
Views on Template-Based Parallel ProgrammingAjit Singh,1 Jonathan Schae�er,2 Duane Szafron,2asingh@etude.uwaterloo.ca, jonathan@cs.ualberta.ca, duane@cs.ualberta.ca1 University of Waterloo, 2 University of Alberta,Dept. of Electrical and Computer Eng., Dept. of Computing Science,Waterloo, Ontario, Edmonton, Alberta,Canada N2L 3G1 Canada T6G 2H1AbstractFor almost a decade we have been workingat developing and using template-based mod-els for coarse-grained parallel computing. Ourinitial system, FrameWorks, was positively re-ceived but had a number of shortcomings. TheEnterprise parallel programming environmentevolved out of this work, and now, after severalyears of experience with the system, its short-comings are becoming evident. This paper out-lines our experiences in developing and usingthe two parallel programming systems. Manyof our observations are relevant to other par-allel programming systems, even though theymay be based on di�erent assumptions. Al-though template-base models have the poten-tial for simplifying the complexities of parallelprogramming, they have yet to realize these ex-pectations for high-performance applications.1 IntroductionAlong with the growing interest in parallel anddistributed computing, there has been a corre-sponding increase in the development of mod-els, tools and systems for parallel program-ming. Consequently, practitioners in the areaare now faced with a somewhat di�cult chal-lenge: how to select parallel programming toolsthat will be appropriate for their applications.There is no easy answer. The decision is a func-tion of many parameters, including some thatare speci�c to the user and the computing en-

vironment.As is evident from the formation of usergroups such as the Parallel Tools Consortium,there is a concern in the community about thelack of post-development analysis and evalua-tion of the various tools and technologies thatare being proposed. Typically, researchers en-vision a new tool or technology, develop itand, depending on their initial experiences, re-port it in the literature. With few exceptions,long-term experiences with parallel program-ming systems and their relationships with sim-ilar systems are hardly ever reported.Many di�erent approaches have been takentowards the development of parallel program-ming models. These include developing a newprogramming language, building parallel com-puting features on top of existing common se-quential languages, building libraries for paral-lelization, and extending a sequential languagewith compiler directives or keywords. A rel-atively new alternative has begun to emergethat allows a programmer to bene�t from theexisting code and knowledge of a sequentialprogram, while minimizing the modi�cationsthat are required for parallelization. The pro-grammer provides a speci�cation of the par-allel structuring aspects of the application, inthe form of code annotations. One interest-ing approach to code annotation is to recog-nize that there are commonly occurring par-allel techniques. A parallel programming toolcan support these techniques by providing codeskeletons [14], or templates, that capture theparallel behavior. The user simply supplies the1



sequential application code (such as in PIE [32]and HeNCE [6]), and selects the templates tobe used from the collection of templates pro-vided by the system. The system then gener-ates all the parallel code for the application.Template-based models separate the speci�-cation of the parallel structuring aspects |such as synchronization, communication andprocess-to-processor mapping | from the ap-plication code that is to be parallelized. Thegoal here is to provide an easy approach for theinitial development and restructuring of paral-lel applications.This paper discusses our long-term experi-ences with two template-based parallel pro-gramming systems for coarse-grained paral-lelism. Our research began in 1986, when weused templates1 to experiment with di�erentparallel structures for a computer animationapplication [19]. We quickly realized that theapproach was more general, and could be usedto build a larger class of parallel applications.Building on this success, the FrameWorks par-allel programming tool was developed [34, 35,36]. Our initial experience with FrameWorkswas encouraging. However, for a number of rea-sons it was not possible to re�ne the system be-yond a certain point. Consequently, an entirelynew project, Enterprise, was initiated. Enter-prise is a template-based parallel programmingenvironment that o�ers a much wider range ofrelated tools for parallel program design, cod-ing, debugging and performance tuning [21, 25,29, 30]. It has been publicly available since1993 (http://web.cs.ualberta.ca/~enter).Several other parallel programming systemshave relied on techniques that are similar tothe approach we used, such as [4, 6, 9, 10, 11,31, 32]. Many of our results and experiencesare applicable to such systems, as well as toother types of high-level parallel programmingsystems.In this paper, we look at template-basedparallel programming models from two view-1It should be noted that we have used the term\template" (since 1986) to mean \prepackaged set ofapplication-independent characteristics for parallel pro-gramming". This has no intended relationship with theC++ templates that are used to build generic sequen-tial subprograms.

