The Object-Oriented Components of the Enterprise Parallel
Programming Environment

Greg Lobe, Duane Szafron, Jonathan Schaeffer
Department of Computing Science,
University of Alberta,
Edmonton, Alberta,
CANADA T6G 2H1
{greg, duane, jonathan}@cs.ualberta.ca

ABSTRACT Parallelism adds an extra dimension of

The Enterpriseprogramming environment — complexity to the design, implementation, and
supports the development of applications that debugging of programs. When multiple
run concurrently on a network of workstations. processes run on multiple processors (dozens,
This paper describes the object-oriented hundreds or more), the user often has difficulty
components ofEnterprise implemented in understanding a parallel computation using
Smalltalk-80, and their seamless integration conventional sequential tools. Visualization and
with the procedural components, implemented animation are needed to grasp the often intricate
in C. The object-oriented user-interface and non-deterministic interactions between
supports a new anthropomorphic model for processes. More importantly however, a
parallel computation that eliminates much of the simple model is needed to bring order to an
perceived complexity of parallel programs. The often chaotic collection of asynchronous
object-oriented animation component is a new Processes.
animation architecture that supports |n Enterprise the interactions of processes
synchronous and asynchronous events. Thisin a parallel computation are described using an
allows a user to view the dynamic interactions analogy based on the parallelism in a business
of the parallel components of a distributed organization. Since business enterprises
application to simplify performance monitoring efficiently coordinate many asynchronous
and debugging. The&nterprise experience individuals and groups, the analogy is
highlights the strengths of object-oriented peneficial to understanding and reducing the
methodologies both for expressing user models complexity of parallel programs. Inconsistent

and for implementing related components. parallel terminology (master-slave, pipelines,
. divide-and-conquer, etc.) is replaced with more
1. Introduction familiar business terms a6sets called

This paper describes how object-oriented departmentsreceptionistsindividuals,
techniques were used to design and implementdivisions representativesetc.). Every
components of th&nterprise programming sequential procedure that will execute
environment that supports the development of concurrently is assigned an asset type that
distributed applications for networks of determines its parallel behavior. The user code
workstations. Enterpriseis a good example of for each of these procedures is sequential C, but
an embedded application where object-oriented a procedure call to such an asset is automatically
and traditional code co-exist. Object-orientation translated to a message sendebyerprise

was used in the design of the parallel consider the following user C code,
programming model and Smalltalk-80 (ST-80) assuming thauncis an asset in the program:
was used in the implementation of the user- result = func(X, y);

interface and program animation components. /* other C code */ '

The rest of the system was written in C. a =result:

WhenEnterprisetranslates this code to run on a
network of workstations, the parametgrand
y are packed into a message and sent to the

This is a pre-print of a copyrighted article in Technology of Object-Oriented Languages and Systems Conference 11,
August, 1993, pp. 215-229.

process that executes the aslsanc. The . .
caller continues executing and only blocks and 2. Using Enterprise
waits for the function result when it accesses This section presents an example of how

the resulfa = result). Enterprisealso Enterpriseis used to construct a distributed
supports passing parameters by reference. program. Consider 8imulationprogram that

Enterprisehas three components: an object- displays a group of fish swimming across a
oriented graphical interface, a pre-compiler, and display screen. This problem was contributed
a run-time executive. The user specifies the Dy @ research group in our Department and is
application parallelism by drawing a hierarchical more complex than portrayed by the following
enterprisethat consists of assets. At run-time, description. The main procedur®odel,
each asset corresponds to a process. Sequentigonsists of a loop that, for each frame in the
procedure calls in C are translated into messageSimulation, performs some work on the frame
send/receives across a network by the pre-and callsPolyConv PolyConvmanipulates the
compiler. The execution of the program image received fronModel and callsSplit
(process/processor assignment, establishingSp“t polishes the frame and writes it to disk.
communication links, monitoring network load) An Enterpriseuser manipulates icons that
is done by the run-time executive. More represent high-level program components called
information aboutEnterpriseincluding the assets An asset represents a single C function,
anthropomorphic programming model, the called anentry procedure together with a
system implementation and a user appraisal is incollection of support procedures used by the
[LMP92] and [Par93]. entry procedure. A program will consist of

The graphical interface and tEmterprise ~ Several assets. In this example, there will be
anthropomorphic model are used for program three assetdflodel PolyConvandSplit
design. However, they can also used be used Initially, the Enterprisewindow contains
to monitor or replay an execution. The interface one view called theEnterprise View It
animates the states of the assets (processes) ancontains the icon for onenterpriseasset that
the messages that are sent between them. Thesgepresents a new program. Each asset has a
facilities are currently being expanded to include context-sensitive pop-up menu. For example,
performance monitoring and debugging. if the user selectBlamefrom theenterprise

This paper describes the design of the menu and types the woiSimulationinto a
Enterprise interface and its animation dialog box, theenterprisewould be named
capabilities. Several object-oriented research Simulationas shown in Figure 1.
contributions and lessons were derived:

1. a new anthropomorphic model for parallel
computation,

2. an application-independent object-oriented
animation architecture,

3. atechnique for integrating object-oriented

software with non-object-oriented software, v]
. . : . .]
4. evidence that multiple inheritance is b3 2

essential for the proper representation of Figure 1: TheSimulationprogram

those object-oriented applications that The user-interface is implemented in ST-80

depend on real-world models or analogies, . > .
: . . which uses the host windowing system. The
5. how object-oriented techniques can be used figures in this report were generated on a

in software development environments that \acintosh and look similar with X windows.
support non-object-oriented languages, and If the user then selecBxpand from the

6. how context-sensitive hierarchical direct a5get menu, thenterprise icon will expand to
manipulation user-interfaces can simplify —yayeg| the singléndividual that it contains. To

user models, focus user attention and pame this asset, the user selétsnefrom the
prevent errors.

