate
(right) word pairs, and the corresponding Beta distributions.

Figure 1 shows the distribution of phonetic scores between word pairs in
the development set (Cree—QOjibwa) within the 0.04 intervals. The left and right
plot depict the phonetic score distribution for the unrelated and for the cognate
word pairs, respectively. The parameters of the corresponding Beta distributions
were calculated from the mean and variance of the scores using the relationship
expressed in formulas (1) and (2). For unrelated words, the Beta distribution fits
the distribution of phonetic scores remarkably well. For cognate words, the fit is
also quite good although somewhat less tight, which is not surprising considering
that the number of cognate pairs is several magnitudes times smaller than the
number of unrelated pairs.

3 Correspondence-Based Similarity

3.1 Determination of Simple Correspondences

For the determination of recurrent sound correspondences (often referred to sim-
ply as correspondences) I employ the method of inducing a translation model
between phonemes in two wordlists [14]. The idea is to relate recurrent sound
correspondences in wordlists to translational equivalences in bitexts. The transla-
tion model is induced by combining the maximum similarity alignment with the
competitive linking algorithm of Melamed [22]. Melamed’s approach is based
on the one-to-one assumption, which implies that every word in the bitext is
aligned with at most one word on the other side of the bitext. In the context
of the bilingual wordlists, the correspondences determined under the one-to-one
assumption are restricted to link single phonemes to single phonemes. Never-
theless, the method is powerful enough to determine valid correspondences in
wordlists in which the fraction of cognate pairs is well below 50% [14].

The correspondence-based similarity score between two words is computed in
the following way. Each valid correspondence is counted as a link and contributes
a constant positive score (no crossing links are allowed). Each unlinked segment,
with the exception of the segments beyond the rightmost link, is assigned a



smaller negative score. The alignment with the highest score is found using
dynamic programming [27]. If more than one best alignment exists, links are
assigned the weight averaged over the entire set of best alignments. Finally, the
score is normalized by dividing it by the average of the lengths of the two words.

3.2 Determination of Complex Correspondences

Kondrak [15] proposed an extension of the one-to-one method that is capable of
discovering complex, ‘many-to-many” correspondences. The method is an adap-
tation of Melamed’s algorithm for discovering non-compositional compounds in
bitexts [20]. A non-compositional compound (NCC) is a word sequence, such
as “high school”, whose meaning cannot be synthesized from the meaning of
its components. Experimental results indicate that the method can achieve up
to 90% recall and precision in determination of correspondences on vocabulary
lists [15].

When the NCC approach is applied, the computation of the similarity score
is slightly modified. Segments that represent valid NCCs are fused into single
segments before the optimal alignment is established. The contribution of a valid
correspondence is weighted by the length of the correspondence. For example,
a correspondence that links three segments on one side with two segments on
the other side is given the weight of 2.5. As before, the score is normalized by
dividing it by the average of the lengths of the two words. Therefore, the score
for two words in which all segments participate in links is still guaranteed to be
1.0.

Figure 2 shows the distribution of correspondence-based scores between word
pairs in the development set (Cree—Ojibwa). For unrelated words, the fit with
the Beta distribution is not as good as in the case of phonetic scores, but still
acceptable. For cognate words, the Beta distribution fails to account for a num-
ber of word pairs that are perfectly covered by correspondences (score = 1.0).
However, the problem is likely to be less acute for language pairs that are not
as closely related as Cree and Ojibwa.
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Fig. 2. Distribution of the correspondence-based scores for the unrelated (left) and the
cognate (right) word pairs, and the corresponding Beta distributions.



3.3 Determination of Correspondences in Vocabulary Lists

Kondrak [14] showed that correspondences determined with the one-to-one ap-
proach can be successfully used for cognate identification in pairs of word lists,
where the words are already matched by meanings. However, the task is more
challenging when cognates have to be identified in unstructured vocabulary lists,
In vocabulary lists, as opposed to word lists, words across languages are not
neatly matched by meanings; rather, semantic similarity has to be inferred from
glosses. Whereas in word lists of related languages the percentage of cognates
can be expected to exceed 10%, the probability that randomly selected words
from two vocabulary lists are cognate is usually less than 0.1%. Attempting to
determine correspondences with such a small signal-to-noise ratio is bound to
fail. It is necessary first to identify a smaller set of likely cognate pairs, on which
a translation model can be successfully induced.

One possible way to determine the set of likely cognate pairs is to select n
candidate pairs starting from the top of the ordered list produced by a combined
semantic and phonetic approach. However, the selected pairs are likely to include
many pairs that exhibit high phonetic similarity. When a translation model is
induced on such set, the strongest correspondences can be expected to consist
mostly of pairs of identical phonemes.

