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es thetransposition table at the heart of the parallel work s
heduling. The s
heme results inless syn
hronization overhead, less pro
essor idle time, and less redundant sear
h e�ort.Measurements on a 128-pro
essor parallel ma
hine show that the s
heme a
hieves 
lose-to-linear speedups; for large problems the speedups are even superlinear due to bettermemory usage. On the same ma
hine, the algorithm is 1.6 to 12.9 times faster thantraditional work-stealing-based s
hemes.Keywords: distributed sear
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heduling and a preliminary analysis were originally presentedin the Pro
eedings of the AAAI National Conferen
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1 Introdu
tionMany appli
ations heuristi
ally sear
h a state spa
e to solve a problem. These appli
ationsrange from logi
 programming to pattern re
ognition, and from theorem proving to 
hessplaying. A
hieving high performan
e, both in terms of solution quality and exe
ution speed,is of great importan
e for many sear
h algorithms, su
h as real-time sear
h and any-timealgorithms.Often, sear
h algorithms re
ursively de
ompose a state into su

essor states. If thesu

essor states are independent of ea
h other, they 
an be sear
hed in parallel. A typi
als
enario is to allo
ate a portion of the sear
h spa
e to ea
h pro
essor in a parallel 
omputer.A pro
essor is assigned a set of states to sear
h, performs the sear
hes, and reports ba
k theresults. During the sear
hes, ea
h pro
essor maintains a list of work yet to be 
ompleted(the work queue). When a pro
essor 
ompletes all its assigned work, it 
an be pro-a
tive andattempt to a
quire additional work from busy pro
essors, rather than sit idle. This approa
his 
alled work stealing.In its basi
 form, work stealing is a 
lean and simple approa
h. Often, however, appli
ation-spe
i�
 heuristi
s and sear
h enhan
ements introdu
e interdependen
ies between states,making eÆ
ient parallelization a mu
h more 
hallenging task. One of the most impor-tant sear
h enhan
ements is the transposition table, a large 
a
he in whi
h newly expandedstates are stored [36℄. The table has many bene�ts, in
luding preventing the expansion ofpreviously en
ountered states, move ordering, and tightening the sear
h bounds. The trans-position table is parti
ularly useful when a state 
an have multiple prede
essors (i.e., whenthe sear
h spa
e is a graph rather than a tree). The basi
 tree-based re
ursive node expan-sion strategy would expand states with multiple prede
essors multiple times. A transpositiontable 
an result in time savings of more than a fa
tor 10, depending on the appli
ation [27℄.Unfortunately, transposition tables are diÆ
ult to implement eÆ
iently in parallel sear
h2



programs that run on distributed-memory ma
hines. Usually, the transposition table ispartitioned among the lo
al memories of the pro
essors (for example, the distributed 
hessprograms Zugzwang [13℄ and ?So
rates [17℄ partition the table). Before a pro
essor expandsa node, it �rst does a remote lookup: it sends a message to the pro
essor that manages theentry and then waits for the reply. This 
an result in sending many thousands of messagesper se
ond, introdu
ing a large 
ommuni
ation overhead. Moreover, ea
h pro
essor wastesmu
h time waiting for the results of remote lookups. The 
ommuni
ation overhead 
an beredu
ed (e.g., by sending fewer messages), but this usually in
reases the size of the sear
htree that needs to be explored. Extensive experimentation may be required to �nd the\right" amount of 
ommuni
ation to maximize performan
e.In this paper, we dis
uss a di�erent approa
h for implementing distributed transpo-sition tables, 
alled Transposition-Table-Driven Work S
heduling (or Transposition-DrivenS
heduling, TDS, for short). The idea is to integrate the parallel sear
h algorithm and thetransposition table me
hanism: drive the work s
heduling by the transposition-table a

esses.The state to be expanded is migrated to the pro
essor that may 
ontain the 
orrespondingtransposition-table entry. This pro
essor performs the lo
al table lookup to see whether thestate has already been sear
hed. If this is not the 
ase, or if the state has not been sear
heddeeply enough, the state is stored in the transposition table and in the lo
al work queue forexpansion later. The re
eiver thus is responsible for further expansion (sear
h) of the state.TDS eagerly pushes work where traditional s
hemes lazily steal work. Although thisapproa
h may seem 
ounterintuitive due to the frequent migration of work, it has importantadvantages:1. All 
ommuni
ation is asyn
hronous (nonblo
king). A pro
essor expands a state andpushes its 
hildren to their home pro
essors, where they are entered into the transpo-sition table and in the work queue. After sending the messages the pro
essor 
ontinueswith the next pie
e of work. Pro
essors never have to wait for the results of remote3



lookups.2. The asyn
hronous nature of TDS allows 
ombining multiple pie
es of work into a single,large network message. This optimization redu
es the 
ommuni
ation overhead, sin
eless time is spent in the proto
ol sta
k of the network software.3. The network laten
y is hidden by overlapping 
ommuni
ation and 
omputation. Thislaten
y hiding is e�e
tive as long as there is enough bandwidth in the network to
ope with all the asyn
hronous messages. With modern high-speed networks su
hbandwidth usually is amply available.4. Assuming the table is large enough to 
a
he all visited states, TDS guarantees thatno redundant sear
h e�ort is performed. If a state has multiple parents, the state issear
hed only on
e.The idea of transposition-driven s
heduling 
an apply to a variety of sear
h algorithms.In this paper we des
ribe the algorithm and present performan
e results for single-agent1sear
h (IDA* [20℄). We have implemented TDS on a large-s
ale 
luster 
omputer 
onsistingof Pentium Pro PCs 
onne
ted by a Myrinet network. The performan
e of this algorithm is
ompared with the traditional work stealing s
heme. Performan
e measurements on 128 pro-
essors for several appli
ations show that TDS is 1.6 to 12.9 times faster than work-stealing-based approa
hes, and thus outperforms work stealing by a large margin. Moreover, TDSs
ales mu
h better to large numbers of pro
essors. On 128 pro
essors, TDS is 122 to 138times faster than on a single pro
essor, while the work stealing algorithm obtains speedupsof only 10 to 79. TDS 
an exploit the in
reasing transposition table size to de
rease thesear
h e�ort and therefore sometimes even a
hieves superlinear speedups, espe
ially for hardsear
h problems that require large run times.1Unfortunately, the term \agent" has multiple meanings. In this arti
le, \agent" refers to the type oftree being sear
hed, not to the pro
essor sear
hing the tree.4



