
This is a pre-print of a paper that has been submitted to a special issue of Parallel
Computing on Parallel Input/Output and if it is accepted, it will be copyrighted.

Usability of Parallel I/O Templates

Ian Parsons, Ron Unrau, Jonathan Schaeffer, and Duane Szafron
University of Alberta

Department of Computing Science
{ian,ron,jonathan,duane,}@cs.ualberta.ca

Keywords: parallel I/O, templates, parallel programming systems, Enterprise, PIOUS

Abstract
This paper presents an alternative high-level approach to parallelizing file I/O. Each

parallel file descriptor is annotated with a high-level specification, or template, of the
expected parallel behaviour. The annotations are external to and independent of the source
code. At run-time, all I/O using a template file descriptor adheres to the semantics of the
selected template. By separating the parallel I/O behaviour from the code, a user can
quickly change I/O semantics without rewriting code. Templates can be combined
hierarchically to allow the simple construction of complex access patterns.

Two sample parallel programs using these templates are compared against versions
implemented in an existing parallel I/O system (PIOUS). The sample programs show that
the use of parallel I/O templates are beneficial from both the performance and software
engineering points of view.

1 Introduction
The development of parallel applications has focused on computational parallelism.

However, the corresponding growth in parallel input and output (I/O) implementation
techniques has not kept pace. If an application is to perform parallel I/O operations, the
user must explicitly differentiate between parallel and sequential I/O streams at the source
level, and often import or export files into or from specialized file systems. As well, the
computational parallelism may have to be re-implemented to work with the communication
system used to build the parallel I/O library. This results in a lack of portability between
different operating systems, architectures, and even changes in the physical layout of the
files.

This paper proposes a design for high-level parallel I/O templates within the auspices of
a parallel programming system (PPS). Examples of these systems can be found in [1-3, 7,
12, 13, 15, 23, 31]. A PPS could use these parallel I/O templates along with templates for
parallel computation to implement the desired parallel behaviour. The PPS integrates all
components of developing, compiling, running, debugging, and evaluating the
performance of a parallel application. That is, the implementation of the parallelism is
handled by the PPS. The user chooses the computational and I/O templates that give the
best performance.

A study [32] examined the usability of several parallel programming systems. The
study found that using computational templates to create parallel applications is beneficial.
The user code is significantly reduced and the application is up and running much sooner
since the templates are correctly implemented for the selected parallel behaviour. The
drawback to templates is that there can be a slight performance penalty (less speedup). The
work presented in this paper extends these results from computational templates to I/O
templates and provides experimental validation.

Parallel libraries are an improvement over implementing the desired functionality using
low-level functions offered by operating systems. Even if a parallel I/O library or system is
used [4-9, 14, 17, 19-22, 24, 26-28, 33, 36], the user specifies the parallel I/O by using a

2

package of specially designed parallel I/O library calls (typically highly tuned to one or a
few architectures). The user differentiates between sequential and parallel I/O streams and
specifies how the data is to be subdivided, synchronized, and merged.

When libraries are used, it is important to note that the parallel behaviour is still directly
coded into the program. Any changes to the I/O or the parallel computation behaviour is
reflected by modifications to the code. Thus, something as simple as integrating a new
release of the I/O library could introduce errors. Since the code is designed to use one I/O
library, if a decision is made to use another I/O library (possibly due to moving the code to
a different system), modification to the source code is required even though the parallel
behaviour has remained the same. Unfortunately, to experiment with different parallel I/O
access patterns or behaviours, many lines of code must be rewritten.

An alternative to embedding the parallel behaviour directly into the application is a high-
level abstraction, or template, that separates the parallel behaviour from the code. High-
level abstractions such as these are intended to work within the framework of a parallel
programming system. For example, it would be ideal to designate an I/O stream as
segmented and have the system parallelize all the sequential I/O calls that use that stream
correctly. These abstraction mechanisms are beneficial since:

• Parallel I/O and computational behaviours are encapsulated into an easy to
understand set of templates.

