
Transposition Table Driven Work Scheduling in Distributed Search

John W. Romein, Aske Plaat and Henri E. Baljohn@cs.vu.nl aske@cs.vu.nl bal@cs.vu.nl
Department of Computer Science,

Vrije Universiteit,
Amsterdam, The Netherlands

Jonathan Schaefferjonathan@cs.ualberta.ca
Department of Computing Science,

University of Alberta,
Edmonton, Canada

Abstract

This paper introduces a new scheduling algorithm for parallel
single-agent search,transposition table driven work schedul-
ing, that places the transposition table at the heart of the par-
allel work scheduling. The scheme results in less synchro-
nization overhead, less processor idle time, and less redun-
dant search effort. Measurements on a 128-processor parallel
machine show that the scheme achieves nearly-optimal per-
formance and scales well. The algorithm performs a factor of
2.0 to 13.7 times better than traditional work-stealing-based
schemes.

Introduction
Heuristic search is one of the cornerstones of AI. Its applica-
tions range from logic programming to pattern recognition,
from theorem proving to chess playing. For many appli-
cations, such as real-time search and any-time algorithms,
achieving high performance is of great importance, both for
solution quality and execution speed.

Many search algorithms recursively decompose a state
into successor states. If the successor states are indepen-
dent of each other, then they can be searched in parallel. A
typical scenario is to allocate a portion of the search space
to each processor in a parallel computer. A processor is as-
signed a set of states to search, performs the searches, and
reports back the results. During the searches, each proces-
sor maintains a list of work yet to be completed (thework
queue). When a processor completes all its assigned work,
it can be pro-active and attempt to acquire additional work
from busy processors, rather than sit idle. This approach is
calledwork stealing.

Often, however, application-specific heuristics and search
enhancements introduce interdependencies between states,
making efficient parallelization a much more challenging
task. One of the most important search enhancements is the
transposition table, a large cache in which newly expanded
states are stored (Slate & Atkin 1977). The table has many
benefits, including preventing the expansion of previously
encountered states, move ordering, and tightening the search
bounds. The transposition table is particularly useful when
a state can have multiple predecessors (i.e., when the search
space is a graph rather than a tree). The basic tree-based
recursive node expansion strategy would expand states with
multiple predecessors multiple times. A transposition table

can result in time savings of more than a factor 10, depend-
ing on the application (Plaatet al. 1996).

Unfortunately, transposition tables are difficult to imple-
ment efficiently in parallel search programs that run on
distributed-memory machines. Usually, the transposition ta-
ble is partitioned among the local memories of the proces-
sors (for example, (Feldmann 1993)). Before a processor
expands a node, it first does a remote lookup, by sending a
message to the processor that manages the entry and then
waiting for the reply (see Figure 1). This can result in send-
ing many thousands of messages per second, introducing a
large communication overhead. Moreover, each processor
wastes much time waiting for the results of remote lookups.
The communication overhead can be reduced (e.g., by send-
ing fewer messages), but this usually increases the size of
the search tree that needs to be explored. Extensive exper-
imentation may be required to find the “right” amount of
communication to maximize performance.

In this paper, we discuss a different approach for imple-
menting distributed transposition tables, calledtransposi-
tion table driven work scheduling(or transposition-driven
scheduling, TDS, for short). The idea is to integrate the
parallel search algorithm and the transposition table mech-
anism: drive the work scheduling by the transposition table
accesses. The state to be expanded is migrated to the proces-
sor on which the transposition for the state is stored (see Fig-
ure 2). This processor performs the local table lookup and
stores the state in its work queue. Although this approach
may seem counterintuitive, it has important advantages:

1. All communication is asynchronous (nonblocking). A
processor expands a state and sends its children to their
home processors, where they are entered into the trans-
position table and in the work queue. After sending the
messages the processor continues with the next piece of
work. Processors never have to wait for the results of re-
mote lookups.

2. The network latency is hidden by overlapping communi-
cation and computation. This latency hiding is effective
as long as there is enough bandwidth in the network to
cope with all the asynchronous messages. With modern
high-speed networks such bandwidth usually is more than
enough available.

