VIEWS ON TEMPLATE-BASED PARALLEL PROGRAMMING

Ajit Singh,! Jonathan Schaeffer,? Duane Szafron,?
asingh@etude.uwaterloo.ca, jonathan@cs.ualberta.ca, duane@cs.ualberta.ca

1 University of Waterloo,

2 University of Alberta,

Dept. of Electrical and Computer Eng., Dept. of Computing Science,

Waterloo, Ontario,

Canada N2L 3G1

Abstract

For almost a decade we have been working
at developing and using template-based mod-
els for coarse-grained parallel computing. Our
initial system, FrameWorks, was positively re-
celved but had a number of shortcomings. The
Enterprise parallel programming environment
evolved out of this work, and now, after several
years of experience with the system, its short-
comings are becoming evident. This paper out-
lines our experiences in developing and using
the two parallel programming systems. Many
of our observations are relevant to other par-
allel programming systems, even though they
may be based on different assumptions. Al-
though template-base models have the poten-
tial for simplifying the complexities of parallel
programming, they have yet to realize these ex-
pectations for high-performance applications.

1 Introduction

Along with the growing interest in parallel and
distributed computing, there has been a corre-
sponding increase in the development of mod-
els, tools and systems for parallel program-
ming. Consequently, practitioners in the area
are now faced with a somewhat difficult chal-
lenge: how to select parallel programming tools
that will be appropriate for their applications.
There is no easy answer. The decision is a func-
tion of many parameters, including some that
are specific to the user and the computing en-

Edmonton, Alberta,
Canada T6G 2H1

vironment.

As is evident from the formation of user
groups such as the Parallel Tools Consortium,
there is a concern in the community about the
lack of post-development analysis and evalua-
tion of the various tools and technologies that
are being proposed. Typically, researchers en-
vision a new tool or technology, develop it
and, depending on their initial experiences, re-
port it in the literature. With few exceptions,
long-term experiences with parallel program-
ming systems and their relationships with sim-
ilar systems are hardly ever reported.

Many different approaches have been taken
towards the development of parallel program-
ming models. These include developing a new
programming language, building parallel com-
puting features on top of existing common se-
quential languages, building libraries for paral-
lelization, and extending a sequential language
with compiler directives or keywords. A rel-
atively new alternative has begun to emerge
that allows a programmer to benefit from the
existing code and knowledge of a sequential
program, while minimizing the modifications
that are required for parallelization. The pro-
grammer provides a specification of the par-
allel structuring aspects of the application, in
the form of code annotations. One interest-
ing approach to code annotation is to recog-
nize that there are commonly occurring par-
allel techniques. A parallel programming tool
can support these techniques by providing code
skeletons [14], or templates, that capture the
parallel behavior. The user simply supplies the

sequential application code (such as in PIE [32]
and HeNCE [6]), and selects the templates to
be used from the collection of templates pro-
vided by the system. The system then gener-
ates all the parallel code for the application.
Template-based models separate the specifi-
cation of the parallel structuring aspects —
such as synchronization, communication and
process-to-processor mapping — from the ap-
plication code that is to be parallelized. The
goal here is to provide an easy approach for the
initial development and restructuring of paral-
lel applications.

This paper discusses our long-term experi-
ences with two template-based parallel pro-
gramming systems for coarse-grained paral-
lelism. Our research began in 1986, when we
used templates® to experiment with different
parallel structures for a computer animation
application [19]. We quickly realized that the
approach was more general, and could be used
to build a larger class of parallel applications.
Building on this success, the FrameWorks par-
allel programming tool was developed [34, 35,
36]. Our initial experience with FrameWorks
was encouraging. However, for a number of rea-
sons 1t was not possible to refine the system be-
yond a certain point. Consequently, an entirely
new project, Enterprise, was initiated. Enter-
prise is a template-based parallel programming
environment that offers a much wider range of
related tools for parallel program design, cod-
ing, debugging and performance tuning [21, 25,
29, 30]. It has been publicly available since
1993 (http://web.cs.ualberta.ca/ enter).

Several other parallel programming systems
have relied on techniques that are similar to
the approach we used, such as [4, 6, 9, 10, 11,
31, 32]. Many of our results and experiences
are applicable to such systems, as well as to
other types of high-level parallel programming
systems.

In this paper, we look at template-based
parallel programming models from two view-

ITt should be noted that we have used the term
“template” (since 1986) to mean “prepackaged set of
application-independent characteristics for parallel pro-
gramming”. This has no intended relationship with the
C++ templates that are used to build generic sequen-
tial subprograms.

points. First, as the designers, we can ad-
dress the difficulties in the design and imple-
mentation of these tools. Second, we have
had considerable interaction with users de-
veloping template-based parallel applications.
Controlled experiments, which compared En-
terprise with a number of tools including PVM,
give insights into the strengths and weaknesses
of the template approach. The result is that,
although template-based models have tremen-
dous potential for bridging the gap between se-
quential and parallel code, there still remain
a number of shortcomings that must be ad-
dressed before the technology will be widely
used.