A better approach, which is not biased by the phonetic similarities between
phonemes, is to select candidate pairs solely on the basis of semantic similarity.
The idea is to extract all vocabulary entries characterized by the highest level
of semantic similarity, that is, gloss identity. Even though such a set is still
likely to contain mostly unrelated word pairs, the fraction of cognates may be
sufficiently large to determine the strongest correspondences. The determined
correspondences can then be used to identify cognates among all possible word
pairs.

4 Semantic Similarity Features

Kondrak [13] developed a scheme for computing semantic similarity of glosses
on the basis of keyword selection and WordNet [5] lexical relations. The scheme
combines four lexical relations and two focus levels, which together yield eight
semantic similarity levels (Table 3). Keywords are salient words extracted from
glosses by a heuristic method based on part-of-speech tags. If there exists a
lexical relationship in WordNet linking the two glosses or any of their keywords,
the semantic similarity score is determined according to the scheme shown in
Table 3. The levels of similarity are considered in descending score order, with
keyword identity taking precedence over gloss hypernymy. The scores are not
cumulative. The numerical values in Table 3 were set manually on the basis of
experiments with the development set (Cree—Ojibwa).

In this paper, I propose to consider the eight semantic similarity levels as
binary semantic features. Although the features are definitely not independent,
it may be advantageous to consider their combinations rather than just simply



Lexical relation Focus level
Gloss Keyword

Identity 1.00 0.50
Synonymy 0.70 0.35
Hypernymy 0.50 0.25
Meronymy 0.10 0.05

Table 3. Semantic similarity features and their numerical scores [13].

the most prominent one. For example, gloss hypernymy accompanied by keyword
synonymy might constitute stronger evidence for a semantic relationship than
gloss hypernymy alone.

In the context of detecting semantic similarity of glosses, a transitive sub-
sumption relation can be defined for the semantic features. In the following
assertions, the expression “feature A subsumes feature B” should be understood
as “feature B is redundant if feature A is present”.

1. Gloss identity subsumes other relations involving glosses (e.g. gloss identity
subsumes gloss meronymy).

2. Keyword identity subsumes other relations involving keywords.

3. Features involving a lexical relation between glosses subsume features in-
volving the same lexical relation between keywords (e.g. gloss hypernymy
subsumes keyword hypernymy).

4. Synonymy subsumes hypernymy and meronymy, and hypernymy subsumes
meronymy.

The resulting partial ordering of features is shown in Figure 3. Assertion 4 is
probably the most debatable.

gloss identity
keyword identity
|oss synonym

gloss synonymy ~

keyword synonymy
lossh
gloss hypernymy —~
keyword hypernymy
gloss meronymy
keyword meronymy

Fig. 3. Partial ordering of semantic features.



sem = related to semantic similarity

ph related to phonetic similarity

re related to correspondence-based similarity
+ = related to cognate pairs

related to unrelated pairs

cogn = the given pair of words are cognate

—cogn = the given pair of words are unrelated

v = feature vector for the given word pair

vj = values of the binary semantic features

] = numerical scores for the given word pair (in the [0, 1] range)

o = partial similarity scores

fe! = interpolation parameters (weights)

d = probability density function of the corresponding Beta distribution
C; = normalizing constants independent of the given word pair

Table 4. Symbols used in Section 5.

I investigated the following variants of semantic feature ordering:

LN The linear order that corresponds to the semantic scale originally proposed
in [13].
SP The partial order implied by assertions 1-4, which is shown in Figure 3.

WP The weaker version of the partial order, implied by assertions 1-3.

NO The unordered set of the eight semantic features.

MK The feature set corresponding to Method K in [13], which contains only
the WordNet-independent features: gloss identity and keyword identity (the
former subsumes the latter).

MG The feature set corresponding to Method G in [13], which contains only
gloss identity.

NS Empty set, i.e. no semantic features are used (the baseline method).

I discuss the effect of the feature ordering variants on the overall accuracy in
Section 6.