=C0=Enterprise: Simulation :OEHE
Al

Simulatio

asset menu of thadividual and types the word names the new asse®plyConvandSplit.

Modelinto the dialog box that appears. The user then selecBode from each asset
The user could enter all of the code for MeNU in turn and enters C source code into text

Model, PolyConvandSplitinto thisindividual ~ €ditor windows, as shown in Figure 3.

and run the program sequentially. However, === . ———

there is no reason whylodel should wait until sLEEnterprise: Simulation :CIEH]E

PolyConvcompletes the first simulation frame 2

to start processing the second frame. Similarly,
PolyConvdoes not need to wait f@plit In

the parallel processing community this type of
parallelism is often called a pipeline.

Using theEnterpriseanalogy, these three
routines act like an assembly or production line
and are represented byige. Therefore, if the
user selectkine from the asset menu bfodel . —— . "
it is re-classified as dine. After re- Figure 2: A line in th&imulationprogram
classification, thendividual appears as lane
consisting of aeceptionistand one subordinate
individual. Figure 2 shows thiine where the

The double line rectangle represents the
enterprise The dashed-line rectangle represents
Pl - the line and each inner icon represents a
gggg;al 1 indicates the number of subordinate component. The first component is a

: receptionistthat shares the namMdpodel with

If the user selectExpandfrom the asset theline that contains it. All calls to lne are

menu ofModel it is expanded to reveal its two received by theeceptionist The other two

components. Since three components are components are subordinatelividuals
required, the user selecsgdAfterfrom the last

component's menu to add a third asset and

Enterprise: Simulation

s[J=——= Edit Code: PolyConv =[EME

>

[*PolyConv asset X

#define MAX_POLYGONS 100

PolyConv{frame)
int frame;

Figure 3: Editing the C source code

user. Several other asset kinds are supported
by Enterpriseand they can be combined in
arbitrary hierarchies.

If the user selectCompile from the
Enterpriseview menu then thEnterprisepre-
compiler automatically inserts code to handle
the distributed computation, compiles the
program and reports any errors in a window. 3. The User-| nt_erface
Once the program is compiled, the user selects Implementation
Execute andEnterprise finds as many The Enterprise user-interface has been
processors as are necessary to start the progranmplemented in ST-80, version 4.0. It may be
and initiates processes on the processors. used to construct programs on any machine that

One of the strengths of tlEmterprisemodel ~ supports ST-80 including a broad range of
is that it is easy to experiment with alternate Unix workstations as well as Macintoshes and
parallelization techniques without changing C 1BM X86 or compatible machines. However,
source code. Each asset represents at least ongince the rest of thEnterprise programming
process. If a call is made to tiredividual environment is Unix dependent, features such
Split, it is executed by a process and if a asCompileandExecuteonly work on Unix
subsequent call is made $plit before the first ~ workstations where the ST-80 interpreter runs
call is complete, the second call must wait for as a single task under X windows.
the first call to finish. The history of thé&Enterpriseuser-interface

However, if theSplitasset iseplicatedthen is an interesting one and illustrates some of the
multiple processes can be used to execute callstradeoffs that can occur when deciding whether
concurrently. For example, if the user selects Or not to use object-oriented technology and
Replicatefrom the asset menu &plit and how to integrate it with an existing software
enters 1 and 5 as minimum and maximum legacy. Enterpriseis based on a predecessor
replication factors in the dialog box that programming environment callédameworks
appears, theiSplit is replicated as shown in [SSG91] that was completely implemented in

Figure 4. C. TheFrameworks environment had a
primitive graphical user-interface that lacked the
EEEnterprise: Simulation i[olEZ0)E anthropomorphic model and required the user to
I it =T ~ do more drawing. When tlenterpriseproject

was started, a decision was made to create an
object-oriented graphical user-interface that
could more easily represent the new high-level
parallel programming model.

I
I
I
| Since the researchers had some experience
I
I
I

PolyCony

with the object-oriented languages, Smalltalk
and C++, both were considered for
implementing the user-interface. C++ was
chosen for three reasons: it has faster run-time
performance than Smalltalk, it should be easier
to integrate a C++ user-interface with existing C
code since it is a superset of C and, unlike ST-
80, there are no licensing restrictions on the
distribution of a C++ user-interface.
Smalltalk/V was disqualified since it does not

When PolyConvecalls Split, a process is currently run under Unix.
initiated and if a subsequent call is mad&pdit The Interviews [LVC89] user-interface
before the first call is done then a second class library was used to reduce development
process is initiated (if there is an available time. Unfortunately, 6 person-months were
machine). Replication can be dynamic in spent trying to implement the user-interface
Enterpriseso that as many processors as are ysing Interviews without success. Although
available on the network may be used, subject individual widgets were relatively easy to build,
to a lower and upper bound supplied by the the complexity of Interviews resuited in a

