
Proceedings of the 47th Annual Meeting of the ACL and the 4th IJCNLP of the AFNLP, pages 127–135,
Suntec, Singapore, 2-7 August 2009. c©2009 ACL and AFNLP

Reducing the Annotation Effort for Letter-to-Phoneme Conversion

Kenneth Dwyer and Grzegorz Kondrak
Department of Computing Science

University of Alberta
Edmonton, AB, Canada, T6G 2E8

{dwyer,kondrak}@cs.ualberta.ca

Abstract

Letter-to-phoneme (L2P) conversion is the
process of producing a correct phoneme
sequence for a word, given its letters. It
is often desirable to reduce the quantity of
training data — and hence human anno-
tation — that is needed to train an L2P
classifier for a new language. In this pa-
per, we confront the challenge of building
an accurate L2P classifier with a minimal
amount of training data by combining sev-
eral diverse techniques: context ordering,
letter clustering, active learning, and pho-
netic L2P alignment. Experiments on six
languages show up to 75% reduction in an-
notation effort.

1 Introduction

The task of letter-to-phoneme (L2P) conversion
is to produce a correct sequence of phonemes,
given the letters that comprise a word. An ac-
curate L2P converter is an important component
of a text-to-speech system. In general, a lookup
table does not suffice for L2P conversion, since
out-of-vocabulary words (e.g., proper names) are
inevitably encountered. This motivates the need
for classification techniques that can predict the
phonemes for an unseen word.

Numerous studies have contributed to the de-
velopment of increasingly accurate L2P sys-
tems (Black et al., 1998; Kienappel and Kneser,
2001; Bisani and Ney, 2002; Demberg et al., 2007;
Jiampojamarn et al., 2008). A common assump-
tion made in these works is that ample amounts of
labelled data are available for training a classifier.
Yet, in practice, this is the case for only a small
number of languages. In order to train an L2P clas-
sifier for a new language, we must first annotate
words in that language with their correct phoneme
sequences. As annotation is expensive, we would

like to minimize the amount of effort that is re-
quired to build an adequate training set. The ob-
jective of this work is not necessarily to achieve
state-of-the-art performance when presented with
large amounts of training data, but to outperform
other approaches when training data is limited.

This paper proposes a system for training an ac-
curate L2P classifier while requiring as few an-
notated words as possible. We employ decision
trees as our supervised learning method because of
their transparency and flexibility. We incorporate
context ordering into a decision tree learner that
guides its tree-growing procedure towards gener-
ating more intuitive rules. A clustering over letters
serves as a back-off model in cases where individ-
ual letter counts are unreliable. An active learning
technique is employed to request the phonemes
(labels) for the words that are expected to be the
most informative. Finally, we apply a novel L2P
alignment technique based on phonetic similarity,
which results in impressive gains in accuracy with-
out relying on any training data.

Our empirical evaluation on several L2P
datasets demonstrates that significant reductions
in annotation effort are indeed possible in this do-
main. Individually, all four enhancements improve
the accuracy of our decision tree learner. The com-
bined system yields savings of up to 75% in the
number of words that have to be labelled, and re-
ductions of at least 52% are observed on all the
datasets. This is achieved without any additional
tuning for the various languages.

The paper is organized as follows. Section 2 ex-
plains how supervised learning for L2P conversion
is carried out with decision trees, our classifier of
choice. Sections 3 through 6 describe our four
main contributions towards reducing the annota-
tion effort for L2P: context ordering (Section 3),
clustering letters (Section 4), active learning (Sec-
tion 5), and phonetic alignment (Section 6). Our
experimental setup and results are discussed in

127

Sections 7 and 8, respectively. Finally, Section 9
offers some concluding remarks.

2 Decision tree learning of L2P classifiers

In this work, we employ a decision tree model
to learn the mapping from words to phoneme se-
quences. Decision tree learners are attractive be-
cause they are relatively fast to train, require little
or no parameter tuning, and the resulting classifier
can be interpreted by the user. A number of prior
studies have applied decision trees to L2P data and
have reported good generalization accuracy (An-
dersen et al., 1996; Black et al., 1998; Kienappel
and Kneser, 2001). Also, the widely-used Festi-
val Speech Synthesis System (Taylor et al., 1998)
relies on decision trees for L2P conversion.