The idea of transposition-driven scheduling can apply to a

trans tablework queuework queue trans table

120

Figure 1: Work stealing with a partitioned table.

trans tablework queuework queue trans table

expand

53

311

120

Figure 2: Transposition-driven scheduling.

variety of search algorithms. In this paper we describe the
algorithm and present performance results for single-agent
search (IDA* (Korf 1985)). We have implemented TDS
on a large-scale cluster computer consisting of Pentium Pro
PCs connected by a Myrinet network. The performance of
this algorithm is compared with the traditional work stealing
scheme. Performance measurements on several applications
show that TDS wins a factor of 2.0 to 13.7 at the applica-
tion level and thus outperforms the work stealing scheme
by a large margin. Moreover, TDS scales much better to
large numbers of processors. On 128 processors, TDS is
109 to 122 times faster than on a single processor, while the
work stealing algorithm obtains speedups of only 8.7 to 62.

In traditional parallel single-agent search algorithms, the
algorithm revolved around the work queues, with other en-
hancements, such as the transposition table, added in as an
afterthought. With TDS, the transposition table is at the
heart of the algorithm, recognizing that the search space
really is a graph, not a tree. The result is a simple paral-
lel single-agent search algorithm that achieves high perfor-
mance.

The main contribution of this paper is to show how effec-
tive the new approach is for single-agent search. We discuss
in detail how TDS can be implemented efficiently and we
explain why it works so well compared to work stealing. The
rest of this paper is organized as follows. First, we give some
background information on parallel search algorithms and
related work. Then, we describe the transposition-driven
scheduling approach. Next, we evaluate the performance of
the new approach. The last section presents conclusions.

Background and Related Work
This paper uses IDA* (Iterative Deepening A*) as the
single-agent search algorithm (Korf 1985). IDA* repeat-
edly performs a depth-first search, using a maximum search
depth that is increased after each iteration, until a solution
is found. The answer is guaranteed to be optimal, assuming
that the heuristic used is admissible. We parallelize IDA*
in two ways, differing in the way the search space is dis-
tributed over the processors. One uses work-stealing and the
other uses TDS for distributing the work. Our analysis is fa-
cilitated by theMultigameenvironment for distributed one
and two player search (Romein, Bal, & Grune 1997).

Numerous parallel single-agent search algorithms have
appeared in the literature. The most popular are task distri-
bution schemes where the search tree is partitioned among
all the available processors (Rao, Kumar, & Ramesh 1987).
Task distribution can be simplified by expanding the tree
in a breadth-first fashion until the number of states on the
search frontier matches the number of processors (Kumar
& Rao 1990). This can cause load balancing problems (the
search effort required for a state varies widely), implying
that enhancements, such as work stealing, are necessary for
high performance. A different approach is Parallel Win-
dow Search, where each processor is given a different IDA*
search bound for its search (Powley & Korf 1991). All pro-
cessors search the same tree, albeit to different depths. Some
processors may search the tree with a search bound that is
too high. Since sequential IDA* stops searching after using
the right search bound, PWS results in much wasted work.

All these schemes essentially considered only the basic
IDA* algorithm, without consideration of important search
algorithm enhancements that can significantly reduce the
search tree size (such as transposition tables).

IDA* uses less space than A*. This comes at the expense
of expanding additional states. The simple formulation of
IDA* does not include the detection of duplicate states (such
as a cycle, or transposing into a state reached by a different
sequence of state transitions). The transposition table is a
convenient mechanism for using space to solve these search
inefficiencies, both in single-agent (Reinefeld & Marsland
1994) and two-player (Slate & Atkin 1977) search algo-
rithms. There are other methods, such as finite state ma-
chines (Taylor & Korf 1993), but they tend to be not as gen-
erally applicable or as powerful as transposition tables.

A transposition table (Slate & Atkin 1977) is a large (pos-
sibly set-associative) cache that stores intermediate search
results. Each time a state is to be searched, the table is
checked to see whether it has been searched before. If the
state is in the table, then, depending on the quality of the in-
formation recorded, additional search at this node may not
be needed. If the state is not in the table, then the search en-
gine examines the successors of the state recursively, storing
the search results into the transposition table.