Figure 4: A replicated asset.

learning curve that was too steep. Although an displays theenterprise (program) and the
experienced Interviews programmer may have Serviceview displays thaerviceassets used by
been able to complete the task in this time, our the enterprise TheServiceview can be

programmer could not. hidden when it is not usedserviceassets are

Since the user-interface was lagging behind described in [LMP92].
the pre-compiler and executive, we then decided When a mouse button is pressed, the
to try Motif [You92]. However, two person- window passes control to the view that contains
months of work on Motif (by a different the cursor. The view then determines which
programmer) yielded results that were no better. asset (if any) was selected. The selected asset

At this point, we decided to try ST-80 in is one whose bounds (rectangle) contains the
spite of its perceived problems. A graduate CUrSOr point. However, since assets may be
student who had previously taken a one nested in a hierarchical structure, many assets
semester course in object-oriented computing May contain the cursor point. The selected
that included ST-80 as a component then @sSet is defined as the innermost one that
produced a working prototype of the user- Contains the cursor point. For example, in
interface in three weeks! Of course the final Figure 4, the cursor is inside of thelividual
user-interface (with animation) as described in SPIit. which is inside thdine (dashed line)
this paper took much longer (about four Model which is inside thenterprise(double
months). The execution speed of the user- liN€) namedSimulation In this case the cursor
interface is well within our performance Pointis considered to be insi@plit
requirements and it was quite easy to integrate If an asset is selected, a context-sensitive
the ST-80 user-interface with the C pre- menu is displayed that contains only the
compiler and executive. The rest of this section operations that are valid for the selected asset.
describes the way the user-interface was For example, if an asset is expanded, then the

implemented in ST-80. Collapseoperation would appear in the menu,
but theExpand operation would not. This
3.1 The User-Interface Control M odel makes it impossible for a user to select an

Since a program mav display many ST-80 Invalid operation. If no asset is selected, then
windows, tﬁe gST-80 i>r/1terppre%/er po)I/Is the the menu for th&nterpriseview is displayed.
windows, asking each in turn if it wants This approach simplifies the user's mental
control. The default behavior is that a window model of the programming environment since it
takes control whenever the cursor is inside of it. reduces the number of operations the user sees
The Model View Controller (MVC) paradigm [LSW87]. It is in stark contrast to pull-down
[LP91] is used where the model is an instance menus where the user is presented with a
of class Enterprise the view is an plethora of choices some of which have subtle
EnterpriseWindowand the controller is an differences and some of which do not even
EnterpriseController TheEnterpriseController apply to the user-interface component being

behaves exactly the same as a defaaittroller considered. For example, if the user chooses
except when the program is animated and this Compilefrom an asset's menu, only the code
will be described in Section 4. for the asset is compiled. If the user chooses

The model is responsible for knowing its Compilefrom theEnterpriseview menu, then
enterprise (program). The window is all assets are compiled. Furthermore, the
responsible for displaying thenterpriseusing ~ Executecommand does not even appear in an
the values stored by the model. Views are @ssét menu. In a pull-down syste@gmpile
composite objects that can contain sub-views, ASSelCompile ProgramandExecutewould all
but the location and size of a sub-view within aPpear in the menus.
its parent view is maintained by a wrapper How does a view determine which of its
object. That is, sub-views are contained in assets is selected? A traditional non-object-
wrappers, which are themselves contained in aoriented approach would be for a view to
parent view. An instance &nterpriseWindow maintain a list of its assets and their locations
contains two wrapped sub-views, Enterprise and to compute the selected asset based on this
view and aServiceview. TheEnterpriseview information. However, since assets can be

nested, some other structural information would addition, different line styles are used for the
be required as well. Assets can be expanded toborders of expanded assets. For example,
reveal their components or collapsed to hide enterpriseassets use two lines separated by one
their internal details. As assets are expandedpixel, line assets use a dashed double width
and collapsed, their locations change and mustline, and division assets use a double width
be updated. In the object-oriented world, each wavy line. The method that draws the border is
asset should be responsible for knowing its overridden in these assets to use the appropriate
own location and its structure (its parent asset behavior. Similarly, the method that draws
and the other assets it contains). The view itself connections is overridden to draw the correct
only needs to know thenterprise connections for the variousssetsub-classes.

When theenterpriseor any other asset is :
passed the cursor point and asked for the 3-3 The Other Enterprise Components
selected asset, it behaves recursively as Although the user-interface is implemented
follows. If the point is outside its bounds it in ST-80, two otheEnterprisecomponents are
answersnil. If the point is inside its bounds implemented in C. The user-interface
and it does not contain any component assets orcommunicates with the pre-compiler and the
it contains component assets but they are notexecutive through Unix pipes and text files.
currently displayed, then it returns itself. This section describes the technique for
Otherwise, the asset asks each of its componentconnecting to the external Unix processes, the
assets in turn to identify the selected asset until organization of the directories containing C
one answers an asset or all respond with source and object code files for a program, and
The asset then returns this result. Before askingthree other kinds of text files that are used to
each component asset, the asset asks theommunicate with the other components.
wrapper of the component to change the .
cooPdpinates of the cuprsor point to théJ local Graph. Event and Preference Files

coordinates of the component. A graph file describes a singkenterprise
program. It specifies the hierarchical structure
3.2 Drawing Assets of the assets, replication factors, compile and