points. First, as the designers, we can ad-dress the di�culties in the design and imple-mentation of these tools. Second, we havehad considerable interaction with users de-veloping template-based parallel applications.Controlled experiments, which compared En-terprise with a number of tools including PVM,give insights into the strengths and weaknessesof the template approach. The result is that,although template-based models have tremen-dous potential for bridging the gap between se-quential and parallel code, there still remaina number of shortcomings that must be ad-dressed before the technology will be widelyused.Section 2 presents the motives for using thetemplate-based approach. Section 3 outlinesthe objectives for a template-based parallelprogramming tool, and discusses how well theseobjectives were met in FrameWorks and Enter-prise. Section 4 describes the requirements forfuture template-based tools. Finally, Section 5presents our conclusions.2 Template-basedProgrammingIn the context of parallel programming, a tem-plate represents a prepackaged set of charac-teristics that can fully or partially specify thenature of scheduling, communication, synchro-nization and processor bindings of an entity.Templates implement various types of interac-tions found in parallel systems, but with thekey components | the application-speci�c pro-cedures | unspeci�ed. A user provides theapplication-speci�c procedures, and the toolprovides the glue to bind it all together. Thetemplates abstract commonly occurring struc-tures and characteristics of parallel applica-tions, allowing users to develop parallel appli-cations in a quickly and easily.Consider developing a parallel applicationon a network of workstations. Parallel pro-gram development would require a signi�cantamount of time and e�ort if a low-level toolwere used (for example, Unix sockets [23] or2



a message-passing library such as PVM [18]).Further, the parallelismwould be explicit in theuser's code, increasing the complexity of theapplication code. Each time the programmerwanted to experiment with a di�erent parallelstructure for the application, additional pro-gramming e�ort would be required to rewritethe code. Moreover, such an e�ort would bereplicated, knowingly or unknowingly, by otherprogrammers while writing other applications.Template-based parallel programming sys-tems have attempted to address this situation.These systems provide skeletons (templates) ofcommonly occurring parallel structures. A usersimply provides sequential modules of code andselects the appropriate skeletons for structuringtheir parallel application. The tool automati-cally spawns the processes on available proces-sors, establishes the communication links andensures the proper communication and syn-chronization. From the user's point of view, allthe coding is sequential; all the parallel aspectsare provided by the system.In the object-oriented world, there has beena push towards cataloging commonly occurringprogram structures, called design patterns [1].In e�ect, these patterns are templates. In theparallel world, popular parallel programmingtechniques, such as master/slave and pipelines,have been known for years, and have been thebasis of a number of tools for automaticallyconstructing the structure of programs. Thereare several parallel programming systems thatare based on exploiting these recurrent pat-terns, such as [4, 6, 9, 10, 11, 31, 32]. All thesesystems can be viewed as template-based.There are important di�erences betweenthe template-based approach and other well-known, high-level techniques for building par-allel applications. A template encapsulates cer-tain behavior in a parallel environment. A pro-grammer using a template is concerned onlywith its speci�ed behavior. The actual imple-mentation may vary from environment to en-vironment depending on, among other things,the architecture and the operating system. Insome ways, this is analogous to programmingwith abstract data types, which provide well-de�ned means for manipulating data structures

while hiding all the underlying implementationdetails from the user.Although other software engineering tech-niques, such as macros and code libraries, alsoprovide high-level abstractions, the separationof application code and parallelization code isa key di�erence between templates and thesetechniques. For example, to use macros or li-brary functions, the programmer must insertmacro or function calls in the application code.The use of templates, on the other hand, isnon-intrusive. The sequential code of the ap-plication need not have any reference to thetemplates it is attached to. This has impor-tant implications for initial program develop-ment as well as for the restructuring of parallelapplications.New programming languages are anothercommonly discussed technique for supportinghigh-level abstractions for parallel program-ming [2, 8]. Although the approach has someadvantages, a serious disadvantage is that aprogrammer cannot make use of the existingcode for the sequential version of the appli-cation. Some argue that parallel applicationsshould be written from scratch. This argumentis not consistent with the way complex tasksare solved. Initially, the emphasis is on �nd-ing a (sequential) solution to the task. It isonly when the solution begins to take a sig-ni�cant amount of execution time that peoplestart thinking about parallelizing the applica-tion. However, by this time, a large investmenthas been made in the writing of the sequentialsolution. In a template-based system, the pro-grammer can often reuse the existing sequentiallegacy code.3 A Brief Outline of the En-terprise ModelEnterprise re�ned and extended the template-based model used by FrameWorks. In Enter-prise, an application can be viewed as a net-work of modules. Each module consists of aset of sequential procedures that interact witheach other via remote procedure calls. A re-3