Indexing the transposition table is usually done by hash-
ing the state to a large number (usually 64 bits or more)
called thesignature(Zobrist 1970). The information in the
table depends on the search algorithm. For the IDA* al-
gorithm, the table contains a lower bound on the number of
moves required to reach the target state. In addition, each en-

try may contain information used by table entry replacement
algorithms, such as the effort (number of nodes searched) to
compute the entry.

In parallel search programs the transposition table is typ-
ically shared among all processes, because a position an-
alyzed by one process may later be re-searched by an-
other process. Implementing shared transposition tables ef-
ficiently on a distributed-memory system is a challenging
problem, because the table is accessed frequently. Several
approaches are possible. Withpartitioned transposition ta-
bles, each processor contains part of the table. The signature
is used to determine the processor that manages the table
entry corresponding to a given state. To read or update a ta-
ble entry, a message must be sent to that processor. Hence,
most table accesses will involve communication (typically(p� 1)=p for p processors). Lookup operations are usu-
ally implemented using synchronous communication, where
requesters wait for results. Update operations can be sent
asynchronously. An advantage of partitioned tables is that
the size of the table increases with the number of processors
(more memory becomes available). The disadvantage is that
lookup operations are expensive: the delay is at least twice
the network latency (for the request and the reply messages).
In theory, remote lookups could be done asynchronously,
where the node expansion goes ahead speculatively before
the outcome of the lookup is known. However, this ap-
proach is complicated to implement efficiently and suffers
from thread-switching and speculation overhead.

Another approach is toreplicate the transposition table
entries in the local memory of each machine. This has the
advantage that all lookups are local, and updates are asyn-
chronous. The disadvantage is that updates must now be
broadcast toall machines. Even though broadcast messages
are asynchronous and multiple messages can be combined
into a single physical message, the overhead of processing
the broadcast messages is high and increases with the num-
ber of processors. This limits the scalability of algorithms
using this technique, and replicated tables are seldom used in
practice. Moreover, replicated tables have fewer entries than
partitioned tables, as each entry is stored on each proces-
sor. A third approach is to let each processor maintain only
a local transposition table, independent from the other pro-
cessors (Marsland & Popowich 1985). This would eliminate
communication overhead, but results in a large search over-
head (different processors would search the same node). For
many applications, local tables are the least efficient scheme.

Also possible are hybrid combinations of the above.
For example, each processor could have a local table, but
replicate the “important” parts of the table by periodically
broadcasting this information to all processors (Brockington
1997). Several enhancements exist to these basic schemes.
One technique for decreasing the communication overhead
is to not access the distributed transposition table when
searching near the leaves of the tree (Schaeffer 1989). The
potential gains of finding a table entry near the root of
the tree are larger because a pruned subtree rooted high in
the tree can save more search effort than a small subtree
rooted low in the tree. Another approach is to optimize the
communication software for the transposition table opera-

tions. An example is given in (Bhoedjang, Romein, & Bal
1998), which describes software for Myrinet network inter-
face cards that is customized for transposition tables.

Despite these optimizations, for many applications the
cost of accessing and updating transposition tables is still
high. In practice, this overhead can negate most of the ben-
efits of including the tables in the search algorithm, and re-
searchers have not stopped looking for a better solution. In
the next section, we will describe an alternative approach for
implementing transposition tables on distributed-memory
systems: using TDS instead of work stealing. By integrat-
ing transposition table access with work scheduling, this ap-
proach makes all communication asynchronous, allowing
communication and computation to be overlapped. Much
other research has been done on overlapping communica-
tion and computation (von Eickenet al. 1992). The idea of
self-scheduling work dates back to research on data flow and
has been studied by several other researchers (see, for a dis-
cussion, (Culler, Schauser, & von Eicken 1993)). In the field
of problem solving, there are some cases in which this idea
has been applied successfully. In software verification, the
parallel version of the Murphi theorem prover uses its hash
function to schedule the work (Stern & Dill 1997). In game
playing, a parallel generator of end-game databases (based
on retrograde analysis) uses the Gödel number of states to
schedule work (Bal & Allis 1995). In single agent search,
a parallel version of A*, PRA*, partitions its OPEN and
CLOSED lists based on the state (Evettet al. 1995).