When an asset receives a display message“”k options, and any user machine preferences.
it draws itself. Any asset that contains The assets are listed in a depth-first order. For
component assets can be either collapsed oreach asset there is a line with its name, type,
expanded. Assets that are collapsed or do not'€plication factor and options for ordering,
have components are displayed in the samedebugging and optimization. If the asset has
way. The asset draws its icon and displays its INtérnal components there is also a count of
name in the lower left corner of the icon. If the components. Following this are four lines that
asset is replicated, lines are drawn above and toSPeCify the compile, link and run options. If
the right of the icon to simulate a stack of icons the asset has components, these lines are
and the number of replications is displayed followed by the description of the components

outside of the top right corner of the icon. in the same format.

An expanded asset first draws a rectangular _ Graph files are created and edited by the
border. The size of the rectangle is computed USer-interface. When the user selestve
by asking each component for its size and COMPpilg or Run from theEnterprise view
adding room for space between the Menu, theenterprisestores a representation of
components. Next a display message is sent toltSelf in a graph file whose name is the
each component so that it draws itself. The €nterprisename with a ".graph” appended.

parent asset then draws the connectionsEach asset type knows how to write a
between the components. Finally the description of itself and if it has components, it

replication is indicated in the same way as it is @SKS its components to write themselves as
for collapsed assets. well. Alternately, when the user wants to load

. . . a previously saved program, the graph file is
_ The basic drawing behavior is implemented (eaq and as it is parsed, assets are created and
in the Assetclass and eacAssetsubclass igplayed. The pre-compiler uses a program's
provides a method for drawing its own icon. In- graph file to identify procedure/function calls to

assets and replaces them with message sendsurrently require Unix. Both commands launch
and receives. The run-time executive uses thean external process and establish
graph file to determine how many processes to communications with it. ST-80 simplifies this
launch, the execution role of each process andtask by providing dJnixProcessclass. A
the appropriate communication links between message is sent to this class specifying the
these processes. name of a Unix program, an array of arguments
Event files are created by the run-time fOr the command and a block. The block is

executive's monitor process while a program is evaluated W'trr]‘. the ex(}ernal pro%ess asfan
running and are used later to animate the &@gument. This provides a mechanism for

program. The events they contain are described'&férencing the process from ST-80 after it has
in more detail in Section 4. been created. When the message is sent, the

. . : process is created and two pipes are
Enterprise maintains a preferences file. agtaplished, one connected to the process'
When the user-interface first starts, it looks in - siandard input and the other connected to both
the current directory for a file nameehtrc If its standard output and standard error. These
the file exists, it is read and global preferences pipes are represented as ST-80 streams that are

are set from its contents. For example, the contained in the instance BkternalConnection
user's text editor is specified by a line of the hatis returned by the message.

form EDITOR= editor name . .
The user can elect to compile and link the
Enterprise Directories for Source Code entire program or to compile part of the asset

When a new program is creat@&hterprise hierarchy. In either case, if the program has
creates a new sub-directory with the same nameP€€n changed, the user-interface first writes out
as the program. It then creates sub-directoriestne graph file. TheEnterprise pre-compiler
of this directory to organize the files used by the Process is then started and a window is created
program. The directories are: Assets (C source {0 display all text that is sent to tixternal
code for assets), User (C source code for CONNEctiors output stream. ThEnterprise
internal asset procedures), Include (headerVI€W'S controller monitors the stream.
files), Out (input and output files), Obj (object Whenever new text is available, it is displayed
files for each asset), Bin (executables), Sys N this window. If there is no new text, the
(Enterprise generated files) and Src (pre- polling loop just continues normally. The user

compiler output). can interact with the system normally and may
even cancel the compile. When the compile is
External Processes finished, the window is left open so that the

The user-interface launches external USer can review the compiler messages.
processes for compiling code, running a Programs are run in a similar manner except
program and (possibly) for editing code. The outputis displayed in another window.
user may use a standard ST-80 editor or, under . .

Unix, a non-ST-80 editor may be selected. 3-4 The Asset Inheritance Hierarchy

Several editors can be active at the same time Section 3.2 described the way that assets
(one for each asset). If the ST-80 editor is are drawn and the approach relied heavily on
used, no new process is launched. Instead, ainheritance. In fact, inheritance is used
new ST-80 window is created and the window extensively throughout the user-interface, but
is added to the list of active windows. It is the asset hierarchy can be used to illustrate its
given control by the ST-80 interpreter whenever importance. The asset kinds form a natural
its window has the cursor. If an external editor inheritance graph as shown in Figure 5.

is used, an X window is created. The editor A solid triangle in the upper left corner of a
becomes an X window's task that executes ¢|ass denotes an abstract superclass as

concurrently with the ST-80 interpreter. described in [WWW90]. The abstract class
The CompileandRuncommands are only Assetis the root of the inheritance tree.

usable with the Unix version of the user- Universal responsibilities like naming are

interface since the pre-compiler and executive defined and implemented in this class.

‘ Asset

Codable
Asset

Replicable Deletable Expandable
Asset Asset Asset

Receptionist Service Representative Addable Enterprise
Asset Asset Asset Asset Asset
Individual Department Line
Asset Asset Asset

Division
Asset
Figure 5: The asset inheritance graph.