mote procedure call looks the same as a localprocedure call. Furthermore, the system han-dles marshaling and unmarshaling of parame-ters. Also, a remote call that receives a re-ply from the called process need not block thecalling process. Instead, futures [20] are usedto delay blocking until the calling program at-tempts to use the reply variable. To furtherorganize these modules into high-level paral-lel structures, the system provides a library oftemplates such as pipeline, recursive master-slave, and divide-and-conquer. The system al-lows composition as well as hierarchical re�ne-ment to build applications that use several dif-ferent templates. In this way, the user sim-ply de�nes the application graph of sequentialmodules and assigns templates to these mod-ules (by using icons). The system then gen-erates all the parallel code and allocates pro-cesses to processors. The Enterprise environ-ment provides tools for designing, coding, de-bugging, performance monitoring, and tuningof a parallel application [21, 25, 29, 30].4 Desirable Characteristicsof Template-Based Mod-elsAs we gain more insight into how program-mers develop parallel applications, and howdi�erent template-based systems can be built,we get a better understanding of characteris-tics that should be (or could be) present in atemplate-based system. In this section, we out-line what we feel are the important characteris-tics of the ideal template-based model. No toolpresently exists that supports all of these fea-tures. The list is used in this paper to serve as abenchmark for analyzing FrameWorks, Enter-prise and other systems, and as a speci�cationfor future systems.4.1 Structuring the ParallelismTemplate-based systems should allow the min-imum possible restrictions on how the user canstructure the parallelism in their application.

This includes having properties such as:1. Separation of Speci�cation (Separa-tion): This is the central feature of atemplate-based system. It means that itshould be possible to specify the templates(that is, the parallelization aspects of theapplication) separately from the applica-tion code. This characteristic is crucial forrapid prototyping and performance tuningof a parallel application. It also allows forthe application code and its parallelizationstructures evolve in a relatively indepen-dent manner.2. Hierarchical Resolution of Paral-lelism (Hierarchy): This allows the re-�nement of a component in a parallelapplication graph by expanding it us-ing the same model. That is, templatescan include other templates. Therefore,there is no need to have separate mod-els for \programming-in-the-large" and\programming-in-the-small".3. Reuse via Composition (Reuse): It isnot su�cient to de�ne some templates thatcan be used in other templates. The mean-ings of all templates should be context-insensitive so that they can be used inother templates.The signi�cance of separating sequential ap-plication program components from the waysin which these components interact has longbeen recognized. In early systems, componentinteraction was speci�ed in separate text �les[12]. The advent of workstation technologyand graphical user interfaces (GUI) greatly en-hanced the ease, e�ciency and e�ectiveness ofspecifying parallel structures [6, 10, 24]. Manyof the systems that employ a separation of spec-i�cations and code are based on the data-owmodel. Example systems are CODE [10], DGL[22], LGDF [15] and Paralex [3]. Some of thesemodels also provide hierarchical resolution ofparallelism [10, 24]; others don't [3, 15, 22].Several models based on control-ow that ad-dress the separation objective have emerged.Example systems include CAPER [38], PIE[32], and Parallel Utilities Library (PUL) [13].4



However, separate speci�cation-based parallelcomputationmodels are also not limited to pro-cedural programming languages. For example,Cole's algorithmic skeletons [14] and P3L [5]are designed using the functional programmingmodel. Similarly, Strand uses logic program-ming to design its templates [16].Both FrameWorks and Enterprise attemptedto achieve separation by separating theapplication-speci�c sequential programming(programming model) from the speci�cationof the parallelism (meta-programming model).Both tools allowed the user to express theparallelism graphically, and to annotate theresulting graph with sequential procedures.However, it is often not possible to achieveperfect independence; there are still inher-ent dependencies between the two components.For example, pointers and global variablespresent in a sequential program can causeproblems when restructuring the program fordistributed-memory-based systems.The above points illustrate that there areaws in the Enterprise model. Similar weak-nesses exist in other template-based models.The ideal orthogonal relationship between se-quential code and parallel speci�cations is hardto achieve since the needs of the programmingmodel and those of the meta-programmingmodel are sometimes conicting.4.2 TemplatesTo be useful, template-based systems must pro-vide a powerful set of building blocks for con-structing parallel applications. Some of the de-sirable properties include:1. Mutually Independent Templates(Independence): This relates to reuse viacomposition. It should be possible to com-bine various templates with few or no ex-ceptions.2. Extendible Repertoire of Templates(Extendible): It should be possible to in-tegrate more templates into the library oftemplates.