We adopt the standard approach of using the
letter context as features. The decision tree pre-
dicts the phoneme for the focus letter based on
the m letters that appear before and after it in
the word (including the focus letter itself, and be-
ginning/end of word markers, where applicable).
The model predicts a phoneme independently for
each letter in a given word. In order to keep our
model simple and transparent, we do not explore
the possibility of conditioning on adjacent (pre-
dicted) phonemes. Any improvement in accuracy
resulting from the inclusion of phoneme features
would also be realized by the baseline that we
compare against, and thus would not materially in-
fluence our findings.

We employ binary decision trees because they
substantially outperformed n-ary trees in our pre-
liminary experiments. In L2P, there are many
unique values for each attribute, namely, the let-
ters of a given alphabet. In a n-ary tree each de-
cision node partitions the data into n subsets, one
per letter, that are potentially sparse. By contrast,
a binary tree creates one branch for the nominated
letter, and one branch grouping the remaining let-
ters into a single subset. In the forthcoming exper-
iments, we use binary decision trees exclusively.

3 Context ordering

In the L2P task, context letters that are adjacent
to the focus letter tend to be more important than
context letters that are further away. For exam-
ple, the English letter c is usually pronounced as
[s] if the following letter is e or i. The general
tree-growing algorithm has no notion of the letter
distance, but instead chooses the letters on the ba-

sis of their estimated information gain (Manning
and Schütze, 1999). As a result, it will sometimes
query a letter at position +3 (denoted l3), for ex-
ample, before examining the letters that are closer
to the center of the context window.

We propose to modify the tree-growing proce-
dure to encourage the selection of letters near the
focus letter before those at greater offsets are ex-
amined. In its strictest form, which resembles
the “dynamically expanding context” search strat-
egy of Davel and Barnard (2004), li can only be
queried after l0, . . . , li−1 have been queried. How-
ever, this approach seems overly rigid for L2P. In
English, for example, l2 can directly influence the
pronunciation of a vowel regardless of the value of
l1 (c.f., the difference between rid and ride).

Instead, we adopt a less intrusive strategy,
which we refer to as “context ordering,” that biases
the decision tree toward letters that are closer to
the focus, but permits gaps when the information
gain for a distant letter is relatively high. Specif-
ically, the ordering constraint described above is
still applied, but only to letters that have above-
average information gain (where the average is
calculated across all letters/attributes). This means
that a letter with above-average gain that is eligi-
ble with respect to the ordering will take prece-
dence over an ineligible letter that has an even
higher gain. However, if all the eligible letters
have below-average gain, the ineligible letter with
the highest gain is selected irrespective of its posi-
tion. Our only strict requirement is that the focus
letter must always be queried first, unless its infor-
mation gain is zero.

Kienappel and Kneser (2001) also worked on
improving decision tree performance for L2P, and
devised tie-breaking rules in the event that the tree-
growing procedure ranked two or more questions
as being equally informative. In our experience
with L2P datasets, exact ties are rare; our context
ordering mechanism will have more opportunities
to guide the tree-growing process. We expect this
change to improve accuracy, especially when the
amount of training data is very limited. By biasing
the decision tree learner toward questions that are
intuitively of greater utility, we make it less prone
to overfitting on small data samples.

4 Clustering letters

A decision tree trained on L2P data bases its pho-
netic predictions on the surrounding letter context.

128

Yet, when making predictions for unseen words,
contexts will inevitably be encountered that did
not appear in the training data. Instead of rely-
ing solely on the particular letters that surround
the focus letter, we postulate that the learner could
achieve better generalization if it had access to
information about the types of letters that appear
before and after. That is, instead of treating let-
ters as abstract symbols, we would like to encode
knowledge of the similarity between certain letters
as features. One way of achieving this goal is to
group the letters into classes or clusters based on
their contextual similarity. Then, when a predic-
tion has to be made for an unseen (or low probabil-
ity) letter sequence, the letter classes can provide
additional information.

Kienappel and Kneser (2001) report accuracy
gains when applying letter clustering to the L2P
task. However, their decision tree learner incorpo-
rates neighboring phoneme predictions, and em-
ploys a variety of different pruning strategies; the
portion of the gains attributable to letter clustering
are not evident. In addition to exploring the effect
of letter clustering on a wider range of languages,
we are particularly concerned with the impact that
clustering has on decision tree performance when
the training set is small. The addition of letter class
features to the data may enable the active learner
to better evaluate candidate words in the pool, and
therefore make more informed selections.