In traditional parallel sear
h algorithms, the algorithm revolved around the work queues,with other enhan
ements, su
h as the transposition table, added in as an afterthought. WithTDS, the transposition table is at the heart of the algorithm, re
ognizing that the sear
hspa
e really is a graph, not a tree. The result is a simple parallel sear
h algorithm thata
hieves high performan
e.The main 
ontribution of this paper is to show how e�e
tive the new approa
h is forsingle-agent sear
h. We dis
uss in detail how TDS 
an be implemented eÆ
iently and weexplain why it works so well 
ompared to work stealing. The rest of this paper is organized asfollows. First, we give some ba
kground information on (parallel) IDA* and dis
uss relatedwork. Then, we des
ribe the transposition-driven s
heduling approa
h and dis
uss severalof its implementation issues. Next, we evaluate the performan
e of the new approa
h, and
ompare TDS to traditional work-stealing based implementations of IDA*. We analyze thesensitivity to bandwidth, laten
y, and overhead of the network. Finally, we summarize the
ontributions of this work.2 Ba
kground and related workAlthough the idea of TDS is not limited to the IDA* sear
h algorithm, we use IDA* for ourexperiments. Below, we will des
ribe the IDA* sear
h algorithm and the transposition table,and how they are traditionally implemented to run on a distributed system. People familiarwith these 
on
epts 
an skip the remainder of this se
tion.2.1 Sequential IDA*Iterative Deepening A* (IDA*) [20℄ is used for sear
hing single-agent state-spa
es like thoseof the 15-puzzle (sliding-tile puzzle), route planners, optimizing s
hedulers, and Rubik's
ube. The obje
tive is to �nd the shortest solution path from a given problem position to5



28

28 30

2729
result = 29

result = 30bound = 28

bound = 27

bound = 26Figure 1: One IDA* iteration.a target position (or one out of a number of target positions). IDA* is a memory-eÆ
ientvariant of A* [26℄. IDA* sear
hes a sear
h tree, where the nodes in the tree represent states(in pra
ti
e, the terms state, node, and position are used inter
hangeably). Verti
es representpossible state transitions; for example, in games, the 
hildren of a node are those positionsthat 
an be rea
hed by a legal move, a

ording to the rules of the game.IDA* repeatedly des
ends the sear
h tree, starting from the root position. Ea
h iteration,the tree is sear
hed to an in
reased depth, until a solution is found.An example of an IDA* iteration is shown in Figure 1. The tree is traversed depth �rst,left to right. Ea
h node is sear
hed with a sear
h bound that 
ontrols the maximum sear
hdepth. The sear
h bound is de
reased by 1; the 
ost to go from one state to another. Someappli
ations (like the traveling-salesman problem) use a non-unity 
ost fun
tion. A node
an be evaluated using an evaluation fun
tion. In the �gure, the numbers inside the 
ir
lesrepresent evaluation values. The evaluation fun
tion examines the position and returns alower bound on the number of moves required to rea
h a target state. If the evaluation valueof a node ex
eeds its sear
h bound, it is not possible to rea
h the target state within themaximum number of moves left, and the subtree below the node is pruned. Otherwise, thenode is expanded and its 
hildren are (re
ursively) sear
hed.In the example, the root is initially sear
hed with a sear
h bound of 28. Sin
e its eval-uation value does not ex
eed its sear
h bound, the root is expanded and its �rst 
hild is6



FUNCTION IDA(Root) : INTEGER
NewBound := Evaluate(Root);

REPEAT
OldBound := NewBound;
NewBound := Search(Root, NewBound);

UNTIL OldBound = NewBound;

RETURN NewBound;
END

FUNCTION Search(Node, Bound) : INTEGER
MinDist := Evaluate(Node);

IF MinDist <= Bound AND NOT IsTarget(Node) THEN
MinDist := INFINITY;
Child := FirstChild(Node);

REPEAT
MinDist := MIN(MinDist, Search(Child, Bound � 1) + 1);
Child := NextSibling(Child);

UNTIL Child = NULL OR MinDist = Bound;
END

RETURN MinDist;
END Figure 2: The sequential IDA* sear
h algorithm.sear
hed with bound 27. Here the evaluation value (29) ex
eeds the sear
h bound, and thenode is pruned. The sear
h is 
ontinued at the next 
hild. Sin
e the evaluation value of thisnode does not ex
eed the sear
h bound, its 
hildren are sear
hed too.IDA* returns a sear
h result for ea
h node that is visited in the tree. The sear
h resultdenotes the new minimum solution length, and is returned to the parent of the node. Thesear
h result of a pruned node equals its evaluation value. The sear
h result of an expandednode is obtained by taking the minimum of its 
hildren's sear
h results and adding 1 (a
-
ounting for the move from the parent to the 
hild). The �gure shows the sear
h resultsfor the expanded nodes. The sear
h result of the root equals 30, stating that the minimalsolution length is 30. The algorithm will start a new iteration with sear
h bound 30; thistree will be deeper as the one shown in the �gure. New iterations are started as long as theroot's sear
h result ex
eeds its sear
h bound; this indi
ates that no solution was found sofar. The pseudo 
ode for the IDA* algorithm is shown in Figure 2.The evaluation fun
tion plays an important role during the sear
h. To guarantee that7



IDA* will �nd a shortest solution, the evaluation fun
tion must not overestimate the distan
eto the target. Su
h an evaluation fun
tion is said to be admissible. A well-known exampleof an admissible evaluation fun
tion is the Manhattan distan
e for the sliding-tile puzzle,whi
h sums the distan
es between ea
h tile's 
urrent position and the tile's target position.To prune as mu
h work as possible, the evaluation fun
tion should estimate the minimumsolution length as a

urately as possible, but must not overestimate the solution length ifminimal solutions are desired.2.2 Parallel IDA*To de
rease the sear
h time, one 
an sear
h an IDA*-tree in parallel. Numerous parallelversions of IDA* have appeared in the literature. Most algorithms use task distributions
hemes that partition the sear
h tree over the available pro
essors [29℄. Task distribution
an be simpli�ed by expanding the tree in a breadth-�rst fashion until the number of stateson the sear
h frontier mat
hes the number of pro
essors [23℄. This 
an 
ause load balan
ingproblems (the sear
h e�ort required for a state varies widely), implying that enhan
ements,su
h as work stealing, are ne
essary for high performan
e. A di�erent approa
h is ParallelWindow Sear
h (PWS) [28℄, where ea
h pro
essor is given a di�erent IDA* sear
h bound forits sear
h. All pro
essors sear
h the same tree, albeit to di�erent depths. Some pro
essorsmay sear
h the tree with a sear
h bound that is too high. Sin
e sequential IDA* stops sear
h-ing after using the right sear
h bound, PWS results in mu
h wasted work. Asyn
hronousIDA* (AIDA*) [31℄ uses a 
ombination of a data partitioning s
heme and work stealing, andallows pro
essors to sear
h to di�erent depths 
on
urrently.All these s
hemes essentially 
onsidered only the basi
 IDA* algorithm, without impor-tant sear
h algorithm enhan
ements that signi�
antly redu
e the sear
h tree size (su
h astransposition tables).IDA* uses less memory than A*. This 
omes at the expense of repeatedly expanding8



some states: a state 
an be expanded again in a subsequent iteration. The simple formulationof IDA* does not in
lude the dete
tion of dupli
ate states (transpositions), su
h as a 
y
le,or transposing into a state rea
hed by a di�erent sequen
e of state transitions. Treatingthe sear
h spa
e as a tree, while in fa
t it is a graph, leads to dupli
ated sear
h of thesubtree below a transposition. The transposition table is a 
onvenient me
hanism for usingmemory to solve these sear
h ineÆ
ien
ies, both in single-agent [30℄ and two-agent [36℄ sear
halgorithms. There are other methods, su
h as �nite state ma
hines [38℄, but they tend to benot as generally appli
able or as powerful as transposition tables.2.3 The transposition tableA transposition table is a large (possibly set-asso
iative) 
a
he that stores intermediatesear
h results. Ea
h time a state is to be sear
hed, the table is 
he
ked to see whether ithas been sear
hed before. If the state is in the table, the table entry 
ontains a value thatdenotes a lower bound on the number of moves required to rea
h the target state. If thelower bound is greater than the sear
h bound of the node, the state and the subtree belowit 
an be pruned. If the state is not in the table, or if the lower bound in the table is notsuÆ
ient to prune the state, then the sear
h engine examines the su

essors of the statere
ursively, storing the sear
h results into the transposition table.Indexing the transposition table is usually done by hashing the state to a large number(usually 64 bits or more) 
alled the signature [39℄. The information in the table depends onthe sear
h algorithm. For the IDA* algorithm, the table entry 
ontains a lower bound onthe solution length. In addition, ea
h entry may 
ontain information used by table entryrepla
ement algorithms, su
h as the e�ort (number of nodes sear
hed) to 
ompute the entry.
9