Interestingly, in all three papers the data-flow-like paral-
lelization is presented as following in a natural way from
the problem at hand, and, although the authors report good
speedups, they do not compare their approaches to more tra-
ditional parallelizations. The paper on PRA*, for example,
does discuss differences with IDA* parallelizations, but fo-
cuses on a comparison of thenumberof node expansions,
without addressing the benefit of asynchronous communi-
cation for run times.1 (A factor may be that PRA* was
designed for the CM-2, a SIMD machine whose architec-
ture makes a direct comparison with recent work on parallel
search difficult.)

Despite its good performance, so far no in-depth perfor-
mance study between work stealing and data-flow-like ap-
proaches such as TDS has been performed for distributed
search algorithms.

Transposition-Driven Work Scheduling
The problem with the traditional work stealing approach is
that it is difficult to combine with shared transposition ta-
bles. To overcome this problem, we investigate a different
approach, in which the work scheduling and transposition
table mechanisms are integrated. The traditional approach
is to move the data to where the work is located. Instead, we
move the work to where the data is located. Work is sent to
the processor that manages the associated transposition ta-
ble entry, instead of doing a remote lookup to this processor.

1Evett et al compare PRA* against versions of IDA* that lack
a transposition table. Compared to IDA* versions with a transpo-
sition table, PRA*’s node counts would have been less favorable.

PROCEDURE MainLoop() IS
WHILE NOT Finished DO

Node := GetLocalJob();
IF Node <> NULL THEN

Children := ExpandNode(Node);
FOR EACH Child IN Children DO

IF Evaluate(Child) <= Child.SearchBound THEN
Dest = HomeProcessor(Signature(Child));
SendNode(Child, Dest);

END
END

ELSE
Finished := CheckGlobalTermination();

END
END

END

PROCEDURE ReceiveNode(Node) IS
Entry := TransLookup(Node);
IF NOT Entry.Hit OR

Entry.SearchBound <= Node.SearchBound THEN
TransStore(Node);
PutLocalJob(Node);

END
END

Figure 3: Simplified TDS algorithm.

Once this is done, the sending processor can process addi-
tional work without having to wait for any results to come
back. This makes all communication asynchronous, allow-
ing the costs of communication to be hidden. Below we first
describe the basic algorithm and then we look at various im-
plementation issues.

The basic algorithm

Each state (search tree node) is assigned ahome processor,
which manages the transposition table entry for this node.
The home processor is computed from the node’s signature.
Some of the signature bits indicate the processor number of
the node’s home, while some of the remaining bits are used
as an index into the transposition table at that processor.

Figure 3 shows the simplified pseudo code for a
transposition-driven scheduling algorithm, which is exe-
cuted by every processor. The functionMainLoop repeat-
edly tries to get a node from its local work queue. If the
queue is not empty, it expands the node on the head of the
queue by generating the children. Then it checks for each
child whether the lower bound on the solution length (Eval-
uate) causes a cutoff (the lower bound exceeds the IDA*
search bound). If not, the child is sent to its home processor
(see also Figure 2). When the local work queue is empty, the
algorithm checks whether all other processors have finished
their work and no work messages are in transit. If not, it
waits for new work to arrive.

The functionReceiveNodeis invoked for each node that is
received by a processor. The function first does a transposi-
tion table lookup to see whether the node has been searched
before. If not, or if the node has been searched to an inad-
equate depth (e.g., from a previous iteration of IDA*), the
node is stored into the transposition table and put into the

local work queue; otherwise it is discarded because it has
transposed into a state that has already been searched ade-
quately.

The values stored in the transposition table are used dif-
ferently for work stealing and TDS. With work stealing, a
table entry stores a lower bound on the minimal distance to
the target, derived by searching the subtree below it. Find-
ing a transposition table hit with a suitably high table value
indicates that the node has been previously searched ade-
quately for the current iteration. With TDS, an entry con-
tains a searchbound. It indicates that the subtree below
the node has either been previously searched adequately (as
above) or is currently being searched with the given bound.
Note that this latter point represents a major improvement on
previous distributed transposition table mechanisms in that
it prevents two processors from ever working on the same
subtree concurrently.