To group the letters into classes, we employ
a hierarchical clustering algorithm (Brown et al.,
1992). One advantage of inducing a hierarchy is
that we need not commit to a particular level of
granularity; in other words, we are not required to
specify the number of classes beforehand, as is the
case with some other clustering algorithms.1

The clustering algorithm is initialized by plac-
ing each letter in its own class, and then pro-
ceeds in a bottom-up manner. At each step, the
pair of classes is merged that leads to the small-
est loss in the average mutual information (Man-
ning and Schütze, 1999) between adjacent classes.
The merging process repeats until a single class
remains that contains all the letters in the alpha-
bet. Recall that in our problem setting we have
access to a (presumably) large pool of unanno-
tated words. The unigram and bigram frequen-
cies required by the clustering algorithm are cal-

1This approach is inspired by the work of Miller et al.
(2004), who clustered words for a named-entity tagging task.

Letter Bit String Letter Bit String
a 01000 n 1111
b 10000000 o 01001
c 10100 p 10001
d 11000 q 1000001
e 0101 r 111010
f 100001 s 11010
g 11001 t 101010
h 10110 u 0111
i 0110 v 100110
j 10000001 w 100111
k 10111 x 111011
l 11100 y 11011

m 10010 z 101011
00

Table 1: Hierarchical clustering of English letters

culated from these words; hence, the letters can
be grouped into classes prior to annotation. The
letter classes only need to be computed once for
a given language. We implemented a brute-force
version of the algorithm that examines all the pos-
sible merges at each step, and generates a hierar-
chy within a few hours. However, when dealing
with a larger number of unique tokens (e.g., when
clustering words instead of letters), additional op-
timizations are needed in order to make the proce-
dure tractable.

The resulting hierarchy takes the form of a bi-
nary tree, where the root node/cluster contains all
the letters, and each leaf contains a single let-
ter. Hence, each letter can be represented by a bit
string that describes the path from the root to its
leaf. As an illustration, the clustering in Table 1
was automatically generated from the words in the
English CMU Pronouncing Dictionary (Carnegie
Mellon University, 1998). It is interesting to note
that the first bit distinguishes vowels from con-
sonants, meaning that these were the last two
groups that were merged by the clustering algo-
rithm. Note also that the beginning/end of word
marker (#) is included in the hierarchy, and is the
last character to be absorbed into a larger clus-
ter. This indicates that # carries more informa-
tion than most letters, as is to be expected, in light
of its distinct status. We also experimented with
a manually-constructed letter hierarchy, but ob-
served no significant differences in accuracy vis-
à-vis the automatic clustering.

129

5 Active learning

Whereas a passive supervised learning algorithm
is provided with a collection of training exam-
ples that are typically drawn at random, an active
learner has control over the labelled data that it ob-
tains (Cohn et al., 1992). The latter attempts to se-
lect its training set intelligently by requesting the
labels of only those examples that are judged to be
the most useful or informative. Numerous studies
have demonstrated that active learners can make
more efficient use of unlabelled data than do pas-
sive learners (Abe and Mamitsuka, 1998; Miller
et al., 2004; Culotta and McCallum, 2005). How-
ever, relatively few researchers have applied active
learning techniques to the L2P domain. This is
despite the fact that annotated data for training an
L2P classifier is not available in most languages.
We briefly review two relevant studies before pro-
ceeding to describe our active learning strategy.

Maskey et al. (2004) propose a bootstrapping
technique that iteratively requests the labels of the
n most frequent words in a corpus. A classifier is
trained on the words that have been annotated thus
far, and then predicts the phonemes for each of the
n words being considered. Words for which the
prediction confidence is above a certain threshold
are immediately added to the lexicon, while the re-
maining words must be verified (and corrected, if
necessary) by a human annotator. The main draw-
back of such an approach lies in the risk of adding
erroneous entries to the lexicon when the classifier
is overly confident in a prediction.

Kominek and Black (2006) devise a word se-
lection strategy based on letter n-gram coverage
and word length. Their method slightly outper-
forms random selection, thereby establishing pas-
sive learning as a strong baseline. However, only a
single Italian dataset was used, and the results do
not necessarily generalize to other languages.

In this paper, we propose to apply an ac-
tive learning technique known as Query-by-
Bagging (Abe and Mamitsuka, 1998). We con-
sider a pool-based active learning setting, whereby
the learner has access to a pool of unlabelled ex-
amples (words), and may obtain labels (phoneme
sequences) at a cost. This is an iterative proce-
dure in which the learner trains a classifier on the
current set of labelled training data, then selects
one or more new examples to label, according to
the classifier’s predictions on the pool data. Once
labelled, these examples are added to the training

set, the classifier is re-trained, and the process re-
peats until some stopping criterion is met (e.g., an-
notation resources are exhausted).