Below theAssetclass is a level of abstract Unfortunately, ST-80 is restricted to tree
superclasses that define several responsibilitiesinheritance so several compromises were made
that are shared by several of the leaf assetin transforming this inheritance structure to a
classes. ACodableAssehtas an external file of tree. The result is shown in Figure 6. A
C source code associated with it which can be comparison of Figures 5 and 6 illustrates clearly
edited and compiled. ReplicableAssatan be that support for multiple inheritance is essential
replicated and transformed to an asset of afor applications with real-world models. The
different type. ADeletableAssetan be deleted lack of multiple inheritance was the most
from its parent asset. AfxpandableAssdtas difficult obstacle that needed to be overcome in
component assets so it can be expanded orusing ST-80 for th&nterpriseproject.
collapsed. ~AnAddableAssetcan have ReplicableAsseandDeletableAssetvere
components added to it after it has been created.merged withAsset The rounded rectangles

The rest of the asset classes are concretecontain the main messages defined by each
subclasses. ReceptionistAssdtas code, but class and the symbol ~ means that a message
can't be replicated, deleted, or expanded. A was overridden because it should not exist for a
RepresentativeAssdtas code and can be class. For example, tHeeceptionistAsset
replicated but can't be deleted or expanded. Anclass overrides the replicate, coerce, and delete
IndividualAsseis like aRepresentativeAsset methods. TheDivision class was made a
except that it can be deleted. DAvisionAssets subclass ofExpandableAsseinstead of
like anIndividualAsset except that it can be IndividualAsset The methods for editing code
expanded. AServiceAssdias code and can be were then re-implemented DivisionAsset In
deleted, but it can't be replicated or expanded. addition to these changes, tAssetclass itself
A LineAssetor DepartmentAssetan be was made a subclass of the ST-80 pre-defined
replicated, deleted, or expanded, but has noclassCompositeViewso that all assets could
user code. ArtnterpriseAssetis expandable, inherit the behavior of visual objects that have
has no user code, can't be replicated and can'tsub-parts.
be deleted.

name
compile
replicate
coerce
delete

expand
collapse

Codable Expandable

Asset

run
~delete
~replicate

~coerce
Individual R Addable Enterprise
Asse Asset Asset
Service Receptionist Division
Asset Asset Asset

~replicate .

~coerce Department Line

Asset Asset

Figure 6: The asset inheritance tree.

. . During animation, the time between

4. Program Animation animation steps is proportional but not equal to
Enterprise program animation is used to real time. The proportionality factor can be

monitor a program's performance and to adjusted by the user to adjust the speed of the

identify parallel programming and logic errors animation. The user can also step through the

at the message (asset) level. The user cananimation one event at a time.

examine the amount of parallelism, when and

where synchronization occurs, which machines 4.1 Animation View

are being used and their load, the lengths of \yhen the user selectsnimatefrom the
message queues, and the state of each procesgnierpriseview menu, theEnterpriseview is

during execution. ~ Currently, there aré no o55ced by amnimationview. Each replica
debugging facilities for setting breakpoints or fqm 5 replicated asset is displayed as a separate
examining the values of variables. Animation ;.o 21d named by appending an id number to
consists of displaying asset states, displaying na pase asset name. For each asset, the id
messages as they move between assets a‘n?{]umbers are generated in sequential order
displaying message queues. starting at 1. Messages and message queues are
Enterprisereplays execution of a program displayed as icons and animation commands
using an event file that was produced during appear in the asset, message queue and
execution. The event file is produced by an Animationview menus. For example, the user
external Unix process that receives messagescan use an asset menu to open a monitoring
from theEnterpriseexecutive process and logs window that contains such information as the
events to the file. The interface assumes that machine name for the asset and performance
the events are partially ordered [Lam78] so itis information for that machine. Similarly, the
the responsibility of the executive process or a user can use the message queue menu to
post-processor to do this. To support real-time examine the details of messages that it contains.
animation, it is possible to replace this file by a Finally, the view menu can start the animation
stream connection between the user-interfacefrom the beginning, pause or resume the
and event-monitoring processes. However, in animation, single step through events, set the
this case, the animation system may be unablespeed of the animation and replace the
to keep up with events. Therefore, replay is the Animation view by theEnterpriseview. The
preferred approach to animation. Animationview of a recursivélphaBetatree
search program is shown in Figure 7.

E[J==——— Enterprise: AlphaBeta (Animating) ==——-—[0zM]

A

]
allk
fem e e e eeeeeeeeeeeeeeeeeeeme———— =]
IDLE BUSé
oM ABA.2 AB.1.3
AB1.1.1 L [AB11.2
v

............. v

< [>]_J

g

k2

Figure 7: TheAnimationview of theAlphaBetaprogram.

This example useslivision assets in a the replicas irdivision assets are structured

recursive divide-and-conquer application, but hierarchically instead of linearly.

the number of processes and the size of the Collapsing and expanding assets in the
message queues have been reduced for brevityAnimation view provides a clustering
The enterprisecontains adivision with a mechanism [Tay92]. Clustering is useful
receptionist(AB.1) and subordinatdivision during debugging since it reduces the clutter
that has a replication factor of three (AB.1.1, caused by displaying too much inappropriate
AB.1.2 and AB.1.3). Each subordinate detail and allows the user to focus on the
division contains aeceptionistwith a replicated important relationships. Two of the subordinate
representative Note that for most assets, divisions (AB.1.2 and AB.1.3) have been
replicas are numbered left to right. However, collapsed, but the other (AB.1.1) is expanded.