Implementation issues
We now discuss some implementation issues of this basic al-
gorithm. An important property in our TDS implementation
of IDA* is that a child node does not report its search result
to its parent. As soon as a node has forked off new work for
its children, work on the node itself has completed. In some
cases (for example, for two-agent search) the results of a
child should be propagated to its parent. This complicates
the algorithm since it requires parent nodes to leave state in-
formation behind, and may result in some work in progress
having to be aborted (for example, when an alpha-beta cut-
off occurs). This is the subject of ongoing research.

When no results are propagated to the parent, the TDS
algorithm needs a separate mechanism to detect global ter-
mination. TDS synchronizes after each IDA* iteration, and
starts a new iteration if the current iteration did not solve the
problem. One of the many distributed termination detection
algorithms can be used. We use the time count algorithm
from (Mattern 1987). Since new iterations are started infre-
quently, the overhead for termination detection is negligible.

Another issue concerns the search order. It is desirable to
do the parallel search in a depth-first way as much as pos-
sible, because breadth-first search will quickly run out of
memory for intermediate nodes. Depth-first behavior could
be achieved using priority queues, by giving work on the
left-hand side of the search tree a higher priority than that
on the right-hand side of the tree. However, manipulating
priority queues is expensive. Instead, we implement each
local work queue as a stack, at the possible expense of a
larger working set. On one processor, a stack corresponds to
pure depth-first search.

An interesting trade-off is when and where to invoke the
node evaluation function. One option is to do the evaluation
on the processor that creates a piece of work, and migrate
the work to its home processor only if the evaluation did
not cause a cutoff. Another option is to migrate the work
immediately to its home processor, look it up in the transpo-
sition table, and then call the evaluation function only if the
lookup did not cause a cutoff. The first approach will mi-
grate less work but will always invoke the evaluation func-
tion, even if it has been searched before (on the home pro-

0 32 64 96 128
processors

0

32

64

96

128
sp

ee
du

p

perfect
TDS
WSR
WSP

(a) 15-puzzle

0 32 64 96 128
processors

0

32

64

96

128

sp
ee

du
p

perfect
TDS
WSR
WSP

(b) double-blank puzzle

0 32 64 96 128
processors

0

32

64

96

128

sp
ee

du
p

perfect
TDS
WSR
WSP

(c) Rubik’s cube

Figure 4: Average application speedups.

cessor). Whichever is more efficient depends on the relative
costs for migrating and evaluating nodes. On our system,
the first approach performs the best for most applications.

An important optimization performed by our implemen-
tation is message combining. To decrease the overhead per
migrated state, several states that have the same source and
the same destination processors are combined into one phys-
ical message. Each processor maintains a message buffer for
every other processor. A message buffer is transmitted when
it is full, or when the sending processor has no work to do
(typically during the start and the end of each iteration, when
there is little work).

Discussion
Transposition-driven scheduling has five advantages:

1. All transposition table accesses are local.

2. All communication is done asynchronously; processors
do not wait for messages. As a result, the algorithm scales
well to large numbers of processors. The total band-
width requirements increase approximately linearly with
the number of processors.

3. No duplicate searches are performed. With work steal-
ing, multiple processors sometimes concurrently search
a transposition because the transposition table update oc-
cursafter the subtree below it was searched. With the new
scheme this cannot occur; all attempts to search a given
subtree must go through the same home processor. Since
it has a record of all completed and in-progress work (in
the transposition table), it will not allow redundant effort.2

4. TDS produces more stable execution times for trees with
many transpositions than the work stealing algorithm.

2There is one situation in which duplicate work will get done.
If the transposition table is too small for the given search,some ta-
ble entries will get overwritten. This loss of information can result
in previously completed searches being repeated. This is a funda-
mental problem with fixed-size transposition tables.

5. No separate load balancing scheme is needed. Previous
algorithms require work stealing or some other mecha-
nism to balance the work load. Load balancing in TDS
is done implicitly, using the hash function. Most hash
functions are uniformly distributed, causing the load to be
distributed evenly over the machines. This works well as
long as all processors are of the same speed. If this is not
the case, then the stacks of the slow processors will grow
and may exhaust memory. A flow control scheme can
be added to keep processors from sending states too fre-
quently. In our experiments, we have not found the need
to implement such a mechanism.