3. Large Collection of Useful Templates(Utility): The system should be usefulover a wide range of applications.4. Open Systems (Open): It should be pos-sible for the programmer to use templates,or a lower-level mechanism, such as mes-sage passing, for developing an applica-tion. The absence of such a feature resultsin a closed system in which the only ap-plications that can be developed are thosewhose required parallel structures matchthe templates. This is a very di�cultrequirement as it has signi�cant implica-tions for application development, debug-ging and tuning.FrameWorks and Enterprise provided a smallset of templates. These include (using the En-terprise terminology): lines (pipelines), depart-ments (one process distributing work to a het-erogeneous collection of workers), divisions (re-cursive divide-and-conquer), and services (re-source processes that are accessible to all). Thecomponents of these structures can be repli-cated, with automatic distribution of parallelwork to the next available process. Enter-prise extended FrameWorks to allow these tem-plates to be hierarchically combined, allowingthe user to create complex parallel structuresquite quickly. Although these templates aresu�cient to build a number of interesting par-allel applications, many important real-worldproblems are more amenable to parallel struc-tures not directly supported in FrameWorks orEnterprise.Neither FrameWorks nor Enterprise (nor anyother template-based model) allow users to cre-ate their own templates. The lack of extendibil-ity forces users either to use a possibly inappro-priate parallel structure, or to abandon the toolaltogether.4.3 ProgrammingTemplates may impose constraints on howusers write sequential code.1. Program Correctness (Correctness):The system should o�er some guaranteed5



properties of correctness. For example,deadlock-free, deterministic execution andfault-tolerance are some desirable features.2. Programming Language (Language):The system should build on an existingcommonly-used language. Ideally, thereshould be no changes to the syntax or thesemantics of the language. In additionto facilitating reuse of existing sequentialcode, this feature also makes it possible totake advantage of existing expertise in se-quential programming.3. Language Non-Intrusiveness (Non-Intrusiveness): A system may satisfy thelanguage objective, but force the user tochange sequential code to accommodatelimitations in the parallel programmingmodel. For example, to develop a paral-lel application using a message-passing li-brary, the user may have to appropriatelyrestructure the code and insert calls to themessage-passing library in the code. Theonly way to eliminate this problem prop-erly and satisfy the language constraintis to have a compiler that automaticallyparallelizes the code. Unfortunately, forcoarse-grained applications, the requiredcompiler technology does not yet exist.FrameWorks extended the C programminglanguage to include new keywords to allowcommunication and synchronization amongprocesses. Enterprise used compiler support todo it automatically using futures. Consider acall from a module A() to a module B():Result = B( Param1, Param2, ..., ParamN );/* some other code */Value = Result + 1;The sequential semantics of such a call is thatA() calls B(), passing it N parameters, andthen blocks waiting for the return value(s) fromB() before resuming execution. Enterprise pre-serves the e�ects of the sequential semanticsbut allows A() and B() to execute concurrently.When A() calls B(), the parameters to B() arepackaged into a message (marshaled) and sent

to the process that executes B(). After call-ing B(), A() continues with its execution untilit tries to access Result to calculate Value. IfB() has yet not completed execution, then A()blocks until B() returns the Result. These so-called futures signi�cantly increase the concur-rency without requiring any additional speci�-cation from the user.Although the idea of futures is attractive, itcauses some subtle changes to the semantics ofthe programming language. For example, toincrease the parallelism in the application, theuser may need to make additional calls to par-allel functions, possibly resulting in code thatlooks ine�cient if executed sequentially. Aswell, the user needs to understand the blockingsemantics of futures, so that su�cient compu-tational work can be done between creating andaccessing the future. Again, this runs counterto familiar sequential programming.Since Enterprise and FrameWorks assume adistributed memory environment, data struc-tures containing pointers cause problems.When a user passes a pointer to the invoca-tion of a parallel procedure, how much datashould be passed? In the sequential world, thisis not an issue; in the parallel world it is animportant performance issue. FrameWorks re-quires the user to write additional code to pack-age all the parameters to a parallel functioninto a single structure to be passed. Enterpriseuses compiler support to automatically pack-age most parameters, but requires all pointersto include an additional size argument. Again,this is a signi�cant departure from the familiarsequential model.Unfortunately, by forcing as much of the Csemantics as possible on the Enterprise code,the system gives up correctness. For example,it is possible to alias a memory location con-taining a future. Any access to a future shouldcause the appropriate future semantics. How-ever, aliases may not be properly detected bythe compiler, creating an incorrect program. Ingeneral, it is impossible to solve the alias prob-lem in C without sacri�cing something (such ase�ciency, adding new keywords, or restrictingfeature usage).6