Query-by-Bagging (QBB) is an instance of the
Query-by-Committee algorithm (Freund et al.,
1997), which selects examples that have high clas-
sification variance. At each iteration, QBB em-
ploys the bagging procedure (Breiman, 1996) to
create a committee of classifiers C. Given a train-
ing set T containing k examples (in our setting,
k is the total number of letters that have been la-
belled), bagging creates each committee member
by sampling k times from T (with replacement),
and then training a classifier Ci on the resulting
data. The example in the pool that maximizes the
disagreement among the predictions of the com-
mittee members is selected.

A crucial question is how to calculate the
disagreement among the predicted phoneme se-
quences for a word in the pool. In the L2P domain,
we assume that a human annotator specifies the
phonemes for an entire word, and that the active
learner cannot query individual letters. We require
a measure of confidence at the word level; yet, our
classifiers make predictions at the letter level. This
is analogous to the task of estimating record confi-
dence using field confidence scores in information
extraction (Culotta and McCallum, 2004).

Our solution is as follows. Let w be a word in
the pool. Each classifier Ci predicts the phoneme
for each letter l ∈ w. These “votes” are aggre-
gated to produce a vector vl for letter l that indi-
cates the distribution of the |C| predictions over its
possible phonemes. We then compute the margin
for each letter: If {p, p′} ∈ vl are the two highest
vote totals, then the margin is M(vl) = |p − p′|.
A small margin indicates disagreement among the
constituent classifiers. We define the disagreement
score for the entire word as the minimum margin:

score(w) = min
l∈w

{M(vl)} (1)

We also experimented with maximum vote en-
tropy and average margin/entropy, where the av-
erage is taken over all the letters in a word. The
minimum margin exhibited the best performance
on our development data; hence, we do not pro-
vide a detailed evaluation of the other measures.

6 L2P alignment

Before supervised learning can take place, the
letters in each word need to be aligned with

130

phonemes. However, a lexicon typically provides
just the letter and phoneme sequences for each
word, without specifying the specific phoneme(s)
that each letter elicits. The sub-task of L2P that
pairs letters with phonemes in the training data is
referred to as alignment. The L2P alignments that
are specified in the training data can influence the
accuracy of the resulting L2P classifier. In our set-
ting, we are interested in mapping each letter to
either a single phoneme or the “null” phoneme.

The standard approach to L2P alignment is de-
scribed by Damper et al. (2005). It performs an
Expectation-Maximization (EM) procedure that
takes a (preferably large) collection of words as
input and computes alignments for them simul-
taneously. However, since in our active learning
setting the data is acquired incrementally, we can-
not count on the initial availability of a substantial
set of words accompanied by their phonemic tran-
scriptions.

In this paper, we apply the ALINE algorithm
to the task of L2P alignment (Kondrak, 2000;
Inkpen et al., 2007). ALINE, which performs
phonetically-informed alignment of two strings of
phonemes, requires no training data, and so is
ideal for our purposes. Since our task requires the
alignment of phonemes with letters, we wish to re-
place every letter with a phoneme that is the most
likely to be produced by that letter. On the other
hand, we would like our approach to be language-
independent. Our solution is to simply treat ev-
ery letter as an IPA symbol (International Phonetic
Association, 1999). The IPA is based on the Ro-
man alphabet, but also includes a number of other
symbols. The 26 IPA letter symbols tend to cor-
respond to the usual phonetic value that the letter
represents in the Latin script.2 For example, the
IPA symbol [m] denotes “voiced bilabial nasal,”
which is the phoneme represented by the letter m
in most languages that utilize Latin script.

The alignments produced by ALINE are of high
quality. The example below shows the alignment
of the Italian word scianchi to its phonetic tran-
scription [SaNki]. ALINE correctly aligns not only
identical IPA symbols (i:i), but also IPA symbols
that represent similar sounds (s:S, n:N, c:k).

s c i a n c h i
| | | | |
S a N k i

2ALINE can also be applied to non-Latin scripts by re-
placing every grapheme with the IPA symbol that is phoneti-
cally closest to it (Jiampojamarn et al., 2009).