Section 2 presents the motives for using the
template-based approach. Section 3 outlines
the objectives for a template-based parallel
programming tool, and discusses how well these
objectives were met in FrameWorks and Enter-
prise. Section 4 describes the requirements for
future template-based tools. Finally, Section 5
presents our conclusions.

2 Template-based
Programming

In the context of parallel programming, a tem-
plate represents a prepackaged set of charac-
teristics that can fully or partially specify the
nature of scheduling, communication, synchro-
nization and processor bindings of an entity.
Templates implement various types of interac-
tions found in parallel systems, but with the
key components — the application-specific pro-
cedures — unspecified. A user provides the
application-specific procedures, and the tool
provides the glue to bind it all together. The
templates abstract commonly occurring struc-
tures and characteristics of parallel applica-
tions, allowing users to develop parallel appli-
cations in a quickly and easily.

Consider developing a parallel application
on a network of workstations. Parallel pro-
gram development would require a significant
amount of time and effort if a low-level tool
were used (for example, Unix sockets [23] or

a message-passing library such as PVM [18]).
Further, the parallelism would be explicit in the
user’s code, increasing the complexity of the
application code. Each time the programmer
wanted to experiment with a different parallel
structure for the application, additional pro-
gramming effort would be required to rewrite
the code. Moreover, such an effort would be
replicated, knowingly or unknowingly, by other
programmers while writing other applications.

Template-based parallel programming sys-
tems have attempted to address this situation.
These systems provide skeletons (templates) of
commonly occurring parallel structures. A user
simply provides sequential modules of code and
selects the appropriate skeletons for structuring
their parallel application. The tool automati-
cally spawns the processes on available proces-
sors, establishes the communication links and
ensures the proper communication and syn-
chronization. From the user’s point of view, all
the coding is sequential; all the parallel aspects
are provided by the system.

In the object-oriented world, there has been
a push towards cataloging commonly occurring
program structures, called design patterns [1].
In effect, these patterns are templates. In the
parallel world, popular parallel programming
techniques, such as master/slave and pipelines,
have been known for years, and have been the
basis of a number of tools for automatically
constructing the structure of programs. There
are several parallel programming systems that
are based on exploiting these recurrent pat-
terns, such as [4, 6, 9, 10, 11, 31, 32]. All these

systems can be viewed as template-based.

There are important differences between
the template-based approach and other well-
known, high-level techniques for building par-
allel applications. A template encapsulates cer-
tain behavior in a parallel environment. A pro-
grammer using a template is concerned only
with its specified behavior. The actual imple-
mentation may vary from environment to en-
vironment depending on, among other things,
the architecture and the operating system. In
some ways, this is analogous to programming
with abstract data types, which provide well-
defined means for manipulating data structures

while hiding all the underlying implementation
details from the user.

Although other software engineering tech-
niques, such as macros and code libraries, also
provide high-level abstractions, the separation
of application code and parallelization code is
a key difference between templates and these
techniques. For example, to use macros or li-
brary functions, the programmer must insert
macro or function calls in the application code.
The use of templates, on the other hand, is
non-intrusive. The sequential code of the ap-
plication need not have any reference to the
templates it is attached to. This has impor-
tant implications for initial program develop-
ment as well as for the restructuring of parallel
applications.

New programming languages are another
commonly discussed technique for supporting
high-level abstractions for parallel program-
ming [2, 8]. Although the approach has some
advantages, a serious disadvantage is that a
programmer cannot make use of the existing
code for the sequential version of the appli-
cation. Some argue that parallel applications
should be written from scratch. This argument
is not consistent with the way complex tasks
are solved. Initially, the emphasis is on find-
ing a (sequential) solution to the task. It is
only when the solution begins to take a sig-
nificant amount of execution time that people
start thinking about parallelizing the applica-
tion. However, by this time, a large investment
has been made in the writing of the sequential
solution. In a template-based system, the pro-
gramimer can often reuse the existing sequential
legacy code.

3 A Brief Outline of the En-
terprise Model

Enterprise refined and extended the template-
based model used by FrameWorks. In Enter-
prise, an application can be viewed as a net-
work of modules. Each module consists of a
set of sequential procedures that interact with
each other via remote procedure calls. A re-

mote procedure call looks the same as a local
procedure call. Furthermore, the system han-
dles marshaling and unmarshaling of parame-
ters. Also, a remote call that receives a re-
ply from the called process need not block the
calling process. Instead, futures [20] are used
to delay blocking until the calling program at-
tempts to use the reply variable. To further
organize these modules into high-level paral-
lel structures, the system provides a library of
templates such as pipeline, recursive master-
slave, and divide-and-conquer. The system al-
lows composition as well as hierarchical refine-
ment to build applications that use several dif-
ferent templates. In this way, the user sim-
ply defines the application graph of sequential
modules and assigns templates to these mod-
ules (by using icons). The system then gen-
erates all the parallel code and allocates pro-
cesses to processors. The Enterprise environ-
ment provides tools for designing, coding, de-
bugging, performance monitoring, and tuning
of a parallel application [21, 25, 29, 30].