2.4 Distributed transposition tablesIn parallel sear
h programs the transposition table is typi
ally shared among all pro
esses,be
ause a position analyzed by one pro
ess may later be re-sear
hed by another pro
ess.Implementing shared transposition tables eÆ
iently on a distributed-memory system is a
hallenging problem, be
ause the table is a

essed frequently. Several approa
hes are pos-sible. With partitioned transposition tables, ea
h pro
essor 
ontains part of the table. Thesignature is used to determine the pro
essor that manages the table entry 
orrespondingto a given state. To read or update a table entry, a message must be sent to that pro
es-sor. Hen
e, most table a

esses will involve 
ommuni
ation. Lookup operations are usuallyimplemented using syn
hronous 
ommuni
ation, where requesters wait for results. Updateoperations 
an be sent asyn
hronously. An advantage of partitioned tables is that the sizeof the table in
reases with the number of pro
essors (more memory be
omes available). Thedisadvantage is that lookup operations are expensive: the delay is at least twi
e the networklaten
y (for the request and the reply messages). In theory, remote lookups 
ould be doneasyn
hronously, where the node expansion goes ahead spe
ulatively before the out
ome ofthe lookup is known. However, this approa
h is 
ompli
ated to implement eÆ
iently andsu�ers from thread-swit
hing and spe
ulation overhead.Another approa
h is to repli
ate the transposition table entries in the lo
al memory ofea
h ma
hine. This has the advantage that all lookups are lo
al, and updates are asyn-
hronous. The disadvantage is that updates must now be broad
ast to all ma
hines. Eventhough broad
ast messages are asyn
hronous and multiple messages 
an be 
ombined intoa single physi
al message, the overhead of pro
essing the broad
ast messages is high andin
reases with the number of pro
essors. Moreover, repli
ated tables have fewer entries thanpartitioned tables, as ea
h entry is stored on ea
h pro
essor. These fa
ts limit the s
alabilityof algorithms using this te
hnique, and repli
ated tables are seldomly used in pra
ti
e.A third approa
h is to let ea
h pro
essor maintain only a lo
al transposition table, in-10



dependent from the other pro
essors [24℄. This would eliminate 
ommuni
ation overhead,but results in a large sear
h overhead (di�erent pro
essors would sear
h the same node).For many appli
ations, lo
al tables are the least eÆ
ient s
heme. Also possible are hybrid
ombinations of the above. For example, ea
h pro
essor 
ould have a lo
al table, but repli-
ate the \important" parts of the table by periodi
ally broad
asting this information to allpro
essors [8℄.The 
ommuni
ation overhead for the partitioned and the repli
ated distribution s
hemesis high, sin
e ea
h pro
essor a

esses the table tens or hundreds of thousands of times perse
ond. Several enhan
ements exist to these basi
 s
hemes. One te
hnique for de
reasing the
ommuni
ation overhead is to not a

ess the distributed transposition table when sear
hingnear the leaves of the tree [35℄. The potential gains of �nding a table entry near the root ofthe tree are larger be
ause a pruned subtree rooted high in the tree 
an save more sear
he�ort than a small subtree rooted low in the tree. Another approa
h is to optimize the
ommuni
ation software for the transposition table operations. An example is given in [3,32℄, whi
h des
ribes software for Myrinet network interfa
e 
ards that is 
ustomized fortransposition tables. One 
an also prefet
h remote table entries, and make the remotelookup asyn
hronous [32℄. This helps for many appli
ations, but the savings are modest.Like prefet
hing, 
on
urrently performing an asyn
hronous remote lookup and spe
ulativelygenerating the node helps hiding the lookup laten
y [14℄.2.5 S
hedulingThe table distribution s
hemes des
ribed above are intuitive ways to implement a distributedtransposition table. However, we believe that the traditional way to implement distributedsear
h, using work stealing, disallows an eÆ
ient implementation of a distributed transposi-tion table. Without a transposition table, work stealing is eÆ
ient, sin
e work stealing itselfinvolves little 
ommuni
ation overhead. But if one �rst parallelizes the sear
h algorithm and11



subsequently adds a distributed transposition table as an afterthought, it is hard to get atable entry to the pla
e where it is needed: at the pro
essor that pro
esses the 
orrespondingstate.By integrating transposition table a

ess with work s
heduling, TDS makes all 
ommu-ni
ation asyn
hronous, allowing 
ommuni
ation and 
omputation to overlap. Mu
h otherresear
h has been done on overlapping 
ommuni
ation and 
omputation [11℄. The idea ofself-s
heduling work dates ba
k to resear
h on data 
ow and has been studied by severalother resear
hers (see [10℄ for a dis
ussion). In the �eld of problem solving, there are some
ases in whi
h this idea has been applied su

essfully. In software veri�
ation, the parallelversion of the Murphi proto
ol veri�er uses its hash fun
tion to s
hedule the work [37℄. Ingame playing, a parallel generator of end-game databases (based on retrograde analysis) usesthe G�odel numbers of states to s
hedule work [2℄. In single-agent sear
h, a parallel versionof A*, PRA*, partitions its OPEN and CLOSED lists based on the state [12℄. The paralleltheorem prover Peers-m
d [7℄ assigns 
lauses to pro
essors based on 
ommon an
estors. Inthis, Peers-m
d di�ers from the others, sin
e it uses surrounding states to s
hedule the work,rather than a state itself.Interestingly, the last four papers present the data-
ow-like parallelization as following ina natural way from the problem at hand, and, although the authors report good speedups,they do not 
ompare their approa
hes to more traditional parallelizations. The paper onPRA*, for example, does dis
uss di�eren
es with IDA* parallelizations, but fo
uses on a 
om-parison of the number of state expansions, without addressing the bene�t of asyn
hronous
ommuni
ation for run times.2 (A fa
tor may be that PRA* was designed for the CM-2, aSIMD ma
hine whose ar
hite
ture makes a dire
t 
omparison with re
ent work on parallelsear
h diÆ
ult.)2Evett et al. 
ompare PRA* against versions of IDA* that la
k a transposition table. Compared to IDA*versions with a transposition table, PRA*'s node 
ounts would have been less favorable.12
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Figure 3: Transposition-Driven S
heduling for IDA*. Bla
k numbers are referred to in thetext.Despite the good performan
e of data-
ow-like parallelization, so far no in-depth per-forman
e study between work stealing and data-
ow-like approa
hes su
h as TDS has beenperformed for distributed sear
h algorithms.3 The basi
 algorithmTDS is a distributed s
heduling algorithm, and, like work stealing, is built on top of asear
h algorithm. The s
heduling algorithm des
ribes where and when states are expanded.Work stealing naturally 
lusters subtrees on individual pro
essors, but TDS s
atters thetree over all pro
essors. At �rst sight, this seems illogi
al, sin
e TDS 
ommuni
ates mu
hmore than work stealing does; the basi
 work-stealing algorithm (without transpositiontable) hardly 
ommuni
ates at all. However, distributed transposition tables are hard toimplement eÆ
iently when 
ombined with work-stealing based s
heduling algorithms. TDSavoids the problem by integrating the s
heduling and the transposition table, lowering both
ommuni
ation and sear
h overheads.Figure 3 illustrates how TDS for IDA* works; the numbers in this paragraph 
orrespondto the bla
k numbers in the �gure. Ea
h pro
essor stores part of the transposition table (1),13