7 Experimental setup

We performed experiments on six datasets, which
were obtained from the PRONALSYL letter-
to-phoneme conversion challenge.3 They are:
English CMUDict (Carnegie Mellon University,
1998); French BRULEX (Content et al., 1990),
Dutch and German CELEX (Baayen et al., 1996),
the Italian Festival dictionary (Cosi et al., 2000),
and the Spanish lexicon. Duplicate words and
words containing punctuation or numerals were
removed, as were abbreviations and acronyms.
The resulting datasets range in size from 31,491
to 111,897 words. The PRONALSYL datasets are
already divided into 10 folds; we used the first fold
as our test set, and the other folds were merged to-
gether to form the learning set. In our preliminary
experiments, we randomly set aside 10 percent of
this learning set to serve as our development set.

Since the focus of our work is on algorithmic
enhancements, we simulate the annotator with an
oracle and do not address the potential human in-
terface factors. During an experiment, 100 words
were drawn at random from the learning set; these
constituted the data on which an initial classifier
was trained. The rest of the words in the learning
set formed the unlabelled pool for active learning;
their phonemes were hidden, and a given word’s
phonemes were revealed if the word was selected
for labelling. After training a classifier on the
100 annotated words, we performed 190 iterations
of active learning. On each iteration, 10 words
were selected according to Equation 1, labelled by
an oracle, and added to the training set. In or-
der to speed up the experiments, a random sam-
ple of 2000 words was drawn from the pool and
presented to the active learner each time. Hence,
QBB selected 10 words from the 2000 candidates.
We set the QBB committee size |C| to 10.

At each step, we measured word accuracy with
respect to the holdout set as the percentage of test
words that yielded no erroneous phoneme predic-
tions. Henceforth, we use accuracy to refer to
word accuracy. Note that although we query ex-
amples using a committee, we train a single tree on
these examples in order to produce an intelligible
model. Prior work has demonstrated that this con-
figuration performs well in practice (Dwyer and
Holte, 2007). Our results report the accuracy of
the single tree grown on each iteration, averaged

3Available at http://pascallin.ecs.soton.ac.uk/Challenges/
PRONALSYL/Datasets/

131

over 10 random draws of the initial training set.
For our decision tree learner, we utilized the J48

algorithm provided by Weka (Witten and Frank,
2005). We also experimented with Wagon (Taylor
et al., 1998), an implementation of CART, but J48
performed better during preliminary trials. We ran
J48 with default parameter settings, except that bi-
nary trees were grown (see Section 2), and subtree
raising was disabled.4

Our feature template was established during de-
velopment set experiments with the English CMU
data; the data from the other five languages did not
influence these choices. The letter context con-
sisted of the focus letter and the 3 letters appear-
ing before and after the focus (or beginning/end of
word markers, where applicable). For letter class
features, bit strings of length 1 through 6 were
used for the focus letter and its immediate neigh-
bors. Bit strings of length at most 3 were used
at positions +2 and −2, and no such features were
added at ±3.5 We experimented with other config-
urations, including using bit strings of up to length
6 at all positions, but they did not produce consis-
tent improvements over the selected scheme.

8 Results

We first examine the contributions of the indi-
vidual system components, and then compare our
complete system to the baseline. The dashed
curves in Figure 1 represent the baseline perfor-
mance with no clustering, no context ordering,
random sampling, and ALINE, unless otherwise
noted. In all plots, the error bars show the 99%
confidence interval for the mean. Because the av-
erage word length differs across languages, we re-
port the number of words along the x-axis. We
have verified that our system does not substantially
alter the average number of letters per word in the
training set for any of these languages. Hence, the
number of words reported here is representative of
the true annotation effort.

4Subtree raising is an expensive pruning operation that
had a negligible impact on accuracy during preliminary ex-
periments. Our pruning performs subtree replacement only.

5The idea of lowering the specificity of letter class ques-
tions as the context length increases is due to Kienappel and
Kneser (2001), and is intended to avoid overfitting. However,
their configuration differs from ours in that they use longer
context lengths (4 for German and 5 for English) and ask let-
ter class questions at every position. Essentially, the authors
tuned the feature set in order to optimize performance on each
problem, whereas we seek a more general representation that
will perform well on a variety of languages.