4 Desirable Characteristics
of Template-Based Mod-
els

As we gain more insight into how program-
mers develop parallel applications, and how
different template-based systems can be built,
we get a better understanding of characteris-
tics that should be (or could be) present in a
template-based system. In this section, we out-
line what we feel are the important characteris-
tics of the ideal template-based model. No tool
presently exists that supports all of these fea-
tures. The list is used in this paper to serve as a
benchmark for analyzing FrameWorks, Enter-
prise and other systems, and as a specification
for future systems.

4.1 Structuring the Parallelism

Template-based systems should allow the min-
imum possible restrictions on how the user can
structure the parallelism in their application.

This includes having properties such as:

1. Separation of Specification (Separa-
tion): This is the central feature of a
template-based system. It means that it
should be possible to specify the templates
(that is, the parallelization aspects of the
application) separately from the applica-
tion code. This characteristic is crucial for
rapid prototyping and performance tuning
of a parallel application. It also allows for
the application code and its parallelization
structures evolve in a relatively indepen-
dent manner.

2. Hierarchical Resolution of Paral-
lelism (Hierarchy): This allows the re-
finement of a component in a parallel
application graph by expanding it us-
ing the same model. That is, templates
can include other templates. Therefore,
there is no need to have separate mod-
els for “programming-in-the-large” and
“programming-in-the-small”.

3. Reuse via Composition (Reuse): It is
not sufficient to define some templates that
can be used in other templates. The mean-
ings of all templates should be context-
insensitive so that they can be used in
other templates.

The significance of separating sequential ap-
plication program components from the ways
in which these components interact has long
been recognized. In early systems, component
interaction was specified in separate text files
[12]. The advent of workstation technology
and graphical user interfaces (GUI) greatly en-
hanced the ease, efficiency and effectiveness of
specifying parallel structures [6, 10, 24]. Many
of the systems that employ a separation of spec-
ifications and code are based on the data-flow
model. Example systems are CODE [10], DGL
[22], LGDF [15] and Paralex [3]. Some of these
models also provide hierarchical resolution of
parallelism [10, 24]; others don’t [3, 15, 22].

Several models based on control-flow that ad-
dress the separation objective have emerged.
Example systems include CAPER [38], PIE
[32], and Parallel Utilities Library (PUL) [13].

However, separate specification-based parallel
computation models are also not limited to pro-
cedural programming languages. For example,
Cole’s algorithmic skeletons [14] and P3L [5]
are designed using the functional programming
model. Similarly, Strand uses logic program-
ming to design its templates [16].

Both FrameWorks and Enterprise attempted
to achieve separation by separating the
application-specific sequential programming
(programming model) from the specification
of the parallelism (meta-programming model).
Both tools allowed the user to express the
parallelism graphically, and to annotate the
resulting graph with sequential procedures.
However, it is often not possible to achieve
perfect independence; there are still inher-
ent dependencies between the two components.
For example, pointers and global variables
present in a sequential program can cause
problems when restructuring the program for
distributed-memory-based systems.

The above points illustrate that there are
flaws in the Enterprise model. Similar weak-
nesses exist in other template-based models.
The ideal orthogonal relationship between se-
quential code and parallel specifications is hard
to achieve since the needs of the programming
model and those of the meta-programming
model are sometimes conflicting.

4.2 Templates

To be useful, template-based systems must pro-
vide a powerful set of building blocks for con-
structing parallel applications. Some of the de-
sirable properties include:

1. Mutually Independent Templates
(Independence): This relates to reuse via
composition. It should be possible to com-
bine various templates with few or no ex-
ceptions.

2. Extendible Repertoire of Templates
(Exztendible): It should be possible to in-
tegrate more templates into the library of
templates.

3. Large Collection of Useful Templates
(Utility): The system should be useful
over a wide range of applications.

4. Open Systems (Open): It should be pos-
sible for the programmer to use templates,
or a lower-level mechanism, such as mes-
sage passing, for developing an applica-
tion. The absence of such a feature results
in a closed system in which the only ap-
plications that can be developed are those
whose required parallel structures match
the templates. This is a very difficult
requirement as it has significant implica-
tions for application development, debug-
ging and tuning.