PROCEDURE MainLoop()
WHILE NOT Finished DO

State := GetLocalJob();
IF State <> NULL THEN

Children := ExpandState(State);
FOR EACH Child IN Children DO

IF Evaluate(Child) <= Child.SearchBound THEN
Dest = HomeProcessor(Signature(Child));
SendState(Child, Dest);

END
END

ELSE
Finished := CheckGlobalTermination();

END
END

END

PROCEDURE ReceiveState(State)
Entry := TransLookup(State);
IF NOT Entry.Hit OR Entry.SearchBound < State.SearchBound THEN

TransStore(State);
PutLocalJob(State);

END
END Figure 4: Simpli�ed TDS algorithm.and has a lo
al work queue (2). The lo
al work queue 
ontains states that need to beexpanded (sear
hed). As long as there are states in the work queue, the pro
essor takes ajob, and expands it to its su

essor states (3). After expansion, the parent state is destroyed.Ea
h 
hild is evaluated, using an admissible evaluation fun
tion. States that are too farfrom a target (i.e., the evaluation fun
tion returns a minimum distan
e that is greater thanthe state's sear
h bound) are pruned (4). Ea
h of the remaining states is hashed to atransposition table entry, and pushed to the pro
essor that owns the entry (5). Upon arrival,the state is looked up in the transposition table. If the state is not there (6), the entry iswritten both into the transposition table and into the lo
al job queue (7). If the state isalready in the table (8), the state is a transposition, and there is no need to sear
h it again.Ea
h state is assigned a home pro
essor, whi
h manages the transposition table entry forthis state. The home pro
essor is 
omputed from the state's signature. Some of the signaturebits indi
ate the pro
essor number of the state's home, while some of the remaining bits areused as an index into the transposition table at that pro
essor.Figure 4 shows the pseudo 
ode for the Transposition-Driven S
heduling algorithm, whi
h14



is exe
uted by every pro
essor. The fun
tion MainLoop repeatedly tries to retrieve a statefrom its lo
al work queue. If the queue is not empty, it expands the state on the head of thequeue by generating the 
hildren. Then it 
he
ks for ea
h 
hild whether the lower bound onthe solution length (obtained by Evaluate) ex
eeds the IDA* sear
h bound, in whi
h 
ase it
auses a 
uto�. If not, the 
hild is sent to its home pro
essor. When the lo
al work queueis empty, the algorithm 
he
ks whether all other pro
essors have �nished their work and nowork messages are in transit. If there is still work somewhere, it waits for new work to arrive.The fun
tion Re
eiveState is invoked for ea
h state that is re
eived by a pro
essor. Thefun
tion �rst does a transposition table lookup to see whether the state has been sear
hedbefore. If not, or if the state has been sear
hed to an inadequate depth (e.g., by a previousiteration of IDA*), the state is stored into the transposition table and put into the lo
alwork queue; otherwise the state is dis
arded be
ause it has transposed into a state that hasalready been sear
hed adequately.The values stored in the transposition table are used di�erently for work stealing andTDS. With work stealing, a table entry stores a sear
h result (a lower bound on the minimaldistan
e to the target), derived by sear
hing the subtree below it. Finding a transpositiontable entry with a suitably high table value indi
ates that the state has been previouslysear
hed adequately. With TDS, an entry 
ontains a sear
h bound. It indi
ates that the sub-tree below the state has either been previously sear
hed adequately (as above), or is 
urrentlybeing sear
hed with the given bound, or is pending in the job queue. Note that this pointrepresents a major improvement over previous distributed transposition table me
hanismsin that it prevents two pro
essors from ever working on the same subtree 
on
urrently.
15



4 Implementation issuesWe now dis
uss some implementation issues of this basi
 algorithm. Sin
e no results arepropagated to the parent, the TDS algorithm needs a separate me
hanism to dete
t globaltermination. TDS syn
hronizes after ea
h IDA* iteration, and starts a new iteration if the
urrent iteration did not solve the problem. One of the many distributed termination de-te
tion algorithms 
an be used. We use the time 
ount algorithm des
ribed in [25℄, whi
h
ounts the size of the lo
al work queues and the number of pie
es of work in transit. Theoverhead for termination dete
tion is negligible, be
ause new iterations are started infre-quently, and be
ause the termination dete
tion algorithm is a
tive only when a work queuebe
omes empty.Another issue 
on
erns the sear
h order. S
heduling pres
ribes not only on whi
h pro-
essor a state is expanded, but also in whi
h order. It is desirable to do the parallel sear
hin a depth-�rst way as mu
h as possible, be
ause breadth-�rst sear
h will qui
kly exhaustthe memory for intermediate states. Depth-�rst behavior 
ould be a
hieved using priorityqueues, by giving work on the left-hand side of the sear
h tree a higher priority than that onthe right-hand side of the tree. However, manipulating priority queues is expensive. Instead,we implement ea
h lo
al work queue as a sta
k, at the possible expense of a larger workingset. When sear
hing sequentially, a sta
k 
orresponds to pure depth-�rst sear
h.An interesting trade-o� 
on
erns when and where to invoke the evaluation fun
tion. Oneoption is to do the evaluation on the pro
essor that 
reates a pie
e of work, and to migratethe work to its home pro
essor only if the evaluation did not 
ause a 
uto� as in Figure 4.Another option is to migrate the work immediately to its home pro
essor, look it up in thetransposition table, and then 
all the evaluation fun
tion only if the lookup did not 
ause a
uto�. The �rst approa
h (evaluation at the sour
e pro
essor) will migrate less work but willalways invoke the evaluation fun
tion, even if the state has been sear
hed before (on the home16



pro
essor). However, no transposition table a

esses are done for nodes that 
ause a 
uto�after evaluation. The overhead of evaluating extra states is partly 
ompensated by havingfewer table a