4.4 User SatisfactionThe system must satisfy a number of perfor-mance constraints, both at program develop-ment time and at run time. These include:1. Execution Performance(Performance): The maximum perfor-mance possible, subject to the combi-nation of templates chosen by the user,should be achievable. There will always belimitations to the achievable performance.The complexity and interdependence ofcomponents external to the system (com-munication subsystem, operating system,network, and so on) make it very di�cultto abstract and still attain the highest pos-sible performance. Often, a solution gen-erated by a high-level tool may not achievethe same performance as a solution hand-crafted by an expert. The tradeo� is bettersoftware engineering and shorter develop-ment time in exchange for possibly slowerexecution performance.2. Application Portability (Portability):The tool should allow the user to port anapplication to a number of di�erent archi-tectures. Some performance losses may beexpected for a poorly-chosen architecture,but the program should still run.3. Support Tools (Support): The systemshould provide a complete set of design,coding, debugging and monitoring toolsthat support the template-based model.These tools must support the same levelof abstraction as does the programmingmodel.4. Tool Usability (Usability): The idealtool should have a high degree of usabil-ity. It should be easy to learn and easyto use. Usability assessments have beenneglected in the literature [40].Enterprise has a simple interface that allowsit to use a variety of communication packagessuch as PVM, ISIS and NMP. Enterprise canbe viewed as a software layer on top of, forexample, PVM. The question arises as to what

the user gains and loses by moving to a higherlevel of abstraction.There are two main goals of the Enterprisesystem: to create a high-level programming en-vironment that is easy to use, and to promotecode reuse by encapsulating parallel program-ming code into templates. For example, Enter-prise's model allows the user to achieve separa-tion of speci�cation. The use of a pre-compilerallows the Enterprise system to automaticallyinsert communication, parameter packing andsynchronization code into the user's applica-tion. In contrast with PVM, for example,the user must explicitly address these issuesby inserting PVM library calls into the code(thereby violating the non-intrusiveness objec-tive). It is the user's responsibility to structurethe code so that a compiler ag can be used toinclude or exclude the parallel code.Enterprise o�ers the user additional bene�ts.For example, the model allows for the hier-archical use of the templates, guaranteeing adeadlock-free application. Also, the user hasthe assurance that the generated code for thespeci�ed structures is correct. Both points con-tribute to the correctness objective.In moving to a higher-level model such as En-terprise, the user has lost something. Most no-ticeable is the possible decrease in performance.Message-passing libraries, such as PVM, allowmuch more exibility; users can easily tunetheir systems to maximize performance. Fur-thermore, PVM has a large support infrastruc-ture that has resulted in the system being madeavailable on most major platforms (excellentportability).The choice between PVM and a higher-leveltool is not easy. The choice can be simpli�edto a tradeo� between execution performanceand software engineering. High-level parallelprogramming tools have the potential to en-able users to build parallel applications morequickly and reliably. In return, they may haveto accept slightly worse performance.The metric most often used and abused inthe parallel computing literature is programexecution speedup. However, with the avail-ability of relatively inexpensive multiprocessor7



machines and the widespread use of networkedsingle-processor workstations, more and morepeople are turning towards parallel computing.For such users, a shorter learning curve, easeof program design, development and debuggingare just as important as speedup. A tool thatquickly achieves a performance improvement,even if it stops short of achieving the peak per-formance, may be quite acceptable.Two controlled experiments were conductedto assess the usability of Enterprise system.These experiments compared the usability ofEnterprise with two communication libraries(PVM and NMP [26]) and one other high-levelparallel programming systems [39, 40]. Some ofthe conclusions from the experiments includedthe following:1. Users were able to complete all the pro-gramming tasks using all the systems un-der examination.2. Users wrote signi�cantly less code (66 per-cent) with Enterprise, compared with us-ing message-passing libraries.3. The PVM and NMP solutions each hadbetter performance (about 25 percentfaster).4. Users were able to develop their �rst pro-totype quickly using Enterprise. However,they found it di�cult to tune their solu-tions for better performance.5. The fact that users were constrained to de-veloping their entire solution using tem-plates of Enterprise was considered a sig-ni�cant weakness as far as tuning the so-lution was concerned.Although template-based systems showed a lotof promise in the experiments, users found thatwriting PVM code, although cumbersome, wasstraightforward after a bit of practice. Theyfound that tools like PVM provided them withcomplete control over the application's paral-lelism so they could achieve maximal perfor-mance.