FrameWorks and Enterprise provided a small
set of templates. These include (using the En-
terprise terminology): lines (pipelines), depart-
ments (one process distributing work to a het-
erogeneous collection of workers), divisions (ve-
cursive divide-and-conquer), and services (ve-
source processes that are accessible to all). The
components of these structures can be repli-
cated, with automatic distribution of parallel
work to the next available process. Enter-
prise extended FrameWorks to allow these tem-
plates to be hierarchically combined, allowing
the user to create complex parallel structures
quite quickly. Although these templates are
sufficient to build a number of interesting par-
allel applications, many important real-world
problems are more amenable to parallel struc-
tures not directly supported in FrameWorks or
Enterprise.

Neither FrameWorks nor Enterprise (nor any
other template-based model) allow users to cre-
ate their own templates. The lack of extendibil-
ity forces users either to use a possibly inappro-
priate parallel structure, or to abandon the tool
altogether.

4.3 Programming

Templates may impose constraints on how
users write sequential code.

1. Program Correctness (Correctness):
The system should offer some guaranteed

properties of correctness. For example,
deadlock-free, deterministic execution and
fault-tolerance are some desirable features.

2. Programming Language (Language):
The system should build on an existing
commonly-used language. Ideally, there
should be no changes to the syntax or the
semantics of the language. In addition
to facilitating reuse of existing sequential
code, this feature also makes it possible to
take advantage of existing expertise in se-
quential programming.

3. Language Non-Intrusiveness (Non-
Intrusiveness): A system may satisfy the
language objective, but force the user to
change sequential code to accommodate
limitations in the parallel programming
model. For example, to develop a paral-
lel application using a message-passing li-
brary, the user may have to appropriately
restructure the code and insert calls to the
message-passing library in the code. The
only way to eliminate this problem prop-
erly and satisfy the language constraint
is to have a compiler that automatically
parallelizes the code. Unfortunately, for
coarse-grained applications, the required
compiler technology does not yet exist.

FrameWorks extended the C programming
language to include new keywords to allow
communication and synchronization among
processes. Enterprise used compiler support to
do it automatically using futures. Consider a
call from a module A() to a module B():

Result = B(Paraml, Param2,
/* some other code */
Value = Result + 1;

The sequential semantics of such a call is that
A() calls B(), passing it N parameters, and
then blocks waiting for the return value(s) from
B() before resuming execution. Enterprise pre-
serves the effects of the sequential semantics
but allows A() and B() to execute concurrently.
When A() calls B(), the parameters to B() are
packaged into a message (marshaled) and sent

., ParamN);

to the process that executes B(). After call-
ing B(), A() continues with its execution until
it tries to access Result to calculate Value. If
B() has yet not completed execution, then A()
blocks until B() returns the Result. These so-
called futures significantly increase the concur-
rency without requiring any additional specifi-
cation from the user.

Although the idea of futures is attractive, it
causes some subtle changes to the semantics of
the programming language. For example, to
increase the parallelism in the application, the
user may need to make additional calls to par-
allel functions, possibly resulting in code that
looks inefficient if executed sequentially. As
well, the user needs to understand the blocking
semantics of futures, so that sufficient compu-
tational work can be done between creating and
accessing the future. Again, this runs counter
to familiar sequential programming.

Since Enterprise and FrameWorks assume a
distributed memory environment, data struc-
tures containing pointers cause problems.
When a user passes a pointer to the invoca-
tion of a parallel procedure, how much data
should be passed? In the sequential world, this
is not an issue; in the parallel world it is an
important performance issue. FrameWorks re-
quires the user to write additional code to pack-
age all the parameters to a parallel function
into a single structure to be passed. Enterprise
uses compiler support to automatically pack-
age most parameters, but requires all pointers
to include an additional size argument. Again,
this is a significant departure from the familiar
sequential model.

Unfortunately, by forcing as much of the C
semantics as possible on the Enterprise code,
the system gives up correctness. For example,
it is possible to alias a memory location con-
taining a future. Any access to a future should
cause the appropriate future semantics. How-
ever, aliases may not be properly detected by
the compiler, creating an incorrect program. In
general, it is impossible to solve the alias prob-
lem in C without sacrificing something (such as
efficiency, adding new keywords, or restricting
feature usage).

4.4 TUser Satisfaction

The system must satisfy a number of perfor-
mance constraints, both at program develop-
ment time and at run time. These include:

1. Execution Performance
(Performance): The maximum perfor-
mance possible, subject to the combi-
nation of templates chosen by the user,
should be achievable. There will always be
limitations to the achievable performance.
The complexity and interdependence of
components external to the system (com-
munication subsystem, operating system,
network, and so on) make it very difficult
to abstract and still attain the highest pos-
sible performance. Often, a solution gen-
erated by a high-level tool may not achieve
the same performance as a solution hand-
crafted by an expert. The tradeoff is better
software engineering and shorter develop-
ment time in exchange for possibly slower
execution performance.