esses. Another e�e
t of the latter approa
h (evaluation at the destinationpro
essor) is that the extra amount of table writes �lls the table more qui
kly, in
reasingthe 
han
e of table 
on
i
ts and leading to in
reased sear
h e�ort. Whi
h approa
h is moreeÆ
ient depends on the relative 
osts for migrating and evaluating states, a

essing thetransposition table, and on the rate at whi
h the transposition table is �lled.An important optimization performed by our implementation is message 
ombining. Tode
rease the overhead per migrated state, several states that have the same sour
e andthe same destination pro
essors are 
ombined into one physi
al message. Ea
h pro
essormaintains a message bu�er for every other pro
essor. A message bu�er is transmitted whenit is full, or when the sending pro
essor has no work to do; this typi
ally happens during thestart and the end of ea
h iteration, when there is little work.Many appli
ations in
rement the root's sear
h bound of a new IDA* iteration by a valuegreater than one. Admissible evaluation fun
tions (for example, the one used for the 15-puzzle) may return a value that underestimates the distan
e to the target, but always returnthe right parity (i.e., if the evaluation fun
tion returns an even value, the real distan
e iseven, otherwise the real distan
e is odd). As a result of this, the sear
h bound 
an bein
reased by two after ea
h iteration that did not lead to a solution. The work-stealingIDA* algorithm, whi
h updates the parent's sear
h results, will dis
over this automati
ally.For TDS, we determine the root's sear
h bound of a new IDA* iteration as follows. Duringan iteration we 
ompute for ea
h node that is pruned the di�eren
e between its evaluationvalue and its sear
h bound. Ea
h pro
essor maintains the lo
al minimum of the di�eren
esseen so far. If an iteration does not lead to a solution, the next iteration will be started witha sear
h bound that is in
reased by the global minimum of the di�eren
es. Determiningthe global minimum hardly requires extra 
ommuni
ation, sin
e the lo
al minima 
an be17




olle
ted during global termination dete
tion. In this way, TDS is, just like work-stealing,able to dis
over the sear
h bound of the next iteration.Sin
e TDS does not ba
kpropagate sear
h results, it requires some e�ort to 
onstru
ta solution path after the sear
h has su

eeded. There are several feasible ways to retrievea solution path, neither of whi
h require extra information in the transposition table tobe stored. One option is to tag ea
h state with the moves leading from the root to thestate. Although ea
h move 
an usually be represented in a few bits, it 
onsiderably enlargesthe size of a state in deep, shallow sear
h trees, and in
reases the 
ommuni
ation overheada

ordingly. Another option, whi
h is the default in our implementation, is to maintain onlythe �rst few moves, and to re-sear
h the subtree starting from the end of the partial solutionpath (with a 
leared transposition table), until the 
omplete solution path is retrieved. Are-sear
h requires 
onsiderably less time than the original sear
h, sin
e the sear
h tree ismu
h smaller and the sear
h bound of the subtree's root is known exa
tly; therefore no timeis wasted in unsu

essful IDA* iterations.Yet another option is to 
onstru
t the solution path from the target to the root, usinginformation that is found in the transposition table. Initially, only the target is on the partialsolution path. Then, repeatedly, all possible parents of the head of the partial solution pathare 
reated and looked up in the transposition table (possibly on another ma
hine). If thesear
h bound (i.e., the distan
e to the target) of the head equals n, then there is at least oneparent with a sear
h bound n + 1. From the list of possible parents, we add the one withsear
h bound n+1 to the partial solution path (if there are multiple su
h parents, the headis a transposition and any parent will do) and repeat the pro
ess until the entire solutionpath is 
reated. More e�ort is needed when transposition table information from the possibleparents is lost, and no parent with sear
h bound n + 1 
an be found. If there is only onepossible parent missing from the table, it must be the real parent; otherwise, we pro
eedwith a ba
kward sear
h, until one of the an
estors is found in the transposition table. Su
h18



a ba
kward sear
h is best implemented with breadth-�rst sear
h, be
ause depth-�rst tendsto lose its way sear
hing for an an
estor on the solution path.In our experien
e, the latter method is the most eÆ
ient method when the transpositiontable is suÆ
iently large; when the table is so small that most of the parents are alreadyevi
ted from the table, one of the other solutions is preferred.5 Dis
ussionTransposition-Driven S
heduling has six advantages:1. All transposition table a

esses are lo
al.2. All 
ommuni
ation is asyn
hronous; pro
essors do not wait for messages (ex
ept fortermination dete
tion, of whi
h the overhead is negligible). As a result, the algorithms
ales well to large numbers of pro
essors. The total bandwidth requirements in
reaseapproximately linearly with the number of pro
essors.3. No dupli
ate sear
hes are performed. With work stealing, multiple pro
essors may
on
urrently sear
h a transposition be
ause the transposition-table update o

urs afterthe subtree below it was sear
hed. With TDS this 
annot o

ur; all attempts to sear
ha given subtree must go through the same home pro
essor. Sin
e TDS has a re
ord of all
ompleted and in-progress work in the transposition table, it will not allow redundante�ort.4. TDS uses the memory of multiple pro
essors in an eÆ
ient way. The extra memoryis used to 
a
he more states during long sear
hes, whi
h de
reases the likelihood thatentries are evi
ted from the table.5. TDS produ
es more stable exe
ution times for trees with many transpositions than thework-stealing algorithm, be
ause TDS does not randomly allo
ate work to pro
essors.19



6. No separate load-balan
ing s
heme is needed. Previous algorithms require work steal-ing or some other me
hanism to balan
e the work load. Load balan
ing in TDS isdone impli
itly, using the hash fun
tion. Most hash fun
tions, in
luding the one weuse [39℄, are uniformly distributed, 
ausing the load to be distributed evenly over thema
hines. This works well as long as all pro
essors are of the same speed. If this is notthe 
ase, the sta
ks of the slow pro
essors will grow and may exhaust memory. A 
ow
ontrol s
heme 
an be added to keep pro
essors from sending states too frequently. Inour experiments, we have not found the need to implement su
h a me
hanism.An important property in our TDS implementation of IDA* is that a 
hild state doesnot report its sear
h result to its parent. As soon as a state has forked o� new work forits 
hildren, work on the state itself has 
ompleted. Traditional implementations of IDA*determine a parent's sear
h result as the minimum of the 
hildren's sear
h results plus one.Without propagating the result ba
k to the parent, additional sear
h e�ort may be required,espe
ially in trees where the evaluation value of a parent often di�ers mu
h from those ofits 
hildren. Many appli
ations build sear
h trees in whi
h this s
enario rarely o

urs. Forexample, in the sliding-tile puzzle the evaluation value of a parent state is seldomly3 o�more than 1 from the minimum of the 
hildren's evaluation values. However, there areappli
ations in whi
h the s
enario o

urs frequently. For example, in Sokoban (a puzzlewhere a man must push barrels over a grid 
oor to target positions) a deadlo
k situationarises if a barrel is pushed into a 
orner [18℄. When all 
hildren of a state are deadlo
ks, thestate itself is a deadlo
k. To re
ognize su
h deadlo
ks in subsequent sear
h iterations it ismu
h better to in
lude ba
kpropagation of sear
h results in TDS. Other sear
h algorithmsthat ba
kpropagate sear
h results, su
h as Alpha-Beta sear
h [19℄, also need this me
hanism.However, for the appli
ations we use, ba
kpropagation is not ne
essary.3With an evaluation fun
tion that only implements the Manhattan distan
e, the evaluation value isnever o� more than 1. Additional heuristi
s, su
h as the linear-
on
i
t heuristi
, sometimes 
ause greaterdi�eren
es. 20