5 A Next-Generation ToolTemplates represent a powerful abstractionmechanism. We believe templates have the po-tential to make as strong an impact on theart of parallel programming as macros andcode libraries have. However, from our expe-riences with FrameWorks and Enterprise, wehave learned a number of lessons that mustbe remembered while developing new template-based tools:1. Open Systems: Enterprise provides a high-level parallel programming model that theuser must use. There are no facilitiesallowing the user to step back from themodel to access lower-level primitives toachieve better performance, or to accom-modate an application for which a suit-able template is not available. For ex-ample, even though Enterprise generatesPVM code, this code is hidden from theuser. There is no easy way to use Enter-prise to generate a correct PVM program,and then to incrementally tune this pro-gram to achieve better performance. Ahigh-level template-based tool must allowthe user the possibility of accessing lower-level primitives. Also, it should be possi-ble to develop an application partially withthe use of templates and partially by usinglow-level communication primitives [33].2. Extendibility: FrameWorks and Enter-prise support a �xed number of templates.There is no easy way for the programmersto add templates to the system. An impor-tant step towards enhancing the utility of atemplate-based model would be to design asystem that provides a standard interfacefor attaching templates to the user code.In such a system, it may be possible for theuser to develop new templates. As long asthe templates are mutually independent, itshould be possible to integrate them intothe rest of the system. This would resultin a system that is extendible and can sup-port a large number of templates [37].3. Portability: It is imperative to continuebuilding on top of existing, established8



technology. Some de facto standards seemto be emerging. For example, PVM (andpossibly MPI soon) is currently adequateas the lowest-level building block. PICLseems to be a popular choice for parallelprogram instrumentation [17]. Given thesigni�cant e�ort required to build a par-allel programming system, it seems fool-hardy to continue to invent, when one canreuse.4. Language: Many parallel programmingtools make subtle changes to the seman-tics of an existing sequential language. Webelieve this is a mistake. Changing aprogramming language's semantics can in-crease the user's learning curve and resultin di�culties in understanding and debug-ging parallel code.5. Importance of Compiler Technology: Ourresearch would greatly bene�t from bettercompiler technology. Following are somereasons:(a) Some of the semantic confusion inEnterprise could be eliminated.(b) Static analysis of the code can doa better automatic job of code re-organization to improve concurrencyand delay synchronization, therebyimproving performance.(c) Compilers can uncover data depen-dencies, possibly uncovering pro-gramming errors at compile timerather than at run time.(d) Flow control analysis can identifycommunication patterns that can as-sist in the initial process-processormapping. (Orca, for example, usescompile-time analysis to help dis-tribute the data [7].)6. Utility: There are commonly occurringpatterns in other areas of parallel program-ming such as parallel I/O, shared memoryaccess, data distribution and alignment.Work is in progress to provide templatesto allow code reuse in some of these areas[28, 27].

7. Tradeo�s: Should we build a tool forthe inexperienced user or the experienceduser? For example, it is conceivable tobuild an open and extendible system suchas the one outlined in item 1 and 2 above.However, in such a system it may no longerbe possible to give the correctness guaran-tees that Enterprise o�ers. The require-ments of users vary with their skill and ex-perience levels. For the former, simplicityof the model and ease of use are the mostimportant considerations. For the latter,performance is often the only metric thatmatters.6 ConclusionsWho are the potential users of parallel com-puting technology? There will always be auser community that uses parallel computing tosqueeze every last nanosecond of performanceout of a machine. We believe this group tobe a very small percentage of the potentialuser community. Local area networks of work-stations are commonplace and the popularityof low-cost multiprocessor shared-memory ma-chines is rapidly growing. However, few peopletake advantage of the parallelism in these archi-tectures. Many people want their programs torun faster but are unwilling to invest the timenecessary to achieve this.For most users, sequential program improve-ment stops at the compiler level. Ideally, thesame should be true for coarse-grained paral-lel program development (such as is seen withvectorizing compilers). Given that compilationtechniques are still in their infancy for coarse-grained applications, the next logical step isto provide a tool that allows users to par-allelize their application with minimal e�ort.Template-based models o�er real prospects ofmaking this a reality.Rather than putting forward yet anothermodel for building parallel applications, thispaper was aimed at consolidating an existingapproach to parallel programming. Usabilityexperiments of Enterprise have added a newdimension to our understanding of how pro-9



grammers with little or no experience in paral-lel computing build their parallel applications.We hope our experience in developing two suchmodels into working systems as well as resultsof our experiments in estimating the usabilityof parallel programming systems would be use-ful to researchers and practitioners in this area.We have identi�ed several areas where ef-fort is necessary to enhance the usability ofthe template-based systems. Work on severalof these issues is in progress [27, 28, 33, 37].Template-based techniques alone may not beenough to provide an easy-to-use, high-levelparallel programming system that supportscode reuse and quick prototyping and restruc-turing of parallel applications. However, webelieve that template-based techniques wouldplay a signi�cant role in building the ideal par-allel programming systems of the future.AcknowledgmentsThe constructive comments from Ian Parsons,Greg Wilson, and Stephen Siu are appreci-ated. This research was conducted using grantsfrom the Natural Sciences and EngineeringResearch Council of Canada (OGP8173 andOGP0155467) and IBM Canada Ltd.About the AuthorsAjit Singh is an Assistant Professor of Elec-trical and Computer Engineering at the Uni-versity of Waterloo. His research interests in-clude parallel and distributed computing, anddatabase systems.Jonathan Schae�er is a Professor of Com-puting Science at the University of Alberta. Hisresearch interests include parallel programmingsystems and arti�cial intelligence.Duane Szafron is an Associate Professor ofComputing Science at the University of Al-berta. His research interests include object-oriented computing, programming environ-ments and user interfaces. He received a Ph.D.