2. Application Portability (Portability):
The tool should allow the user to port an
application to a number of different archi-
tectures. Some performance losses may be
expected for a poorly-chosen architecture,
but the program should still run.

3. Support Tools (Support): The system
should provide a complete set of design,
coding, debugging and monitoring tools
that support the template-based model.
These tools must support the same level
of abstraction as does the programming
model.

4. Tool Usability (Usability): The ideal
tool should have a high degree of usabil-
ity. It should be easy to learn and easy
to use. Usability assessments have been
neglected in the literature [40].

Enterprise has a simple interface that allows
it to use a variety of communication packages
such as PVM, ISIS and NMP. Enterprise can
be viewed as a software layer on top of, for
example, PVM. The question arises as to what

the user gains and loses by moving to a higher
level of abstraction.

There are two main goals of the Enterprise
system: to create a high-level programming en-
vironment that is easy to use, and to promote
code reuse by encapsulating parallel program-
ming code into templates. For example, Enter-
prise’s model allows the user to achieve separa-
tion of specification. The use of a pre-compiler
allows the Enterprise system to automatically
insert communication, parameter packing and
synchronization code into the user’s applica-
tion. In contrast with PVM, for example,
the user must explicitly address these issues
by inserting PVM library calls into the code
(thereby violating the non-intrusiveness objec-
tive). It is the user’s responsibility to structure
the code so that a compiler flag can be used to
include or exclude the parallel code.

Enterprise offers the user additional benefits.
For example, the model allows for the hier-
archical use of the templates, guaranteeing a
deadlock-free application. Also, the user has
the assurance that the generated code for the
specified structures is correct. Both points con-
tribute to the correctness objective.

In moving to a higher-level model such as En-
terprise, the user has lost something. Most no-
ticeable is the possible decrease in performance.
Message-passing libraries, such as PVM, allow
much more flexibility; users can easily tune
their systems to maximize performance. Fur-
thermore, PVM has a large support infrastruc-
ture that has resulted in the system being made
available on most major platforms (excellent
portability).

The choice between PVM and a higher-level
tool is not easy. The choice can be simplified
to a tradeoff between execution performance
and software engineering. High-level parallel
programming tools have the potential to en-
able users to build parallel applications more
quickly and reliably. In return, they may have
to accept slightly worse performance.

The metric most often used and abused in
the parallel computing literature is program
execution speedup. However, with the avail-
ability of relatively inexpensive multiprocessor

machines and the widespread use of networked
single-processor workstations, more and more
people are turning towards parallel computing.
For such users, a shorter learning curve, ease
of program design, development and debugging
are just as important as speedup. A tool that
quickly achieves a performance improvement,
even 1f it stops short of achieving the peak per-
formance, may be quite acceptable.

Two controlled experiments were conducted
to assess the usability of Enterprise system.
These experiments compared the usability of
Enterprise with two communication libraries
(PVM and NMP [26]) and one other high-level
parallel programming systems [39, 40]. Some of
the conclusions from the experiments included
the following:

1. Users were able to complete all the pro-
gramming tasks using all the systems un-
der examination.

2. Users wrote significantly less code (66 per-
cent) with Enterprise, compared with us-
ing message-passing libraries.

3. The PVM and NMP solutions each had
better performance (about 25 percent
faster).

4. Users were able to develop their first pro-
totype quickly using Enterprise. However,
they found it difficult to tune their solu-
tions for better performance.

5. The fact that users were constrained to de-
veloping their entire solution using tem-
plates of Enterprise was considered a sig-
nificant weakness as far as tuning the so-
lution was concerned.

Although template-based systems showed a lot
of promise in the experiments, users found that
writing PVM code, although cumbersome, was
straightforward after a bit of practice. They
found that tools like PVM provided them with
complete control over the application’s paral-
lelism so they could achieve maximal perfor-
mance.

5 A Next-Generation Tool

Templates represent a powerful abstraction
mechanism. We believe templates have the po-
tential to make as strong an impact on the
art of parallel programming as macros and
code libraries have. However, from our expe-
riences with FrameWorks and Enterprise, we
have learned a number of lessons that must
be remembered while developing new template-
based tools:

1. Open Systems: Enterprise provides a high-
level parallel programming model that the
user must use. There are no facilities
allowing the user to step back from the
model to access lower-level primitives to
achieve better performance, or to accom-
modate an application for which a suit-
able template is not available. For ex-
ample, even though Enterprise generates
PVM code, this code is hidden from the
user. There is no easy way to use Enter-
prise to generate a correct PVM program,
and then to incrementally tune this pro-
gram to achieve better performance. A
high-level template-based tool must allow
the user the possibility of accessing lower-
level primitives. Also, it should be possi-
ble to develop an application partially with
the use of templates and partially by using
low-level communication primitives [33].