Measurements
We compare the performance of TDS with that of work
stealing, both with partitioned (WSP) and replicated (WSR)
transposition tables. Our test suite consists of three games:
the 15-puzzle, the double-blank puzzle, andRubik’s cube.
The double-blank puzzle is a modification to the 15-puzzle,
where we removed the tile labeled ‘15’. By having two
blanks, we create a game with many transpositions, because
two consecutive moves involving both blanks can usually be
interchanged.

The 15-puzzle evaluation function includes the Manhattan
distance, linear conflict heuristic (Hansson, Mayer, & Yung
1992), last move heuristic (Korf & Taylor 1996), and corner
conflict heuristic (Korf & Taylor 1996). The double-blank
puzzle uses the same evaluation function, adapted for two
blanks. The Rubik’s cube evaluation is done using pattern
databases (Korf 1997), one each for corners and edges.

The test positions used for the 15-puzzle are nine of the
hardest positions known (Gasser 1995).3 To avoid long

3Most parallel 15-puzzle programs are benchmarked on the 100
test problems in (Korf 1985). Unfortunately, using a sophisticated
lower bound and a fast processor means that many of these test
problems are solved sequentially in a few seconds. Hence, a more
challenging test suite is needed.

sequential searches, we stopped searching after a 74-ply
search iteration. For the double-blank puzzle, we used the
same positions with the ’15’-tile removed, limited to a 66-
ply search depth. Rubik’s cube was tested using 5 random
problems. Since a random problem requires weeks of CPU
time to solve, we limited the search depth to 17. The WSP
and WSR programs have been tuned to avoid remote table
accesses for nodes near the leaves whenever that increases
performance.

We studied the performance of each of the algorithms on
a cluster of 128 Pentium Pros running at 200 MHz. Each
machine has 128 Megabytes of RAM. For the 15-puzzle and
the double-blank puzzle, we use 222 transposition table en-
tries per machine. For Rubik’s cube we use 221 entries, to
leave room for pattern databases. The machines are con-
nected through Myrinet (Bodenet al. 1995), a 1.2 Giga-
bit/second switching network. Each network interface board
contains a programmable network processor. WSP runs cus-
tomized software on the network coprocessor to speed up
remote transposition table accesses (Bhoedjang, Romein,
& Bal 1998). WSR and TDS use generic network soft-
ware (Bhoedjang, Rühl, & Bal 1998).

Figure 4 shows speedups with respect to TDS search on
a single processor, which is virtually as fast as sequential
search. TDS outperforms WSP and WSR by a factor 2.0
to 13.7 on 128 processors. TDS scales almost linearly.

Even on 128 processors, TDS only uses a small fraction of
the available Myrinet bandwidth, which is about 60 MByte/s
per link between user processes. The 15-puzzle requires
2.5 MByte/s, the double-blank puzzle 1.7 MByte/s, and Ru-
bik’s cube 0.38 MByte/s. Each piece of work is encoded
in 32–68 bytes. For all games we combine up to 64 pieces
of work into one message. The communication overhead
for distributed termination detection (TDS synchronizes af-
ter each iteration) is well below 0.1% of the total communi-
cation overhead.

WSP suffers from high lookup latencies. Even with
the customized network firmware, a remote lookup takes
32.5 µs. The double-blank puzzle, which does 24,000 re-
mote lookups per second per processor, spends 78% of
the time waiting for lookup replies. WSR spends most of
its time handling incoming broadcast messages. For the
double-blank puzzle, each processor receives and handles
11 MByte/s (680,000 updates) from all other processors. Al-
though hard to measure exactly, each processor spends about
75–80% of the time handling broadcast messages.

15-puzzle double-blank Rubik’s cube
puzzle

Covh Sovh Covh Sovh Covh Sovh

TDS 1.30 0.90 1.22 0.88 1.05 1.00
WSP 2.71 1.10 6.05 1.86 2.39 1.08
WSR 3.03 1.11 6.45 2.29 1.89 1.09

Table 1: Communication overheads (Covh) and search over-
heads (Sovh) on 128 processors.

Imperfect speedups are caused by communication and
search overhead. Communication overhead is due to mes-

sage creation, sending, receiving, and handling. Search
overhead is the number of nodes searched during parallel
search divided by the number of a sequential search. Load
imbalance turned out to be negligible; the processor that
does the most work, does typically less than 1% more work
than the processor that does the least work.