5 Combining Various Types of Evidence

In [13], the overall similarity score was computed using a linear combination of
the semantic and the phonetic scores. The interpolation parameter was deter-
mined on a development set. In this paper, I adopt the Naive Bayes approach
to combining various sources of information. The vector v consists of the eight
semantic features, the phonetic similarity score, and the correspondence-based
similarity score. The overall word-pair similarity score for a pair of words is
computed by the following formula (see Table 4 for the explanation of symbols):

o pleogn|v) _ pleogn)-p(v]cogn) _ . p(v]cogn)

p(=cogn|v) — p(=cogn) - p(v[—cogn)) — " p(v|-cogn))
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It is more convenient to do the computations using logarithms:
logscore = Qsem * Osem + Oph * Oph + Qe - Opc + Cf
where

Osem = Z log UJ | cogn) opn = log dph+(3ph) ch—i—(Src) )
p(v; p(v; | ~cogn)’ dph—(pn))’ dre—(5rc)

Since the goal is a relative ranking of candidate word-pairs, the exact value of
the normalizing constant Cj is irrelevant.

The difference between the current method of combining partial scores and
the method presented in [13] lies in the way the original scores are transformed
into probabilities using the Naive Bayes assumption and the Beta distribution.
A number of parameters must still be established on a separate training set: the
conditional probability distributions of the semantic features, the parameters for
the beta distributions, and the interpolation parameters. However, the values
of the parameters (except the interpolation parameters) are set automatically
rather than manually.

re — 10g

6 Results

The cognate identification methods were tested on two different data sets: a
set of structured word lists of 200 basic meanings, and a set of unstructured
vocabulary lists containing thousands of entries with glosses.

The accuracy of the methods was evaluated by computing the 11-point in-
terpolated average precision for the vocabulary lists, and the n-point average
precision for the word lists (n is the total number of cognate pairs in a list). The
output of the system is a list of suspected cognate pairs sorted by their similarity
scores. Typically, true cognates are very frequent near the top of the list, and be-
come less frequent towards the bottom. The threshold value that determines the
cut-off depends on the intended application, the degree of relatedness between
languages, and the particular method used. Rather than reporting precision and
recall values for an arbitrarily selected threshold, precision is computed at a
number of different recall levels, and then averaged to yield a single number.
In the case of the 11-point average precision, the recall levels are set at 0%,
10%, 20%, ..., 100%. In the case of the n-point average precision, precision is
calculated at each point in the list where a true cognate pair is found. In the ex-
periments reported below, I uniformly assumed the precision value at 0% recall
to be 1, and the precision value at 100% recall to be 0.

6.1 Results on the Indoeuropean Word Lists

The experiments in this section were performed using a list of 200 basic meanings
that are considered universal and relatively resistant to lexical replacement [25].



Languages Phonetic Simple Complex Phonetic Phonetic
+ Simple + Complex

English German 916 .949 924 .946 .930
French Latin .863 .869 .874 .881 .882
English  Latin 725 .857 .740 .828 .796
German  Latin .706 .856 .795 .839 .830
English French .615 .557 .556 .692 678
French German .504 .525 .526 .b75 .572
Albanian Latin .618 613 .621 .696 .659
Albanian French .612 .443 .460 .600 .603
Albanian German .323 .307 .307 .395 .398
Albanian English 277 .202 .243 .340 .330

Average .616 .618 .605 .679 .668

Table 5. The average cognate identification precision on the Indoeuropean 200-word
lists for various methods.

The development set included six 200-word lists (Italian, Polish, Romanian, Rus-
sian, Serbocroatian and Spanish) adapted from the Comparative Indoeuropean
Data Corpus [4]. The test set consisted of five lists (Albanian, English, French,
German, and Latin) compiled by Kessler [10]. In this experiment, only words
belonging to the same semantic slot were considered as possible cognates.

Table 5 compares the average cognate identification precision on the test set
obtained using the following methods:

Phonetic The phonetic approach, in which cognate pairs are ordered accord-
ing to their phonetic similarity score computed by ALINE. The settings of
ALINE’s parameters are the same as in [12].

Simple The correspondence-based approach, as described in [14] (method D),
in which only simple, one-to-one correspondences are identified.

Complex The correspondence-based approach that identifies complex, many-
to-many correspondences [15].

Phonetic 4+ Simple The combination of the phonetic and the correspondence-
based approaches, without utilizing complex correspondences.

Phonetic + Complex The combination of the phonetic and the correspon-
dence-based approaches that utilizes complex correspondences.

In the final two variants, the phonetic and the correspondence-based approaches
are combined using the method described in Section 5, with the parameters
derived from the Italian/Polish word list (the interpolation parameters o,y and
ar. were held equal to 1). This particular language pair was chosen because it
produced the best overall results on the development set. However, the relative
differences in average precision with different training sets did not exceed 1%.
The results in Table 5 show that both the phonetic method and the corres-
pondence-based method obtain similar average cognate identification precision.
The combination of the two methods achieves a significantly higher precision.