from the University of Waterloo and a B.Sc.and M.Sc. from the University of Regina. HisInternet address is duane@cs.ualberta.ca.References[1] E. Gammaanad R. Helm, R. Johnson, andJ. Vlissides. \Design Patterns: Abstrac-tion and Reuse of Object-Oriented De-sign". Addison-Wesley, 1995.[2] G. Andrews, R.A. Olsson, M.A. Co�n,I. Elsho�, K. Nilsen, T. Purdin, andG. Townsend. \An Overview of the SRLanguage and Implementation". ACMTrans. on Prog. Languages and Systems,10(1):51{86, 1988.[3] O. Babaoglu, L. Alvisi, A. Amoroso, andR. Davoli. \Paralex: An Environment forParallel Programming in Distributed Sys-tems". Technical Report UB-LCS-91-01,Department of Mathematics, University ofBologna, Italy, 1991.[4] B. Bacci, M. Danelutto, S. Orlando,S. Pelagatti, and M. Vanneschi. \P3L: AStructured High Level Parallel Program-ming Language and its Structured Sup-port". Technical Report HPL-PSC 93-55,Pisa Science Centre, Italy, 1993.[5] B. Bacci, M. Danelutto, and S. Pelagatti.\Resource Optimization via StructuredParallel Programming". In ProgrammingEnvironments for Massively Parallel Dis-tributed Systems, pages 13{26, BirkhauserVerlag, Basel, Switzerland, 1994.[6] A. Baguelin, J. Dongarra, G. Giest,R. Manchek, and V. Sunderam. \Graphi-cal Development Tools for Network-BasedConcurrent Computing". In Supercomput-ing'91, pages 435{444, 1991.[7] H. Bal and M. Kaashoek. \ObjectDistribution in Orca using Compile-Time and Run-Time Techniques". InObject-Oriented Programming Systems,Languages and Applications (OOPSLA),pages 162{177, 1993.10



[8] H. Bal, M. Kaashoek, and A. Tannen-baum. \Orca: A Language for Paral-lel Programming of Distributed Systems".IEEE Transactions on Software Engineer-ing, 18(3):190{205, 1992.[9] A. Bartoli, P. Cosini, G. Dini, and C.A.Prete. \Graphical Design of DistributedApplications Through Reusable Compo-nents". IEEE Parallel and DistributedTechnology, 3(1):37{51, 1995.[10] J.C. Browne, M. Azam, and S. Sobek.\CODE: A Uni�ed Approach to ParallelProgramming". IEEE Software, pages 10{18, July 1989.[11] J.C. Browne, S. Hyder, J. Dongarra,K. Moore, and P. Newton. \VisualProgramming and Debugging for Paral-lel Computing". IEEE Parallel and Dis-tributed Technology, 3(1):75{83, 1995.[12] J.C. Browne, A. Tripathi, S. Fedak,A. Adiga, and R. Kapur. \A Language forSpeci�cation and Programming of Recon-�gurable Parallel Structures". In Interna-tional Conference on Parallel Processing,pages 142{149, 1982.[13] L. Clarke, R. Fletcher, S. Trevin, R. Bruce,and S. Chapple. \Reuse, Portabilityand Parallel Libraries". In Program-ming Environments for Massively Paral-lel Distributed Systems, pages 171{182,Birkhauser Verlag, Basel, Switzerland,1994.[14] M. Cole. Algorithmic Skeletons: Struc-tured Management of Parallel Program-ming. MIT Press, Cambridge, Mass.,1989.[15] D.C. DiNucci and R.G. Babb II. \LGDFParallel Programming Model". In IEEECOMPCON, pages 102{107, 1989.[16] I. Foster and S. Taylor. \Strand: A Practi-cal Parallel Programming Tool". In NorthAmerican Conference on Logic Program-ming, Cambridge, Mass., 1989.MIT Press.