Table 1 lists the communication and search overheads for
the applications, relative to a sequential run. The overheads
explain the differences in speedup. For the 15-puzzle, for
example, TDS has a total overhead of 1:30�0:90=1:17 and
WSP has an overhead of 2:71� 1:10= 2:98. The difference
between the overheads is 2:98=1:17= 2:55, which is about
the same as the difference in speedups (see Figure 4(a)).

On a large number of processors, TDS usually searches
fewer nodes than on a single processor, because of the larger
table. This explains the search overheads smaller than 1.
WSP also benefits from this behavior, but still has search
overheads greater than 1. For the 15-puzzle, this can be
explained by the fact that remote lookups are skipped near
the leaves since otherwise communication overhead would
be too large. For the double-blank puzzle, which has many
transpositions, the main reason is that transpositions may be
searched by multiple processors concurrently, because a ta-
ble update is doneafter the search of a node completes. This
phenomenon does not occur with TDS, since the table up-
date is donebeforethe node is searched.

The speedups through 64-processors for the 15-puzzle
are similar to those reported by others (e.g., (Cook & Var-
nell 1997) reports 58.90-fold speedups). However, previous
work has only looked at parallelizing the basic IDA* algo-
rithm, usually using the 15-puzzle with Manhattan distance
as the test domain. The state of the art has progressed sig-
nificantly. For the 15-puzzle, the linear conflicts heuristic
reduces tree size by roughly a factor of 10, and transposi-
tion tables reduce tree size by an additional factor of 2.5.
These reductions result in a less well balanced search tree,
increasing the difficulty of achieving good parallel perfor-
mance. Still, our performance is comparable to the results
in (Cook & Varnell 1997). This is a strong result, given that
the search trees areat least25-fold smaller (and that does
not include the benefits from the last move and corner con-
flict heuristics).

Conclusion
Efficient parallelization of search algorithms that use trans-
position tables is a challenging task, due to communication
overhead and search overhead. We have described a new ap-
proach, called transposition-driven scheduling (TDS), that
integrates work scheduling with the transposition table. TDS
makes all communication asynchronous, overlaps commu-
nication with computation, and reduces search overhead.

We performed a detailed comparison of TDS to the con-
ventional work stealing approach on a large-scale paral-
lel system. TDS performs significantly better, especially
for large numbers of processors. On 128 processors, TDS
achieves a speedup between 109 and 122, where tradi-
tional work-stealing algorithms achieve speedups between
8.7 and 62. TDS scales well to large numbers of proces-

sors, because it effectively reduces both search overheadand
communication overhead.

TDS represents a shift in the way one views a search al-
gorithm. The traditional view of single-agent search is that
IDA* is at the heart of the implementation, and performance
enhancements, such as a transposition tables, are added in
afterwards. This approach makes it hard to achieve good
parallel performance when one wants to compare to the best
known sequential algorithm. With TDS, the transposition
table becomes the heart of the algorithm, and performance
improves significantly.

Acknowledgments
We thank Andreas Junghanns, Dick Grune, and the anony-
mous referees for their valuable comments on earlier ver-
sions of this paper.