Languages NS MG MK LN SP WP NO

Fox Menomini  .488 .607 .640 651 652 .652 491
Fox Cree .508 .682 678 698 .694 .694 .549
Fox Ojibwa .655 .674 .685 691 .695 .695 572
Menomini  Cree 438 591 .612 .618 613 .608 523
Menomini  Ojibwa 478 611 .632 .641 639 .635 .516
Average on test set .513 .633 .649 .660 .658 .657 .530
Cree Ojibwa 17 .783 785 787 .784 784 722

Table 6. The average precision on the Algonquian vocabulary lists obtained by com-
bining the semantic similarity features, the phonetic similarity score, and the complex-
correspondence-based similarity score.

Surprisingly, the incorporation of complex correspondences has a slightly nega-
tive effect on the results. A close examination of the results indicates that few
useful complex correspondences were identified by the NCC algorithm in the
200-word Indoeuropean lists. This may be caused by the small overall number
of cognate pairs (57 per language pair, on average) or simply by the paucity of
recurrent complex correspondences.

Additional experiments showed that straightforward averaging of the pho-
netic and the correspondence-based scores produces results that are quite similar
to the results obtained using the method described in Section 5. On the test set,
the straightforward method achieves the average precision of .683 with simple
correspondences, and .680 with complex correspondences.

6.2 Results on the Algonquian Vocabulary Lists

The cognate identification method was also tested on noun portions of four
Algonquian vocabulary lists [9]. The lists representing Fox, Menomini, Cree,
and Ojibwa contain over 4000 noun entries in total. The results were evaluated
against an electronic version of the Algonquian etymological dictionary [8]. The
dictionary contains 4,068 cognate sets, including 853 marked as nouns. The Cree—
Ojibwa language pair was used as the development set, while the remaining five
pairs served as the test set. The proportion of cognates in the set of word-pairs
that have at least one gloss in common was 33.1% in the development set and
ranged from 17.5% to 26.3% in the test set.

Table 6 shows the average precision obtained on the Algonquian data by
combining the phonetic, semantic and (complex) correspondence-based similar-
ity using the method presented in Section 5. The columns correspond to variants
of semantic feature ordering defined in Section 4. The numbers shown in bold
type in the left-most four columns can be directly compared to the correspond-
ing results obtained using the method described in [13]. The latter method,
which uses the linear combination of the phonetic and the semantic similarity
scores (set according to Table 3), achieved the 11-point average precision of .430,
.596, .617, and .628, for variants NS, MG, MK, and LN, respectively. Therefore,



Methods Correspondences

None Simple Complex
— — .448 473
Phonetic 430 472 513
Semantic 227 .633 625
Phonetic + Semantic .631 .652 .660

Table 7. The average precision on the Algonquian vocabulary lists (test set only)
obtained by combining various methods.

the improvement ranges from 5% (LN) to nearly 20% (NS). When all semantic
features are utilized (columns LN, SP, WP, and NO), there is hardly any dif-
ference in average precision between alternative orderings of semantic features
(LN, SP, WP). However, applying the features without any ordering (NO) is
almost equivalent to using no semantics at all (NS).

Table 7 provides more details on the contribution of various types of evidence
to the overall average precision. For example, the merger of the phonetic and
the semantic similarity with no recourse to correspondences achieves the aver-
age precision of .631. (not significantly better than the average precision of .628
obtained using the method described in [13]). Replacing the phonetic similarity
with the (simple) correspondence-based similarity has little influence on the av-
erage precision: .448 vs .430 without semantics, and .633 vs. .631 with semantics.
The advantage provided by complex correspondences all but disappears when all
types of evidence are combined (.660 vs. .652). Relying on gloss similarity alone
is inadequate (.227) because no continuous score is available to order candidate
pairs within the semantic similarity classes.

The tests were performed with the following parameter settings: semantic
feature ordering — linear (LN); parameters for computing phonetic similarity —
as in [13]; parameters for computing the correspondence-based score — as in [14]
(complex correspondences limited to consonant clusters); number of iterations
of the NCC algorithm — 12, as in [15]. When two types of evidence were com-
bined, the interpolation parameters were held equal to 1. With all three types
of evidence, the interpolation parameters were @ sem = 2, app = 1, and a,. = 1.

The choice of values for the interpolation parameters requires further expla-
nation. The weights used for the final testing were selected because they are
relatively simple and result in near-maximum average precision on the train-
ing data. They also have a theoretical justification. Both the phonetic and the
correspondence-based similarity measures are calculated on the basis of the pho-
netic transcription of words. Moreover, recurrent correspondences are composed
mostly of similar or identical phonemes. In contrast, the semantic similarity mea-
sure is based exclusively on glosses. The experiments performed on the training
set suggested that the best results are obtained by assigning approximately equal
weight to the gloss-based evidence and to the lexeme-based measures. The re-
sults in Tables 7 and 6 reflect this observation. If the weights are equal for all



three types of evidence, the average precision drops to .616 with the simple
correspondences, and to .639 with the complex correspondences.