2. Eztendibility: FrameWorks and Enter-
prise support a fixed number of templates.
There is no easy way for the programmers
to add templates to the system. An impor-
tant step towards enhancing the wutility of a
template-based model would be to design a
system that provides a standard interface
for attaching templates to the user code.
In such a system, it may be possible for the
user to develop new templates. As long as
the templates are mutually independent, it
should be possible to integrate them into
the rest of the system. This would result
in a system that is extendible and can sup-
port a large number of templates [37].

3. Portability: It is imperative to continue
building on top of existing, established

technology. Some de facto standards seem
to be emerging. For example, PVM (and
possibly MPI soon) is currently adequate
as the lowest-level building block. PICL
seems to be a popular choice for parallel
program instrumentation [17]. Given the
significant effort required to build a par-
allel programming system, it seems fool-
hardy to continue to invent, when one can
reuse.

. Language: Many parallel programming
tools make subtle changes to the seman-
tics of an existing sequential language. We
believe this is a mistake. Changing a
programming language’s semantics can in-
crease the user’s learning curve and result
in difficulties in understanding and debug-
ging parallel code.

. Importance of Compiler Technology: Our
research would greatly benefit from better
compiler technology. Following are some
reasons:

(a) Some of the semantic confusion in
Enterprise could be eliminated.

(b) Static analysis of the code can do
a better automatic job of code re-
organization to improve concurrency
and delay synchronization, thereby
improving performance.

(c) Compilers can uncover data depen-
dencies, possibly uncovering pro-
gramming errors at compile time
rather than at run time.

(d) Flow control analysis can identify
communication patterns that can as-
sist in the initial process-processor
mapping. (Orca, for example, uses
compile-time analysis to help dis-
tribute the data [7].)

6. Utiity: There are commonly occurring

patterns in other areas of parallel program-
ming such as parallel I/0O, shared memory
access, data distribution and alignment.
Work is in progress to provide templates
to allow code reuse in some of these areas

[28, 27].

7. Tradeoffs: Should we build a tool for
the inexperienced user or the experienced
user? For example, it is conceivable to
build an open and extendible system such
as the one outlined in item 1 and 2 above.
However, in such a system it may no longer
be possible to give the correctness guaran-
tees that Enterprise offers. The require-
ments of users vary with their skill and ex-
perience levels. For the former, simplicity
of the model and ease of use are the most
important considerations. For the latter,
performance is often the only metric that
matters.

6 Conclusions

Who are the potential users of parallel com-
puting technology? There will always be a
user community that uses parallel computing to
squeeze every last nanosecond of performance
out of a machine. We believe this group to
be a very small percentage of the potential
user community. Local area networks of work-
stations are commonplace and the popularity
of low-cost multiprocessor shared-memory ma-
chines is rapidly growing. However, few people
take advantage of the parallelism in these archi-
tectures. Many people want their programs to
run faster but are unwilling to invest the time
necessary to achieve this.

For most users, sequential program improve-
ment stops at the compiler level. Ideally, the
same should be true for coarse-grained paral-
lel program development (such as is seen with
vectorizing compilers). Given that compilation
techniques are still in their infancy for coarse-
grained applications, the next logical step is
to provide a tool that allows users to par-
allelize their application with minimal effort.
Template-based models offer real prospects of
making this a reality.

Rather than putting forward yet another
model for building parallel applications, this
paper was almed at consolidating an existing
approach to parallel programming. Usability
experiments of Enterprise have added a new
dimension to our understanding of how pro-

grammers with little or no experience in paral-
lel computing build their parallel applications.
We hope our experience in developing two such
models into working systems as well as results
of our experiments in estimating the usability
of parallel programming systems would be use-
ful to researchers and practitioners in this area.

We have identified several areas where ef-
fort is necessary to enhance the usability of
the template-based systems. Work on several
of these issues is in progress [27, 28, 33, 37].
Template-based techniques alone may not be
enough to provide an easy-to-use, high-level
parallel programming system that supports
code reuse and quick prototyping and restruc-
turing of parallel applications. However, we
believe that template-based techniques would
play a significant role in building the ideal par-
allel programming systems of the future.

Acknowledgments

The constructive comments from Ian Parsons,
Greg Wilson, and Stephen Siu are appreci-
ated. This research was conducted using grants
from the Natural Sciences and Engineering
Research Council of Canada (OGP8173 and
OGP0155467) and IBM Canada Ltd.

About the Authors

Ajit Singh is an Assistant Professor of Elec-
trical and Computer Engineering at the Uni-
versity of Waterloo. His research interests in-
clude parallel and distributed computing, and
database systems.

Jonathan Schaeffer is a Professor of Com-
puting Science at the University of Alberta. His
research interests include parallel programming
systems and artificial intelligence.