6 Performan
e measurementsWe 
ompare the performan
e of TDS with that of work stealing, enhan
ed with partitioned,repli
ated, or non-shared transposition tables. Our test suite 
onsists of three games: the 15-puzzle, the double-blank puzzle, and Rubik's 
ube. The double-blank puzzle is a modi�
ationof the 15-puzzle, where we removed the tile labeled `15'. By having two blanks, we 
reatea game with many transpositions, be
ause two 
onse
utive moves involving both blanks
an usually be inter
hanged. All three games were implemented in Multigame [32, 33℄, ahigh-performan
e environment for distributed game-tree sear
h.The 15-puzzle uses a state-of-the-art evaluation fun
tion. It in
ludes the Manhattan dis-tan
e, linear 
on
i
t heuristi
 [16℄, last move heuristi
 [22℄, and 
orner 
on
i
t heuristi
 [22℄.The double-blank puzzle uses the same evaluation fun
tion, adapted for two blanks. TheRubik's 
ube evaluation is done using pattern databases [21℄, one ea
h for 
orners and edges.Both the repli
ated and partitioned variants of the 15-puzzle redu
e the amount oftransposition-table 
ommuni
ation by avoiding remote a

esses near the leaves. Repli
atedperforms an update for a node when it sear
hed at least 64 nodes in the subtree below it. Forpartitioned su
h an approa
h to redu
e lookups is not possible, be
ause the lookup o

ursbefore the subtree below it has been sear
hed, and at the time of the lookup the size of thesubtree is not known. We therefore use the following heuristi
: a lookup for a node is done ifthe lookup for the parent or the lookup for the grandparent was su

essful. If neither lookupwas su

essful, the node probably has not been visited by a previous iteration of IDA*, andit is likely that the node is somewhere near the leaves. Using this heuristi
 in
reases thenumber of visited nodes by 23%, but redu
es the 
ommuni
ation 
osts by 76%.The test positions used for the 15-puzzle are nine of the hardest positions known [15℄.4To avoid long sequential sear
hes, we stopped sear
hing after the sear
h iteration with a 76-4Most parallel 15-puzzle programs are ben
hmarked on the 100 test problems in [20℄. Unfortunately,using a sophisti
ated lower bound means that many of these test problems are solved sequentially in a fewse
onds. Hen
e, a more 
hallenging test suite is needed.21
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Figure 5: Average appli
ation speedups.move sear
h bound. By stopping sear
hing before a solution is found, we 
ir
umvent anotherproblem: the last iteration (in whi
h a solution is found) needs an unpredi
table amount ofsear
h time, sin
e a solution 
an appear anywhere in the tree. All previous iterations buildthe same trees, whi
h require the same sear
h e�ort. By not sear
hing the last iteration,we obtain reprodu
ible exe
ution times. For the double-blank puzzle, we used the samepositions with the '15'-tile removed, limited to a 66-move sear
h bound. Rubik's 
ube wastested using �ve random problems. Sin
e a random problem requires weeks of CPU time tosolve, we limited the sear
h bound to 17 moves.We studied the performan
e of ea
h of the algorithms on a 
luster of 128 Pentium Prosrunning at 200 MHz. Ea
h ma
hine has 128 Megabytes of RAM. All ma
hines run the22



RedHat 6.2 Linux operating system. The ma
hines are 
onne
ted through Myrinet [6℄, a1.2 Gigabit/se
ond swit
hing network. For the 15-puzzle and the double-blank puzzle, weuse 223 transposition table entries (64 MB) per ma
hine. The transposition table is organizedas a four-way asso
iative 
a
he and always stores a new result, evi
ting the least valuableentry in the 
a
he line when the 
a
he line is full. Sin
e the 15-puzzle has relatively fewtranspositions, we in
lude numbers for a variant that uses no transposition table at all. ForRubik's 
ube we use 221 entries, to leave room in the memory for pattern databases.The algorithms against whi
h we 
ompare TDS have been heavily optimized. Ea
hMyrinet network interfa
e board 
ontains a programmable network pro
essor. Partitionedruns 
ustomized software on the network pro
essor to speed up remote transposition tablea

esses [3, 32℄. Moreover, partitioned prefet
hes remote a

esses whenever possible [32℄.Repli
ated relies on the high broad
ast bandwidth provided by the Panda 
ommuni
ationlibrary [4℄ and the LFC Myrinet 
ontrol program [5℄, but does not run 
ustomized networksoftware. TDS runs dire
tly on top of LFC (without spe
ialized �rmware) sin
e it does notneed Panda's 
ow 
ontrol and message fragmentation 
apabilities.Figure 5 shows speedups with respe
t to TDS sear
hing on a single pro
essor, the fastestvariant for sequential sear
hes for all appli
ations. On 128 pro
essors, TDS is 1.6 to 12.9times faster than the work-stealing based variants. TDS s
ales almost linearly. For the 15-puzzle, we even obtain superlinear speedups. The overhead for 
ommuni
ation is more than
ompensated by the de
rease of node expansions when more pro
essors are added, be
ausethe transposition table 
a
hes more states when more memory is added. The double-blankpuzzle and Rubik's 
ube do not a
hieve superlinear speedups, be
ause the problems in theirtest sets did not sear
h enough states to �ll the entire table on 128 pro
essors. The speedupfor TDS in
reases for larger problem sizes. The hardest 15-puzzle problem even yielded aspeedup of 154.We were not able to perform measurements for the repli
ated variants of the 15-puzzle and23



the double-blank puzzle on 128 pro
essors, be
ause LFC 
annot handle the 
ommuni
ationload when all ma
hines broad
ast data too frequently.Figure 6 shows a performan
e breakdown for the appli
ations. We measured how mu
hCPU time is spent in several program parts. We distinguish the following program parts:� Node evaluation denotes the amount of time spent in the evaluation fun
tion. ForRubik's 
ube, this time in
ludes the time for doing (lo
al) pattern database lookups.� Node expansion spe
i�es how mu
h time is needed to generate new states.� Transposition table 
ommuni
ation is the time needed for doing remote transpositiontable lookups and updates, and in
ludes both the time to issue requests and to handlein
oming messages. For TDS, the bla
k areas represent the time to 
ommuni
ate thework to other pro
essors, rather than the time to 
ommuni
ate remote transposition-table entries.� Mis
ellaneous is the time spent in the remaining program parts. These in
lude thesear
h engine, position repetition dete
tion (in the work-stealing variants), node allo-
ation and deallo
ation, and lo
al job queue overhead.We a

umulate the time that all pro
essors spend in a parti
ular program part andaverage these times for several test positions (by taking the geometri
 mean). The heightof ea
h bar re
e
ts how mu
h time the pro
essors spend in a parti
ular program part; thetotal height re
e
ts the (average) total amount of CPU time needed to solve a problem. They-axes of the graphs are normalized to the average single-pro
essor TDS run time, whi
h isthe fastest single-pro
essor variant for all appli
ations. Thus, if the total height of the barequals 2 and if 128 pro
essors are used, the appli
ation requires twi
e as mu
h (a