8.1 Context ordering

Our context ordering strategy improved the ac-
curacy of the decision tree learner on every lan-
guage (see Figure 1a). Statistically significant im-
provements were realized on Dutch, French, and
German. Our expectation was that context order-
ing would be particularly helpful during the early
rounds of active learning, when there is a greater
risk of overfitting on the small training sets. For
some languages (notably, German and Spanish)
this was indeed the case; yet, for Dutch, context
ordering became more effective as the training set
increased in size.

It should be noted that our context ordering
strategy is sufficiently general that it can be im-
plemented in other decision tree learners that grow
binary trees, such as Wagon/CART (Taylor et al.,
1998). An n-ary implementation is also feasible,
although we have not tried this variation.

8.2 Clustering letters

As can be seen in Figure 1b, clustering letters into
classes tended to produce a steady increase in ac-
curacy. The only case where it had no statistically
significant effect was on English. Another benefit
of clustering is that it reduces variance. The confi-
dence intervals are generally wider when cluster-
ing is disabled, meaning that the system’s perfor-
mance was less sensitive to changes in the initial
training set when letter classes were used.

8.3 Active learning

On five of the six datasets, Query-by-Bagging re-
quired significantly fewer labelled examples to
reach the maximum level of performance achieved
by the passive learner (see Figure 1c). For in-
stance, on the Spanish dataset, random sampling
reached 97% word accuracy after 1420 words had
been annotated, whereas QBB did so with only
510 words — a 64% reduction in labelling ef-
fort. Similarly, savings ranging from 30% to 63%
were observed for the other languages, with the
exception of English, where a statistically insignif-
icant 4% reduction was recorded. Since English is
highly irregular in comparison with the other five
languages, the active learner tends to query exam-
ples that are difficult to classify, but which are un-
helpful in terms of generalization.

It is important to note that empirical compar-
isons of different active learning techniques have
shown that random sampling establishes a very

132

0 5 10 15 20
Number of training words (x100)

10

20

30

40

50

60

70

80

90

100

W
o
rd

 a
cc

u
ra

cy
 (

%
)

Context Ordering
No Context Ordering

(a) Context Ordering

0 5 10 15 20
Number of training words (x100)

10

20

30

40

50

60

70

80

90

100

W
o
rd

 a
cc

u
ra

cy
 (

%
)

Clustering
No Clustering

(b) Clustering

0 5 10 15 20
Number of training words (x100)

10

20

30

40

50

60

70

80

90

100

W
o
rd

 a
cc

u
ra

cy
 (

%
)

Query-by-Bagging
Random Sampling

(c) Active learning

0 5 10 15 20
Number of training words (x100)

10

20

30

40

50

60

70

80

90

100

W
o
rd

 a
cc

u
ra

cy
 (

%
)

ALINE
EM

(d) L2P alignment

Spanish Italian +French Dutch + German English

Figure 1: Performance of the individual system components

strong baseline on some datasets (Schein and Un-
gar, 2007; Settles and Craven, 2008). It is rarely
the case that a given active learning strategy is
able to unanimously outperform random sampling
across a range of datasets. From this perspective,
to achieve statistically significant improvements
on five of six L2P datasets (without ever being
beaten by random) is an excellent result for QBB.

8.4 L2P alignment

The ALINE method for L2P alignment outper-
formed EM on all six datasets (see Figure 1d). As
was mentioned in Section 6, the EM aligner de-
pends on all the available training data, whereas
ALINE processes words individually. Only on
Spanish and Italian, languages which have highly
regular spelling systems, was the EM aligner com-
petitive with ALINE. The accuracy gains on the

remaining four datasets are remarkable, consider-
ing that better alignments do not necessarily trans-
late into improved classification.

We hypothesized that EM’s inferior perfor-
mance was due to the limited quantities of data
that were available in the early stages of active
learning. In a follow-up experiment, we allowed
EM to align the entire learning set in advance,
and these aligned entries were revealed when re-
quested by the learner. We compared this with the
usual procedure whereby EM is applied to the la-
belled training data at each iteration of learning.
The learning curves (not shown) were virtually in-
distinguishable, and there were no statistically sig-
nificant differences on any of the languages. EM
appears to produce poor alignments regardless of
the amount of available data.

133

0 5 10 15 20
Number of training words (x100)

10

20

30

40

50

60

70

80

90

100

W
o
rd

 a
cc

u
ra

cy
 (

%
)

Complete System
Baseline

Spanish Italian +French Dutch + German English

Figure 2: Performance of the complete system

8.5 Complete system

The complete system consists of context order-
ing, clustering, Query-by-Bagging, and ALINE;
the baseline represents random sampling with EM
alignment and no additional enhancements. Fig-
ure 2 plots the word accuracies for all six datasets.