10

The Animationview displays two message structure of an asset's code where the return
queues. Incoming messages are initiput Statementis usually at the end.
gueueabove the asset, and replies to previously
sent messages are in teply quee to the right ~ 4-2 States
of the asset. These locations correspond to the At run-time, Enterprise assets become
logical structure of the user's code where calls processes. A process communicates with other
are received at the start and replies are receivedprocesses by sending messages. As an asset
in the body. Replicated assets share a commonexecutes, it can be in one of four states: idle
input queue that is displayed above and to the (waiting to receive a message), busy
left of the replicated assets. However, each (executing), blocked (waiting for a reply), and
replica has its own reply queue. Messages aredead. An asset changes state in response to
represented by icons that move along the pathsevents that affect it.

between assets and into the message queues. The state of a collapsed asset is determined

A message queue displays the number of by the states of its components. If at least one
messages it contains. A message queue iconcomponent is busy, the asset is busy. If no
shows zero (no visible icon), one (a single component is busy and at least one is blocked,
message icon) or many (a message icon withthe asset is blocked. If no component is busy
two others behind it) messages. The number or blocked and at least one is idle, the asset is
beside the queue icon indicates the exact count.idle. Otherwise all of the components must be
When a message arrives at a queue this count idlead, so the asset is dead.
incremented and when a message is removed The state of an asset is indicated in the

from the queue to be processed by an asset, thezpimation view by one of two (user-selectable)

count is decremented. mechanisms: color or state name display. Icons
When the animation is active but stopped, for busy assets are green, icons for idle assets

the message queue menu can be used to seledre yellow, icons for blocked assets are red and

any message it contains and to display its icons for dead assets are black.

sender, parameter values and any other

information that is placed in the message event 4.3 Events

by the event logging process. Assets change state in response to events
In Figure 7, each asset is eithlkeusy that occur when the program is running. The
(processing a taskidle (waiting for a message event logging process monitors programs as
to invoke a task) oblocked (waiting for a they run, identifies when important events
specific reply). Asset AB.1 has just sent a occur, and writes event records to an event file,
message to its replicated subordinditdsion maintaining the original partial ordering
The message appears below AB.1 and will between the events. The animation system
move to the input queue of the replicated reads the events from the event file and updates
divisionas the animation proceeds. A messagethe display. Seven events are supported:
icon looks like a memo with four lines and a SentMsg, RcvdMsg, Block, SentReply,
bent upper left corner. Currently, the replicated RcvdReply, DoneMsg and Die. Figure 8 is a
division'sinput queue contains three messages. state-transition diagram that shows the
Since asset AB.1.2 is idle, a message is movingrelationship between the asset states
from the input queue to it. Similarly, a message (represented by circles) and the events
is moving from the input queue of the replicated (represented by arrows).
representatives (AB.1.1.1 and AB.1.1.2) to the The event file is an ASCI| text file. Each

idle asset, AB.1.1.2. event starts on a new line that begins with a #
RepresentativéB.1.1.2 has completed a character and a space followed by an event type
task and replied to its caller, AB.1.1. The reply and parameters separated by spaces. An
message is shown on its way to the reply queueoptional information string can follow on the
of AB.1.1.2. A reply icon looks like a memo next line. The information string is displayed
that has been stamped as received. Note thaty the user-interface when the user inspects
the message path of a reply begins at the bottommessage contents.
of the replying asset, corresponding to the

11

During animation, the receiver changes its state
from busy to idle.

SentReply

When the event logging process detects that
an asset has has sent a reply message to its
caller, it inserts a SentReply event into the event
file. The information string contains the names
and values of all message parameters. During
animation, a message moves from the sender to
the reply queue of the receiver and the message
count is incremented. The sender asset must be
in the busy state but the receiver may either be
busy or blocked.

Event parameters depend on event types. pevdRenl
They include asset names, message tags an .
integers representing times. Asset names are When the event logging process detects that
the names from the graph file with replica an asset has accessed a message reply, it inserts
numbers appended to them. Tags are integers2 RCvdReply event into the event file. During
that are used to associate SentMsg events withanimation, the message count in the reply queue
RcvdMsg events and SentReply events with IS decremented. The asset that receives a reply
RcvdReply events. Times are measured from May either be busy or blocked. If the asset was
some arbitrary start time in milliseconds and Plocked with the same tag as the RcvdReply it
refer to the time that the event was inserted into P€cOmes busy.
the event file. The sequence of times must be g|ock
monotonically non-decreasing. .

Figure 8: The asset state transition diagram.