[17] G. Geist, M. Heath, B. Peyton, andP. Worley. \PICL: A Portable Instru-mented Communication Library". Techni-cal report ORNL/TM-11130, Mathemati-cal Sciences Section, Oak Ridge NationalLaboratory, 1990.[18] G. Geist and V. Sunderam. \Network-Based Concurrent Computing on thePVM System". Concurrency: Practiceand Experience, 4(4):293{311, 1992.[19] M. Green and J. Schae�er. \Frameworks:A Distributed Computer Animation Sys-tem". In Canadian Information Process-ing Society, Edmonton, pages 305{310,1987.[20] A.R. Halstead. \MultiLisp: A Languagefor Concurrent Symbolic Computation".ACM Transactions on Programming Lan-guages and Systems, 7(4):501{538, 1985.[21] P. Iglinski, S. MacDonald, D. Novillo,I. Parsons, J. Schae�er, D. Szafron, andD. Woloschuk. \Enterprise User Manual,Version 2.4". Department of ComputingScience Technical Report, No. 95-02, 1995.[22] R. Jagannathan, A.R. Downing, W.T. Za-umen, and R.K.S. Lee. \Dataow BasedTechnology for Coarse-Grain Multipro-cessing on a Network of Workstations". InInternational Conference on Parallel Pro-cessing, pages 209{216, August 1989.[23] S.J. Le�er, M.K. McKusick, M.J. Karels,and J.S. Quarterman. \The Design andImplementation of 4.3 BSD Unix Operat-ing System". Addison-Wesley PublishingCompany, Inc., 1990.[24] T.G. Lewis and Rudd W.G. \Architectureof the Parallel Programming Support En-vironment". In IEEE COMPCON, pages589{594, 1990.[25] G. Lobe, D. Szafron, and J. Schaef-fer. \The Enterprise User Interface".In TOOLS 11 (Technology of Object-Oriented Languages and Systems), pages215{229, 1994.11



[26] T. Marsland, T. Breitkreutz, and S. Sut-phen. \A Network Multiprocessor forExperiments in Parallelism". Concur-rency: Practice and Experience, 3(1):203{219, 1991.[27] D. Novillo. \High-level Representationsfor Distributed Shared Memory". Depart-ment of Computing Science, University ofAlberta, 1995. Internal report.[28] I. Parsons. \Templates for Parallel I/O".Department of Computing Science, Uni-versity of Alberta, 1995. Internal report.[29] J. Schae�er and D. Szafron. \Software En-gineering Considerations in the Construc-tion of Parallel Programs". In High Per-formance Computing: Technology and Ap-plications, pages 271{289, 1996.[30] J. Schae�er, D. Szafron, G. Lobe, andI. Parsons. \The Enterprise Modelfor Developing Distributed Applications".IEEE Parallel and Distributed Technology,1(3):85{96, 1993.[31] L. Schafers, C. Scheidler, and O. Kamer-Fuhrmann. \TRAPPER: A GraphicalProgramming Environment for IndustrialHigh-Performance Applications". In Par-allel Architectures and Languages Europe,pages 403{413, 1993.[32] Z. Segall and L. Rudolph. \PIE: A Pro-gramming and Instrumentation Environ-ment for Parallel Processing". IEEE Soft-ware, 2(6):22{37, 1985.[33] M.D. Simone. \Openness and Extendibil-ity in High Level Parallel ProgrammingSystems". Electrical and Computer En-gineering Dept., University of Waterloo,1995. Internal report.[34] A. Singh, J. Schae�er, and M. Green.\Structuring Distributed Algorithms in aWorkstation Environment: The Frame-Works Approach". In International Con-ference on Parallel Processing, volume II,pages 89{97, 1989.

[35] A. Singh, J. Schae�er, and M. Green. \ATemplate-Based Tool for Building Appli-cations in a Multicomputer Network En-vironment". In D. Evans, G. Joubert,and F. Peters, editors, Parallel Computing89, pages 461{466. North-Holland, Ams-terdam, 1989.[36] A. Singh, J. Schae�er, and M. Green. \"ATemplate-Based Approach to the Gener-ation of Distributed Applications Using aNetwork of Workstations"". IEEE Trans-actions of Parallel and Distributed Sys-tems, 2(1):52{67, January 1991.[37] S. Siu. \An Extendible Template-BasedSystem for Parallel Programming". Elec-trical and Computer Engineering Dept.,University of Waterloo, 1995. Internal re-port.[38] B. Sugla, J. Edmark, and B. Robinson.\An Introduction to the CAPER Appli-cation Programming Environment". InInternational Conference on Parallel Pro-cessing, pages 107{111, Illinois, U.S.A.,August 1989.[39] D. Szafron and J. Schae�er. \Experi-mentally Assessing the Usability of Par-allel Programming Systems". In Program-ming Environments for Massively Paral-lel Distributed Systems, pages 195{201,Birkhauser Verlag, Basel, Switzerland,1994.[40] D. Szafron and J. Schae�er. \An Exper-iment to Measure the Usability of Par-allel Programming Systems". Concur-rency: Practice and Experience, 8(2):147{166, 1996.
12