Although the absolute word accuracies varied
considerably across the different languages, our
system significantly outperformed the baseline in
every instance. On the French dataset, for ex-
ample, the baseline labelled 1850 words before
reaching its maximum accuracy of 64%, whereas
the complete system required only 480 queries to
reach 64% accuracy. This represents a reduction
of 74% in the labelling effort. The savings for the
other languages are: Spanish, 75%; Dutch, 68%;
English, 59%; German, 59%; and Italian, 52%.6

Interestingly, the savings are the highest on Span-
ish, even though the corresponding accuracy gains
are the smallest. This demonstrates that our ap-
proach is also effective on languages with rela-
tively transparent orthography.

At first glance, the performance of both sys-
tems appears to be rather poor on the English
dataset. To put our results into perspective, Black
et al. (1998) report 57.8% accuracy on this dataset
with a similar alignment method and decision tree
learner. Our baseline system achieves 57.3% ac-
curacy when 90,000 words have been labelled.
Hence, the low values in Figure 2 simply reflect
the fact that many more examples are required to

6The average savings in the number of labelled words
with respect to the entire learning curve are similar, ranging
from 50% on Italian to 73% on Spanish.

learn an accurate classifier for the English data.

9 Conclusions

We have presented a system for learning a letter-
to-phoneme classifier that combines four distinct
enhancements in order to minimize the amount
of data that must be annotated. Our experiments
involving datasets from several languages clearly
demonstrate that unlabelled data can be used more
efficiently, resulting in greater accuracy for a given
training set size, without any additional tuning
for the different languages. The experiments also
show that a phonetically-based aligner may be
preferable to the widely-used EM alignment tech-
nique, a discovery that could lead to the improve-
ment of L2P accuracy in general.

While this work represents an important step
in reducing the cost of constructing an L2P train-
ing set, we intend to explore other active learners
and classification algorithms, including sequence
labelling strategies (Settles and Craven, 2008).
We also plan to incorporate user-centric enhance-
ments (Davel and Barnard, 2004; Culotta and Mc-
Callum, 2005) with the aim of reducing both the
effort and expertise that is required to annotate
words with their phoneme sequences.

Acknowledgments

We would like to thank Sittichai Jiampojamarn for
helpful discussions and for providing an imple-
mentation of the Expectation-Maximization align-
ment algorithm. This research was supported by
the Natural Sciences and Engineering Research
Council of Canada (NSERC) and the Informatics
Circle of Research Excellence (iCORE).

References
Naoki Abe and Hiroshi Mamitsuka. 1998. Query

learning strategies using boosting and bagging. In
Proc. International Conference on Machine Learn-
ing, pages 1–9.

Ove Andersen, Ronald Kuhn, Ariane Lazaridès, Paul
Dalsgaard, Jürgen Haas, and Elmar Nöth. 1996.
Comparison of two tree-structured approaches for
grapheme-to-phoneme conversion. In Proc. Inter-
national Conference on Spoken Language Process-
ing, volume 3, pages 1700–1703.

R. Harald Baayen, Richard Piepenbrock, and Leon Gu-
likers, 1996. The CELEX2 lexical database. Lin-
guistic Data Consortium, Univ. of Pennsylvania.

134

Maximilian Bisani and Hermann Ney. 2002. Investi-
gations on joint-multigram models for grapheme-to-
phoneme conversion. In Proc. International Confer-
ence on Spoken Language Processing, pages 105–
108.

Alan W. Black, Kevin Lenzo, and Vincent Pagel. 1998.
Issues in building general letter to sound rules. In
ESCA Workshop on Speech Synthesis, pages 77–80.

Leo Breiman. 1996. Bagging predictors. Machine
Learning, 24(2):123–140.

Peter F. Brown, Vincent J. Della Pietra, Peter V. deS-
ouza, Jennifer C. Lai, and Robert L. Mercer. 1992.
Class-based n-gram models of natural language.
Computational Linguistics, 18(4):467–479.

Carnegie Mellon University. 1998. The Carnegie Mel-
lon pronouncing dictionary.

David A. Cohn, Les E. Atlas, and Richard E. Ladner.
1992. Improving generalization with active learn-
ing. Machine Learning, 15(2):201–221.