When the event logging process detects that
SentMsg an asset has tried to access a result computed by

When the event logging process detects that another asset, and the result is not available, it
an asset has sent a message to another asset,giserts a Block event into the event file. The
inserts a SentMsg event in the event file. The BIOCk event includes a tag that indicates the
information string contains the names and '€Ply it is waiting for. During animation, the
values of all message parameters. During asset state changes from Busy to Blocked.
animation, a message moves from the sender top;e
the input queue of the receiver where the — . ,
message count is incremented. The sender If the event logging process determines that

must be busy and it does not change state. TheAn @sset is not responding for some reason, it
receiver does not change state. inserts a Die event into the event file. During

animation, the asset becomes dead, but the
RcvdMsg message queues are not affected so that the user

When the event logging process detects that €@n examine them, after the event. The asset
an asset has received a message and starte§@n be any state before this event.
processing the task that the message invokes, it . . .
inserts a RcvdMsg event in the event file. 44 The Animation Architecture
During animation, the receiver decrements its The object-oriented animation architecture
input queue counter. The receiver then changesdescribed in this section is new and application

its state from idle to busy. independent. It has two main components, one
Is asynchronous and the other is synchronous.
DoneMsg The asynchronous component has two

When the event logging process detects that responsibilities. It must process the events at
an asset has finished executing a message, ithe correct animation time. However, since we
inserts a DoneMsg event in the event file. want the user to be able to interact with the

system during animation, it is also responsible

12

for user events as well. The synchronous time is translated to a time relative to the start
component of the animation system is time for its event queue. When the animation is
responsible for animating messages. active, the control loop for the window sends a
message to the program every time through the
The Asynchronous Component loop. The program responds by telling the

Several new classes were added to the user-animation event queue to process its animation
interface to support animation and several events. The event queue processes its events
behaviors were added to the existing classes.in order until the event time plus the start time
When theAnimation view is displayed, the catches up to the current time. Control is then
asset graph is modified. Each replicated asset isreturned to the control loop which checks for
wrapped in an instance BieplicatedAssdhat user input. In this way the animation system
contains the original asset together with a list of only takes control periodically and, when it
replicas that are constructed by copying the does, only for a short time. This allows users
original asset. The copies are identical, except to interact with the system during an animation.
that each is given a different id number. As an For example, the user could pause the
animation proceeds, the states of these replicasanimation.

may diverge. The ReplicatedAsset is Each animation event represents one event
responsible for drawing the connections fqom the event file. In addition to the event
between replicas, much likexpandableAssets ime an animation event contains a collection

do for their components. of animation messages. Each of the animation
Two new responsibilities are added in the messages consists of a receiver asset, a
Assetclass, knowing the input message queue message selector, and an array of arguments for
and knowing the reply message queue. Boththe message. One event may translate into
gueues are instances of the subclasses ofseveral animation messages. For example, a
MessageQueyénputQueueandReplyQueue SentReply event translates to two animation
A MessageQueuenntains an ordered collection messages: one to tell the sending asset it has
of messages, which are instances of classsent a reply and one to tell the receiving asset it
Message The display method iAssetchecks has been sent a reply. The set of messages for
to see if animation is active and if so, allocates one event is treated as a transaction; if one
room for the message queues when it computesmessage is sent they all are. There is a subclass
its bounding rectangle. When an asset is told to of the abstract superclagsyimationEventfor
draw itself, it also tells its message queues to each type of event. Each event sub-class need
draw themselves. only implement creation messages. All other
Message queue selection is implemented by Messages are implementedinimationEvent
augmenting the message that is sent to an assef? _addition, the asset classes implement
to ask it for its sub-asset that contains the cursor Methods for each animation message sent by an
point. An asset now considers its two queues animation event. The responsibilities include
as candidates in addition to its component changing state, updating message queues, and
assets. AMessageQueugetermines if it modifying the display.
contains the cursor point by testing if the point Assets have input and reply message
is within its screen extent. queues. Each queue contains an ordered
An instance of clasEventQueueis collection of messages. They are displayed
responsible for knowing the start time for an €ither above or beside an asset. Messages
animation and the events from an event file. It MOve along the paths between assets and into
is created when thénimation view is the queues in response to SentMsg and
displayed. That is, to speed up event SentReply events. For a SentMsg event, a
processing, the event file is parsed and all MesSsage moves from below the sending asset to

events are created before the animation begins JUSt above the receiving asset and then into its

The animation start time is set when the user INPut queue. For a SentReply event, a message
actually starts an animation. moves from below the replying asset to just

o . below the receiving asset and into its reply
When the event file is parsed and instances 4 ,ee. Although messages must move

of classAnimationEvenare created, each event iferent distances on the display screen, these

13

distances are not necessarily indicative of the message in the animation queue animates
actual communication distances. Therefore a jige|f by moving along a pre-computed path in
message moves from one asset to another ingieps. “The path was computed by the asset that
(user adjustable) constant time. For example, created the message. This asset computed the
with replicated assets, the replicas will be |gcation of the sender and receiver and
different distances from the calling asset due to computed a set of points along the path
the way thatEnterprise displays assets petween them. The path was stored in the
hierarchically. To compensate, messages with message before the message was added to the
longer screen travel distances move faster {0 gnimation queue. Whenever a message receives
maintain a constant time interval. an animate message, the message moves itself
Because the destination queue is part of the to the next point on its path, then deletes the
receiver, animating the message is actually donepoint from its path. If a message reaches the
by the receiver. When a SentMsg or a end of its path, it removes itself from the
SentReply event occurs, the receiver is animation queue, tells the receiver to mark it as
informed. The receiver creates a message,not pending and tells the receiver to increment
inserts it into its message queue and marks it asits message queue counter.
pending, determines the path it must follow to _
move from the sender into its queue, and asks 5. Conclusions

the message to animate itself. When the Thjs paper described the object-oriented
message reaches the message queue, th@omponent of theéEnterprise programming
receiver removes the pending mark and epvironment for developing distributed
increments the counter for its message queue.gpplications that execute concurrently on a
The user can examine any message in anpetwork of workstations. The object-oriented
message queue even if it is pending (the components provide a new anthropomorphic
animation has not yet shown it reaching the model for parallel computation. The simplicity
queue). of this model:

A message is received when the receiver 1. makes it easier to learn than other models of
gets a RcvdMsg or a RcvdReply event for the parallel computation,
message. When this occurs, the receiving asset2
will remove the message from its message “- ; .
queue. If the message is marked as pending, the ~Programs more quickly than with other
receiver will remove the message from the Modelsand
animation queue so it disappears at the next3. has reduced the complexity of the user-
animation step. If the message is not pending interface and the otheEnterprise
then the receiver decrements its message queue components so they could be designed and
counter. implemented quickly.

Enterpriseincludes an animation component
that:

has allowed programmers to write parallel

The Synchronous Component

Animation of messages and busy assets are .
done synchronously. The program maintains 1+ N&S a new architecture that supports
an instance ofAnimationQueuethat holds asynchronous and synchronous events,
objects to be animated. When the program tells 2. is a valuable tool for understanding the
its event queue to process events, it also tells its ~ complexity of parallel computations and

animation queue to animate its objects. The 3. js independent oEnterpriseso that it can
animation queue checks to see if it is time to used for other applications.

perform the next step of the animation and, if it Our experience with the object-oriented

IS, sends an animate message to every object in . .
its queue. If it isn't time, the quele does components oEnterprisehave also provided

nothing. The time between steps is a constant, SOMe insights into the use of object-oriented
The class of each object in the queue must computing in general and ST-80 in particular.
support the animate message to perform onel. The advantages obtained by using the
step of the animation. extensive user-interface libraries of ST-80
outweigh the perceived disadvantages. The

14

efforts required to combine object-oriented
user-interface code with traditional C code
were minimal. The execution time

performance problems of ST-80 are
insignificant in user-interfaces, even though
in this application the user-interface is fairly
CPU intensive during animation.

2. Although Smalltalk has not been used
extensively to construct user-interfaces
where object motion is an important factor,
the Enterprise experience illustrates its
power for such applications.

3. The lack of support for multiple inheritance
is a significant problem in Smalltalk when
the application depends on a real-world
analogy.

The success of thEnterprise project is
largely due to its object-oriented components.
In fact, several members of the research group [parg3]
who had severe doubts about the utility of the
object-oriented approach are now firmly
committed to the use of object-oriented
technology for user-interfaces in particular and
for embedded applications in general.

[LPO1]

[LSW86]

[LVC89]

[SSGO91]

Acknowledgements

The Enterpriseproject has benefitted from
the efforts of many people, including: Paul
Iglinski, Paul Lu, Ron Meleshko, lan Parsons,
Carol Smith and Zhonghua Yang. This
research was supported in part by research
grants from the Central Research Fund, [Tay92]
University of Alberta, the Natural Sciences and
Engineering Research Council of Canada,
grants OGP-8173 and 107880 and a grant from

IBM Canada. [WWW90]
References
[Lam78] L. Lamport. Time, Clocks and the
Ordering of Events in a [you92]
Distributed SystemCACM, Vol.
21, No. 7, pp. 558-565, 1978.
[LMP92] G. Lobe, P. Lu, S. Melax, I.

Parsons, J. Schaeffer, C. Smith
and D. Szafron. The Enterprise
Model for Developing Distributed

Applications. Technical Report TR

92-20, Dept. of Computing

Science, University of Alberta,

1992.

W. LaLonde and J. Puglnside
Smalltalk Volume Il Prentice-
Hall, Englewood Cliffs N.J.,
1991.

D. Lanovaz, D. Szafron and B.
Wilkerson. The Synergism of
Logic-Based Programming and
Software Engineering: A
Programming Environment
Approach. CIPS Edmonton '87
Intelligence Integration

Conference Proceedingpp. 43-

53, November, 1987.

M.A. Linton, J.M. Vlissides and
P.R. Calder. Composing User
Interfaces with InterViewdEEE
Computer, Vol. 22, No. 2, pp. 8-
22, 1989.

I. Parsons. An Appraisal of the
Enterprise Model. M.Sc. thesis,
Dept. of Computing Science,
University of Alberta, 1992.

A. Singh, J. Schaeffer and M.
Green. A Template-Based
Approach to the Generation of
Distributed Applications Using a
Network of WorkstationsIEEE
Transactions on Parallel and
Distributed Systems\ol. 2, No.
1, pp. 52-67, 1991.

D. Taylor. A Prototype Debugger
for Hermes.Cascon '92 IBM
Canada Ltd, Toronto, pp. 29 - 42,
November, 1992.

R. Wirfs-Brock, B. Wilkerson
and L. WienerDesigning Object-
Oriented SoftwarePrentice Hall,
1990.

D. Young. Object-Oriented
Programming with C++ and
OSF/Motif. Prentice-Hall,
Englewood Cliffs N.J., 1992.

15