7 Computing Similarity vs. Generating Proto Projections

It is interesting to compare the method described here to the method that was
originally used to compile the etymological dictionary [8], which served as our
gold standard, from the vocabulary lists [9], which also constituted our test data
in Section 6.2. The method [7] is based on generating proto-projections (candi-
date proto-forms) of the lexemes occurring in the vocabulary lists of the daughter
languages. For example, assuming that the consonant cluster §§in Ojibwa is a
reflex of either *hs or *¢§ in Proto-Algonquian, the proto-projections of QOjibwa
missi piece of firewood’ would include *mihsi and *migsi. The cognate iden-
tification process succeeds if the intersection of the sets of proto-projections
generated from distinct daughter languages is not empty. The set intersection
operation was implemented by alphabetically sorting all proto-projections. The
potential cognate sets were subsequently analyzed by a linguist in order to de-
termine whether they were in fact reflexes of the same proto-form and, if that
was the case, to reconstruct the proto-form.

Hewson’s method has a number of disadvantages. It is based exclusively on
recurrent sound correspondences, with no recourse to potentially valuable pho-
netic and semantic information. It requires the user to provide a complete table
of correspondences between daughter languages and the reconstructed proto-
language. Since such a table of correspondences is established on the basis of
multiple sets of confirmed cognates, the method is applicable only to language
families that have already been throughly analyzed. In addition, the number
of proto-projections increases combinatorially with the number of ambiguous
reflexes that occur in a word. Anything less than a perfect match of correspon-
dences may result in a cognate pair being overlooked.

Table 8 contains some interesting examples of Algonquian cognate pairs that
are not found in Hewson’s dictionary, but are recognized by the implemen-
tation of the method proposed in this paper. Their semantic, phonetic, and
correspondence-based similarity considered in isolation may not be sufficient for
their identification, but combining all three types of evidence results in a high
overall similarity score. In particular, such pairs are bound to be missed by
any approach that requires the identity of glosses as the necessary condition for
consideration.

8 Conclusion

I have proposed a method of combining various types of evidence for the task of
automatic cognate identification. In many cases, the new method achieves higher
accuracy than the method based on the linear combination of scores. Moreover,
the new method does not require manual parameter tuning, but instead can be
trained on data from other language pairs.



# Lang. Lexeme Gloss WordNet relation
1 Cree  maosapew ‘unmarried man’ l0sS. SUROTAM.
Men. mosapewew ‘bachelor, single man’ g ynonymy
9 Fox kesemanetowa ‘great spirit’ none
Men. kesemanetow  ‘god’
Cree  wihkes ‘sweet-flag’
k d h
3 Ojib.  wikken’ ‘iris’ eyuore hypernymy
4 Men. enohekan ‘pointer’ none
Ojib.  inad’ikan ‘that which is pointed at’
5 Fox mikatiweni ‘fight’ l0sS. SUROTAM.
Men. mikatwan ‘war, fighting’ g ynonymy
6 Fox atamina ‘maize-plant’ kevword sunonum
Ojib.  mantamin ‘grain of corn’ y ynonymy
= N ¢ B
7 Fox atesohkakana  ‘sacred story keyword identity

Ojib.  atissokkan ‘story or legend’

Table 8. Examples of cognate pairs not included in Hewson’s dictionary.

The method proposed here is applicable both to structured (word lists) and
unstructured (vocabulary lists) data. Apart from assisting the comparative lin-
guists in proto-language reconstruction, it can be used to dramatically speed
up the process of producing etymological dictionaries, even when little is known
about the languages in question. The results of the experiments show that it is
possible to discover a large number of cognates with good precision. To take the
Fox-Menomini pair as an example, 70% recall at 50% precision signifies that the
top 170 candidates contain 85 out of 121 existing cognate pairs. Moreover, many
of the apparent false positives are in fact cognates or lexemes that are related in
some way.

This paper belongs to a line of research that has already resulted in ap-
plications in such diverse areas as statistical machine translation [17] and the
identification of confusable drug names [16]. In the long run, such applications
may prove more important than the original linguistic motivation of the research
that led to them. However, the language reconstruction framework is particularly
well-suited for formulating the driving problems and for testing the proposed so-
lutions.
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