Alain Content, Phillppe Mousty, and Monique Radeau.
1990. Brulex: Une base de données lexicales in-
formatisée pour le français écrit et parlé. L’année
Psychologique, 90:551–566.

Piero Cosi, Roberto Gretter, and Fabio Tesser. 2000.
Festival parla Italiano. In Proc. Giornate del
Gruppo di Fonetica Sperimentale.

Aron Culotta and Andrew McCallum. 2004. Con-
fidence estimation for information extraction. In
Proc. HLT-NAACL, pages 109–114.

Aron Culotta and Andrew McCallum. 2005. Reduc-
ing labeling effort for structured prediction tasks. In
Proc. National Conference on Artificial Intelligence,
pages 746–751.

Robert I. Damper, Yannick Marchand, John-David S.
Marsters, and Alexander I. Bazin. 2005. Align-
ing text and phonemes for speech technology appli-
cations using an EM-like algorithm. International
Journal of Speech Technology, 8(2):147–160.

Marelie Davel and Etienne Barnard. 2004. The effi-
cient generation of pronunciation dictionaries: Hu-
man factors during bootstrapping. In Proc. Interna-
tional Conference on Spoken Language Processing,
pages 2797–2800.

Vera Demberg, Helmut Schmid, and Gregor Möhler.
2007. Phonological constraints and morphologi-
cal preprocessing for grapheme-to-phoneme conver-
sion. In Proc. ACL, pages 96–103.

Kenneth Dwyer and Robert Holte. 2007. Decision tree
instability and active learning. In Proc. European
Conference on Machine Learning, pages 128–139.

Yoav Freund, H. Sebastian Seung, Eli Shamir, and Naf-
tali Tishby. 1997. Selective sampling using the
query by committee algorithm. Machine Learning,
28(2-3):133–168.

Diana Inkpen, Raphaëlle Martin, and Alain
Desrochers. 2007. Graphon: un outil pour
la transcription phonétique des mots français.
Unpublished manuscript.

International Phonetic Association. 1999. Handbook
of the International Phonetic Association: A Guide
to the Use of the International Phonetic Alphabet.
Cambridge University Press.

Sittichai Jiampojamarn, Colin Cherry, and Grzegorz
Kondrak. 2008. Joint processing and discriminative
training for letter-to-phoneme conversion. In Proc.
ACL, pages 905–913.

Sittichai Jiampojamarn, Aditya Bhargava, Qing Dou,
Kenneth Dwyer, and Grzegorz Kondrak. 2009. Di-
recTL: a language-independent approach to translit-
eration. In Named Entities Workshop (NEWS):
Shared Task on Transliteration. Submitted.

Anne K. Kienappel and Reinhard Kneser. 2001. De-
signing very compact decision trees for grapheme-
to-phoneme transcription. In Proc. European Con-
ference on Speech Communication and Technology,
pages 1911–1914.

John Kominek and Alan W. Black. 2006. Learn-
ing pronunciation dictionaries: Language complex-
ity and word selection strategies. In Proc. HLT-
NAACL, pages 232–239.

Grzegorz Kondrak. 2000. A new algorithm for the
alignment of phonetic sequences. In Proc. NAACL,
pages 288–295.

Christopher D. Manning and Hinrich Schütze. 1999.
Foundations of Statistical Natural Language Pro-
cessing. MIT Press.

Sameer R. Maskey, Alan W. Black, and Laura M.
Tomokiya. 2004. Boostrapping phonetic lexicons
for new languages. In Proc. International Confer-
ence on Spoken Language Processing, pages 69–72.

Scott Miller, Jethran Guinness, and Alex Zamanian.
2004. Name tagging with word clusters and dis-
criminative training. In Proc. HLT-NAACL, pages
337–342.

Andrew I. Schein and Lyle H. Ungar. 2007. Active
learning for logistic regression: an evaluation. Ma-
chine Learning, 68(3):235–265.

Burr Settles and Mark Craven. 2008. An analysis
of active learning strategies for sequence labeling
tasks. In Proc. Conference on Empirical Methods
in Natural Language Processing, pages 1069–1078.

Paul A. Taylor, Alan Black, and Richard Caley. 1998.
The architecture of the Festival Speech Synthesis
System. In ESCA Workshop on Speech Synthesis,
pages 147–151.

Ian H. Witten and Eibe Frank. 2005. Data Mining:
Practical Machine Learning Tools and Techniques.
Morgan Kaufmann, 2nd edition.

135