References
Bal, H., and Allis, L. 1995. Parallel Retrograde Analysis
on a Distributed System. InSupercomputing. San Diego.
Bhoedjang, R. A. F.; Romein, J. W.; and Bal, H. E. 1998.
Optimizing Distributed Data Structures Using Application-
Specific Network Interface Software. InInternational Con-
ference on Parallel Processing, 485–492.
Bhoedjang, R. A. F.; Rühl, T.; and Bal, H. E. 1998. Ef-
ficient Multicast On Myrinet Using Link-Level Flow Con-
trol. In International Conference on Parallel Processing,
381–390.
Boden, N.; Cohen, D.; Felderman, R.; Kulawik, A.; Seitz,
C.; Seizovic, J.; and Su, W. 1995. Myrinet: A Gigabit-per-
second Local Area Network.IEEE Micro15(1):29–36.
Brockington, M. 1997.Asynchronous Parallel Game-Tree
Search. Ph.D. Dissertation, University of Alberta, Edmon-
ton, Alberta, Canada.
Cook, D., and Varnell, R. 1997. Maximizing the Benefits of
Parallel Search Using Machine Learning. InAAAI National
Conference, 559–564.
Culler, D. E.; Schauser, K. E.; and von Eicken, T. 1993.
Two Fundamental Limits on Dataflow Multiprocessing. In
Proceedings of the IFIP WG 10.3 Working Conference on
Architectures and Compilation Techniques for Fine and
Medium Grain Parallelism, Orlando, FL.North-Holland.
Evett, M.; Hendler, J.; Mahanti, A.; and Nau, D. 1995.
PRA*: Massively Parallel Heuristic Search.Journal of
Parallel and Distributed Computing25:133–143.
Feldmann, R. 1993.Game Tree Search on Massively Par-
allel Systems. Ph.D. Dissertation, University of Paderborn.
Gasser, R. 1995.Harnessing Computational Resources
for Efficient Exhaustive Search. Ph.D. Dissertation, ETH
Zürich, Switzerland.
Hansson, O.; Mayer, A.; and Yung, M. 1992. Criticizing
Solutions to Relaxed Models yields Powerful Admissible
Heuristics.Information Sciences63(3):207–227.
Korf, R., and Taylor, L. 1996. Finding Optimal Solutions
to the Twenty-Four Puzzle. InAAAI National Conference,
1202–1207.

Korf, R. 1985. Depth-first Iterative Deepening: an Optimal
Admissible Tree Search.Artificial Intelligence27(1):97–
109.
Korf, R. 1997. Finding Optimal Solutions to Rubik’s Cube
Using Pattern Databases. InAAAI National Conference,
700–705.
Kumar, V., and Rao, V. 1990. Scalable Parallel Formula-
tions of Depth-first Search. In Kumar, V.; Gopalakrishnan,
P.; and Kanal, L., eds.,Parallel Algorithms for Machine
Intelligence and Vision, 1–42. Springer-Verlag.
Marsland, T., and Popowich, F. 1985. Parallel Game-Tree
Search. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence7(4):442–452.
Mattern, F. 1987. Algorithms for Distributed Termination
Detection.Distributed Computing2:161–175.
Plaat, A.; Schaeffer, J.; Pijls, W.; and de Bruin, A. 1996.
Exploiting Graph Properties of Game Trees.AAAI Na-
tional Conference1:234–239.
Powley, C., and Korf, R. 1991. Single-Agent Parallel Win-
dow Search.IEEE Transactions on Pattern Analysis and
Machine Intelligence3(5):466–477.
Rao, V.; Kumar, V.; and Ramesh, K. 1987. A Parallel Im-
plementation of Iterative-Deepening-A*. InAAAI National
Conference, 178–182.
Reinefeld, A., and Marsland, T. A. 1994. Enhanced
Iterative-Deepening Search.IEEE Transactions on Pattern
Analysis and Machine Intelligence16(7):701–710.
Romein, J. W.; Bal, H. E.; and Grune, D. 1997. An Ap-
plication Domain Specific Language for Describing Board
Games. InParallel and Distributed Processing Techniques
and Applications, volume I, 305–314. Las Vegas, NV:
CSREA.
Schaeffer, J. 1989. Distributed Game-Tree Searching.
Journal of Parallel and Distributed Computing6:90–114.
Slate, D., and Atkin, L. 1977. CHESS 4.5 — The North-
western University Chess Program. In Frey, P., ed.,Chess
Skill in Man and Machine. Springer-Verlag. 82–118.
Stern, U., and Dill, D. L. 1997. Parallelizing the Murphi
Verifier. In Ninth International Conference on Computer
Aided Verification, 256–267.
Taylor, L., and Korf, R. 1993. Pruning Duplicate Nodes
in Depth-First Search. InAAAI National Conference, 756–
761.
von Eicken, T.; Culler, D. E.; Goldstein, S. C.; and
Schauser, K. E. 1992. Active Messages: a Mechanism
for Integrated Communication and Computation. InProc.
of the 19th Int’l Symposium on Computer Architecture.
Zobrist, A. 1970. A New Hashing Method with Applica-
tion for Game Playing. Technical Report 88, Computer
Science Department, University of Wisconsin, Madison.
Reprinted in:ICCA Journal, 13(2):69–73, 1990.