umulated)CPU time as on a single pro
essor; 
onsequently the speedup is 64.The TDS graphs show that the algorithm s
ales nearly perfe
tly. The graphs also showthat as more pro
essors are added, the time spent in the di�erent program parts vary. The24
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number of node expansions de
reases, sin
e the in
rease in transposition table size redu
esthe number of transposition table 
on
i
ts. Sin
e less work is generated, other programparts bene�t as well.The gray shaded areas (whi
h represent the time spent in remaining program parts) forTDS are smaller than for the other variants. Due to its simpli
ity, the sear
h engine ofTDS is 
onsiderably faster than the other sear
h engines. TDS does not require a separateme
hanism to dete
t forward and ba
kward moves or other 
y
les in the dire
ted sear
hgraph. TDS dete
ts repetition of positions through the transposition table, be
ause TDSupdates the transposition table before a state is sear
hed.Figure 6 also illustrates that TDS performs well on large-s
ale systems. The in
rease intransposition table size and the resulting de
rease in sear
h e�ort largely 
ompensate thein
rease in 
ommuni
ation overhead. Load imbalan
e turned out to be negligible; the busiestpro
essor does typi
ally less than 1% more work than the least busy pro
essor.TDS uses only a small fra
tion of the available Myrinet bandwidth, whi
h is about70 MByte/s per link between user pro
esses, and about 33 MByte/s under high 
ontention,when 64 pro
essors send messages to random destinations as fast as they 
an. The 15-puzzlerequires 2.3 MByte/s, the double-blank puzzle 1.9 MByte/s, and Rubik's 
ube 0.39 MByte/s.Ea
h job is en
oded in 32{68 bytes. For the 15-puzzle and the double-blank puzzle, we
ombine up to 31 pie
es of work into one message, and for Rubik's 
ube, we 
ombine up to14 pie
es of work. The 
ommuni
ation overhead for distributed termination dete
tion (TDSsyn
hronizes after ea
h iteration) is well below 0.1% of the total 
ommuni
ation overhead.The lo
al work queue (implemented as a sta
k) remains small: even for the largest 15-puzzleproblem (sear
hing 2.5 billion positions on 128 pro
essors in 2 minutes) the sta
k does notex
eed 1 MB in size.Partitioned su�ers from high lookup laten
ies. Even with the 
ustomized network �rm-ware, a remote lookup takes 12{35 �s, in
luding the overhead for prefet
hing. The double-26
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Figure 7: Evaluation on sending vs. re
eiving ma
hine, on 64 pro
essors.blank puzzle spends 79% of the time 
ommuni
ating table entries, at a rate of 27,500 remotetable a

esses per se
ond per pro
essor.Like TDS, partitioned bene�ts from the in
rease in table size when more pro
essors areadded. Yet the performan
e graph for the double-blank puzzle, whi
h has many transposi-tions, shows that the appli
ation sear
hes 96% more nodes on 128 pro
essors than on a singlepro
essor. We explain this as follows. Partitioned (as well as repli
ated and non-shared)updates the transposition table after the sear
h of a state 
ompletes. A transposition is notre
ognized as su
h before the update is performed, thus partitioned may sear
h a transposi-tion multiple times by multiple pro
essors to the same depth 
on
urrently. This phenomenondoes not o

ur with TDS, where the table update is done before the state is sear
hed.Repli
ated passes most of its time handling in
oming broad
ast messages when manypro
essors are used. On 128 pro
essors, LFC 
ollapses under the high 
ommuni
ation loadof the 15-puzzle and the double-blank puzzle. The other measurements on many pro
essorsshow a signi�
ant 
ommuni
ation overhead. The double-blank puzzle on 64 pro
essors per-forms 14,500 transposition table stores per pro
essor per se
ond. These stores are bu�ered(64 entries per bu�er, 12 bytes per entry) and broad
ast to all pro
essors. This meansthat ea
h pro
essor re
eives 14,500 messages per se
ond, spending 50% of the total time
ommuni
ating transposition table entries. 27



Se
tion 4 argued that the evaluation fun
tion 
an be invoked on either the sending orthe re
eiving pro
essor. We studied the e�e
ts on exe
ution times for the three di�erentexe
ution orders:1. Evaluate a node on the sending pro
essor (potentially pruning the node), send thenode to its destination, lookup the node in the transposition table (
utting of the nodeif it is a transposition), store the node in the table, and push the node onto the workqueue. This exe
ution order is 
alled early.2. Send the node, look it up, evaluate it, store it, and push it (
alled mid).3. Send the node, look it up, store it, evaluate it, and push it (
alled late).The latter method stores a node in the transposition table, even if it is pruned, wheremethod mid potentially evaluates a node multiple times if the node 
auses a 
uto�. Figure 7shows the e�e
ts on exe
ution times for the three appli
ations on 64 pro
essors. Ea
h bar is
omposed the same way as in Figure 6. Early 
learly evaluates more nodes than the others,but spends less time a

essing the transposition table and 
ommuni
ating. Late spendsmore time a

essing the transposition table, sin
e it stores information about all nodes inthe table. In the 
ase of Rubik's 
ube, this is even 
ounter-produ
tive, sin
e the many storesof 
uto� nodes thrash the table, in
reasing the total amount of work done. In 
on
lusion,all three appli
ations perform best when the evaluation fun
tion is invoked on the sendingpro
essor.The speedups of TDS on 64 pro
essors for the 15-puzzle are higher than those reportedby others (e.g., [9℄ reports 58.90-fold speedups). Moreover, previous work has only looked atparallelizing the basi
 IDA* algorithm, usually using the 15-puzzle with Manhattan distan
eas the test domain. The state-of-the-art has progressed signi�
antly. For the 15-puzzle, thelinear 
on
i
ts heuristi
 [16℄ redu
es tree size by roughly a fa
tor of 10; transposition tablesredu
e tree size by an additional fa
tor of 2.6; and the last move and 
orner 
on
i
t heuris-28



ti
s [22℄ redu
e the tree size even more. These redu
tions result in a less well balan
ed sear
htree, in
reasing the diÆ
ulty of a
hieving good parallel performan
e. Still, our performan
eis at least as good as the results in [9℄. This is a strong result, given that the sear
h treesare tens of times smaller.7 Laten
y, bandwidth, and overhead analysisTo predi
t the performan
e of TDS on other types of parallel systems, we analyzed thebehavior of the 15-puzzle (the most 
ommuni
ation-intensive among the appli
ations) undervarying laten
y, bandwidth, and overhead 
onstraints, using a model that resembles theLogGP model [1℄. The model 
hara
terizes the 
ommuni
ation behavior of an appli
ationusing di�erent parameters. The message laten
y is the delay between the sending and thearrival of a message. The overhead is the sum of the send overhead needed to hand o�a message to the 
ommuni
ation substrate and the re
eive overhead needed to deliver amessage to the appli
ation. The bandwidth is the number of bytes that the appli
ation 
ansend and re
eive ea
h se
ond.We performed the laten
y, bandwidth, and overhead analysis as follows. The laten
yand bandwidth are varied by delayed delivery to the appli
ation. Ea
h in
oming messageis tagged with a delivery time and bu�ered until the appli
ation may 
onsume it. Duringthat time, the pro
essor may re
eive new messages and may expand new states. The sendand re
eive overheads are in
reased by having the pro
essor spin in a tight loop until it 
anpro
eed. During that time, the pro
essor neither re
eives new messages nor expands newstates.To better handle large laten
ies and low bandwidths we made a few modi�
ations tothe 
ode of our basi
 TDS implementation. The original global termination dete
tion al-gorithm [25℄ orders the pro
essors in a ring and sends messages along the ring. The time29
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(b) Sensitivity to overhead.Figure 8: Bandwidth, laten
y, and overhead sensitivity for the 15-puzzle on 64 pro
essors.needed for (su