Duane Szafron is an Associate Professor of
Computing Science at the University of Al-
berta. His research interests include object-
oriented computing, programming environ-
ments and user interfaces. He received a Ph.D.

10

from the University of Waterloo and a B.Sc.
and M.Sc. from the University of Regina. His
Internet address is duane@cs.ualberta.ca.

References

[1] E. Gammaanad R. Helm, R. Johnson, and
J. Vlissides. “Design Patterns: Abstrac-
tion and Reuse of Object-Oriented De-
sign”. Addison-Wesley, 1995.

G. Andrews, R.A. Olsson, M.A. Coffin,
I. Elshoff, K. Nilsen, T. Purdin, and
G. Townsend. “An Overview of the SR
Language and Implementation”. ACM
Trans. on Prog. Languages and Systems,

10(1):51-86, 1988.

O. Babaoglu, L. Alvisi, A. Amoroso, and
R. Davoli. “Paralex: An Environment for
Parallel Programming in Distributed Sys-
tems”. Technical Report UB-LCS-91-01,
Department of Mathematics, University of
Bologna, Italy, 1991.

B. Bacci, M. Danelutto, S. Orlando,
S. Pelagatti, and M. Vanneschi. “P3L: A
Structured High Level Parallel Program-
ming Language and its Structured Sup-
port”. Technical Report HPL-PSC 93-55,
Pisa Science Centre, Italy, 1993.

B. Bacci, M. Danelutto, and S. Pelagatti.
“Resource Optimization via Structured
Parallel Programming”. In Programming
Environments for Massively Parallel Dis-
tributed Systems, pages 13-26, Birkhauser
Verlag, Basel, Switzerland, 1994.

A. Baguelin, J. Dongarra, G. Giest,
R. Manchek, and V. Sunderam. “Graphi-
cal Development Tools for Network-Based
Concurrent Computing”. In Supercomput-
ing’91, pages 435444, 1991.

[7] H. Bal and M. Kaashoek. “Object
Distribution in Orca using Compile-
Time and Run-Time Techniques”. In

Object-Oriented Programming Systems,
Languages and Applications (OOPSLA),
pages 162-177, 1993.

(8]

[10]

[11]

[15]

[16]

H. Bal, M. Kaashoek, and A. Tannen-
baum. “Orca: A Language for Paral-
le] Programming of Distributed Systems”.
IEEE Transactions on Software Engineer-

ing, 18(3):190-205, 1992.

A. Bartoli, P. Cosini, G. Dini, and C.A.
Prete. “Graphical Design of Distributed
Applications Through Reusable Compo-
nents”. IEEE Parallel and Distributed
Technology, 3(1):37-51, 1995.

J.C. Browne, M. Azam, and S. Sobek.
“CODE: A Unified Approach to Parallel
Programming”. IEEE Software, pages 10—
18, July 1989.

J.C. Browne, S. Hyder, J. Dongarra,
K. Moore, and P. Newton. “Visual
Programming and Debugging for Paral-
lel Computing”. IEEE Parallel and Dis-
tributed Technology, 3(1):75-83, 1995.

J.C. Browne, A. Tripathi, S. Fedak,
A. Adiga, and R. Kapur. “A Language for
Specification and Programming of Recon-
figurable Parallel Structures”. In Interna-

tional Conference on Parallel Processing,
pages 142-149, 1982.

L. Clarke, R. Fletcher, S. Trevin, R. Bruce,
and S. Chapple. “Reuse, Portability
and Parallel Libraries”. In Program-
ming Environments for Massively Paral-
lel Distributed Systems, pages 171-182,

Birkhauser Verlag, Basel, Switzerland,
1994.
M. Cole. Algorithmic Skeletons: Struc-

tured Management of Parallel Program-

ming. MIT Press, Cambridge, Mass.,
1989.
D.C. DiNucci and R.G. Babb II. “LGDF

Parallel Programming Model”. In IEEE
COMPCON, pages 102-107, 1989.

I. Foster and S. Taylor. “Strand: A Practi-
cal Parallel Programming Tool”. In North
American Conference on Logic Program-
ming, Cambridge, Mass., 1989. MIT Press.

11

[17]

[18]

[20]

[22]

G. Geist, M. Heath, B. Peyton, and
P. Worley. “PICL: A Portable Instru-
mented Communication Library”. Techni-
cal report ORNL/TM-11130, Mathemati-
cal Sciences Section, Oak Ridge National
Laboratory, 1990.

G. Geist and V. Sunderam. “Network-
Based Concurrent Computing on the
PVM System”. Concurrency: Practice
and Experience, 4(4):293-311, 1992.

M. Green and J. Schaeffer.
A Distributed Computer Animation Sys-
tem”. In Canadian Information Process-
ing Society, Edmonton, pages 305-310,

1987.