essful) global termination dete
tion is the number of pro
essors times themessage laten
y. During the �rst iterations of the sear
h, when there is little work, theglobal termination dete
tion dominates the sear
h times when the laten
y is high. To toler-ate higher laten
ies, we 
hanged the global termination dete
tion algorithm by not sendingthe messages in a ring, but by having one pro
essor broad
ast a termination dete
tion re-quest message. Ea
h pro
essor then replies with a uni
ast message. Sin
e broad
ast anduni
ast messages are unordered, it is ne
essary to in
lude a timestamp in ea
h message. Thebroad
ast version requires twi
e the laten
y for global termination dete
tion, independentof the number of pro
essors.Another problem o

urs when the bandwidth be
omes lower than what the appli
ationrequires. In this situation the rate at whi
h new jobs are re
eived is too low to keep apro
essor busy. When a pro
essor immediately 
ushes all outgoing message bu�ers withnew states when it be
omes idle, the bu�ers are almost empty; most of the time a message
ontains a single job only. Sending many small messages not only in
reases the total overhead30



(whi
h is not that bad be
ause the pro
essors are underloaded anyway), but also in
reases theamount of bytes sent sin
e more message headers are sent. A simple and e�e
tive solution isto wait a short period to give the next message a 
han
e to arrive before the message bu�ersare 
ushed.During the low bandwidth and high laten
y experiment, one of the 15-puzzle test posi-tions bu�ered so many messages that 
ow 
ontrol be
ame ne
essary. We use a 
redit-baseds
heme and stop a sender when its destination has bu�ered 250 undelivered messages fromthe same sour
e. This limits the bu�er size to at most 16 MB per pro
essor. In pra
ti
e,less than 1% of the sends stall.Figure 8(a) shows the e�e
ts of in
reased message laten
ies and de
reased network band-width for the 15-puzzle on 64 pro
essors. We used the same test set as in Se
tion 6. Allaxes are in log-s
ale. The exe
ution times are normalized; the norm is the average exe
utiontime with maximum LFC bandwidth (over 32 MByte/s under 
ontention) and minimumLFC laten
y and overhead (together about 10 �s). The graph shows two interesting results.First, TDS is tolerant to high laten
ies: laten
ies of up to 10 ms are hardly noti
eable andeven laten
ies of 100 ms still give reasonable speedups. This is an expe
ted result, sin
e ea
hIDA* iteration is inherently asyn
hronous. Se
ond, TDS is intolerant to low bandwidths.The exe
ution time in
reases inversely proportional with the bandwidth when the bandwidthdrops below the required bandwidth (for the 15-puzzle, this is 2.3 MByte/s per link).Figure 8(b) shows the sensitivity to the send and re
eive overhead for the 15-puzzle on64 pro
essors. We already learned that the appli
ation spends a relatively small amount oftime 
ommuni
ating, despite the high bandwidth requirements. This is due to the low over-head of LFC: we measured a send overhead of 7.35 �s and a re
eive overhead of 1.90 �s (LFCa
hieves su
h a low re
eive overhead be
ause the network pro
essor on the Myrinet interfa
edoes most of the work to re
eive a message). The �gure shows the appli
ation behavior forin
reasing overheads. For this experiment we use equal send and re
eive overheads; the sum31



is shown on the X-axis of the �gure. The �gure shows that the appli
ation is moderatelysensitive to overhead: in
reasing the overhead results in a signi�
ant performan
e loss, butthe performan
e does not drop as fast as in the bandwidth experiment.In summary, TDS 
an tolerate laten
ies up to 10{100 ms, bandwidths down to a fewMByte/s, and overheads up to 100 �s. 100 Mbit/s Ethernet, used via a kernel-level so
ketinterfa
e (either TCP or UDP), operates within these limits, provided that the network isswit
hed and the swit
h 
an handle the aggregate bandwidth demands. We expe
t that theappli
ations will run a few tens of per
ents slower than over Myrinet using LFC, be
ausethe overhead of the so
ket interfa
e will be higher. The laten
y and bandwidth provided by100 Mbit/s Ethernet will be suÆ
ient and will not in
uen
e the run times at all.8 Con
lusionsEÆ
ient parallelization of sear
h algorithms that use transposition tables is a 
hallengingtask, due to 
ommuni
ation overhead and dupli
ate sear
h of subtrees. We have des
ribed anew approa
h, 
alled Transposition-Driven S
heduling (TDS), whi
h integrates work s
hedul-ing with the transposition table. TDS pushes work eagerly to the pro
essor that 
a
hes inter-mediate sear
h results. It makes all 
ommuni
ation asyn
hronous, overlaps 
ommuni
ationwith 
omputation, and redu
es sear
h overhead. TDS is appli
able to any sear
h algorithmthat sear
hes graphs, su
h as game-tree sear
h algorithms, retrograde analysis, 
onstraintsatisfa
tion algorithms, optimization algorithms, and data-
ow algorithms.We implemented parallel IDA* using TDS, and performed a detailed 
omparison of TDSto the 
onventional work stealing approa
h on a large-s
ale parallel system. TDS performssigni�
antly better, espe
ially for large numbers of pro
essors. On 128 pro
essors, TDSa
hieves a speedup between 122 and 138, where traditional work-stealing algorithms a
hievespeedups between 10 and 79. TDS s
ales well to large numbers of pro
essors, be
ause it32



e�e
tively redu
es both sear
h overhead and 
ommuni
ation overhead. TDS' bene�
ial useof memory 
an even lead to superlinear speedups, espe
ially for large sear
h problems. Wealso performed a laten
y, bandwidth, and overhead analysis for the 15-puzzle, the most
ommuni
ation-intensive appli
ation in the test set. TDS is tolerant to high laten
ies, some-what sensitive to high overhead, but performs poorly on low-bandwidth networks. However,modern networks like Myrinet amply provide the required bandwidth.TDS represents a shift in the way one views a sear
h algorithm. The traditional viewof single-agent sear
h is that IDA* is at the heart of the implementation, and performan
eenhan
ements, su
h as a transposition tables, are added afterwards. This approa
h makesit hard to a
hieve good parallel performan
e when one wants to 
ompare to the best knownsequential algorithm. With TDS, the transposition table be
omes the heart of the algorithm,and performan
e improves signi�
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