“Frameworks:

A.R. Halstead. “MultiLisp: A Language
for Concurrent Symbolic Computation”.
ACM Transactions on Programming Lan-

guages and Systems, 7(4):501-538, 1985.

P. Iglinski, S. MacDonald, D. Novillo,
I. Parsons, J. Schaeffer, D. Szafron, and
D. Woloschuk. “Enterprise User Manual,
Version 2.4”. Department of Computing
Science Technical Report, No. 95-02, 1995.

R. Jagannathan, A.R. Downing, W.T. Za-
umen, and R.K.S. Lee. “Dataflow Based
Technology for Coarse-Grain Multipro-
cessing on a Network of Workstations”. In
International Conference on Parallel Pro-
cessing, pages 209-216, August 1989.

S.J. Leffler, M.K. McKusick, M.J. Karels,
and J.S. Quarterman. “The Design and
Implementation of 4.3 BSD Unix Operat-
ing System”. Addison- Wesley Publishing
Company, Inc., 1990.

T.G. Lewis and Rudd W.G. “Architecture
of the Parallel Programming Support En-
vironment”. In IEEE COMPCON, pages
589-594, 1990.

G. Lobe, D. Szafron, and J. Schaetf-
fer. “The Enterprise User Interface”.
In TOOLS 11 (Technology of Object-
Oriented Languages and Systems), pages
215-229, 1994.

[26]

[27]

[28]

[29]

[30]

[33]

[34]

T. Marsland, T. Breitkreutz, and S. Sut-
phen. “A Network Multiprocessor for
Experiments in Parallelism”. Concur-
rency: Practice and Experience, 3(1):203-
219, 1991.

D. Novillo. “High-level Representations
for Distributed Shared Memory”. Depart-
ment of Computing Science, University of
Alberta, 1995. Internal report.

I. Parsons. “Templates for Parallel I/0”.
Department of Computing Science, Uni-
versity of Alberta, 1995. Internal report.

J. Schaefter and D. Szafron. “Software En-
gineering Considerations in the Construc-
tion of Parallel Programs”. In High Per-
formance Computing: Technology and Ap-
plications, pages 271-289, 1996.

J. Schaeffer, D. Szafron, G. Lobe, and
I. Parsons. “The Enterprise Model
for Developing Distributed Applications”.
IEEE Parallel and Distributed Technology,
1(3):85-96, 1993.

L. Schafers, C. Scheidler, and O. Kamer-
Fuhrmann. “TRAPPER: A Graphical
Programming Environment for Industrial
High-Performance Applications”. In Par-
allel Architectures and Languages Europe,

pages 403413, 1993.

Z. Segall and L. Rudolph. “PIE: A Pro-
gramming and Instrumentation Environ-
ment for Parallel Processing”. IEEE Soft-
ware, 2(6):22-37, 1985.

M.D. Simone. “Openness and Extendibil-
ity in High Level Parallel Programming
Systems”. Electrical and Computer En-
gineering Dept., Unwersity of Waterloo,
1995. Internal report.

A. Singh, J. Schaeffer, and M. Green.
“Structuring Distributed Algorithms in a
Workstation Environment: The Frame-
Works Approach”. In International Con-
ference on Parallel Processing, volume II,

pages 89-97, 1989.

12

[35]

[36]

[39]

[40]

A. Singh, J. Schaeffer, and M. Green. “A
Template-Based Tool for Building Appli-
cations in a Multicomputer Network En-
In D. Evans, G. Joubert,
and F. Peters, editors, Parallel Computing
89, pages 461-466. North-Holland, Ams-
terdam, 1989.

vironment”.

A. Singh, J. Schaeffer, and M. Green. “”A
Template-Based Approach to the Gener-
ation of Distributed Applications Using a
Network of Workstations””. IEEE Trans-
actions of Parallel and Distributed Sys-
tems, 2(1):52-67, January 1991.

S. Siu. “An Extendible Template-Based
System for Parallel Programming”. Elec-
trical and Computer Engineering Dept.,
Unwersity of Waterloo, 1995. Internal re-
port.

B. Sugla, J. Edmark, and B. Robinson.
“An Introduction to the CAPER Appli-
cation Programming Environment”. In
International Conference on Parallel Pro-
cessing, pages 107-111, Illinois, U.S.A.,
August 1989.

D. Szafron and J. Schaeffer. “Experi-
mentally Assessing the Usability of Par-
allel Programming Systems”. In Program-
ming Environments for Massively Paral-
lel Distributed Systems, pages 195-201,
Birkhauser Verlag, Basel, Switzerland,
1994.

D. Szafron and J. Schaeffer. “An Exper-
iment to Measure the Usability of Par-
allel Programming Systems”. Concur-

rency: Practice and Experience, 8(2):147-
166, 1996.