• The user specifies the parallelism that is wanted while the template offers different
solutions for the same parallel behaviour, depending on the underlying architecture
or low-level software libraries.

• Parallel behaviour can be changed with minimal (or no) changes to the user code.
• Because the computational and I/O templates are integrated, optimizations between

the different parallel behaviours are possible at both compile and run time.
• Templates provide a quick first-draft of a solution which can be incrementally

refined depending on the user's expertise.
• Correct parallel behaviour and implementation for the template are guaranteed.
• The performance of templates can be comparable to hand-coded solutions.
The programmer uses the PPS to produce a parallel application by supplying the

sequential code for the parallel algorithm. The parallelism is described by selecting
templates of predefined parallel behaviours for parallel computation and I/O and associating
specific functions or variables to different templates. The PPS stores these templates
separately from the user’s code. The templates and the user’s code are then processed by
the PPS to generate code to perform the parallel behaviour. This machine-generated code is
linked with the necessary run-time support libraries to generate an executable for a specific
target architecture. This is repeated if more than one type of architecture is being used
(different I/O implementations could be used that are transparent to the program). At run-
time, the PPS is responsible for starting, monitoring, and terminating the parallel
application.

For example, consider an application that has one of its I/O descriptors annotated to use
a segmented behaviour. The PPS analyses the source code for instances of the parallel file
descriptor and modifies any code necessary to ensure the correct parallel I/O semantics (as
defined by the template). If the user wishes to change the parallel I/O behaviour, a different
template is specified and the PPS regenerates the code to implement the new behaviour.
The strength of this approach is that different parallel I/O behaviours are specified by
changing templates -- not user code.

There are two perceived disadvantages to using such a high-level abstraction
mechanism. First, there is the loss of direct control by the user since a high-level
abstraction is supposed to shield the user from many of the low-level details. Second, the

3

performance of the application might not be as good as the hand-crafted application since
the abstraction deals with the general rather than the specific details of the problem.

This first point is addressed by creating a base set of templates that can be composed
into more complex behaviours. If users require more hands-on control, they can change
the attributes of the template (but not the code) to customize it for their application. The
simple programming model, the short time to draft a working application and the
independence from implementation details typically outweighs the restrictions imposed by
working within a template framework

The second concern is more serious, since to many people performance is the only
evaluation metric. While this paper primarily addresses the software engineering benefits
of template I/O, the performance is shown to be comparable to hand-coded, tuned
implementations. Since template I/O offers significant software engineering benefits, the
user should only consider hand-coded solutions if they are convinced that additional
performance gains are possible. The possible performance gains are offset by the cost of
the additional effort required to implement, debug and test their custom solution. An
alternative approach for the advanced user could be to tune and modify the code generated
by the PPS since many PPSs use source-to-source translation.

This paper is divided into several sections. Section 2 examines some related work. In
Section 3, a simple example showing the difficulties of moving from the sequential to the
parallel I/O domain is discussed. Section 4 presents the parallel I/O templates proposed by
this paper. Section 5 compares the conversion steps in developing a parallel application
against an existing parallel I/O system (PIOUS [27]). Section 6 presents the actual
performance of two applications. The first application is the one presented in Section 5
which has fine-grained I/O spread throughout the application. The second application uses
large-grained I/O operations. Finally, the conclusions are presented.

2 Related Work
There have been several studies of parallel I/O for applications using real data. Some

examples of these are found in [10, 25, 29, 30, 34, 35]. These studies look at traces of
actual parallel applications doing I/O using specific parallel I/O libraries and architectures.
Characterizing well-understood parallel programs under controlled conditions facilitates
development of optimization techniques.

Parallel I/O systems such as PIOUS[27], MPI-IO [8], and ELFS [19] have abstracted
parallel I/O semantics so that there are two types of I/O streams -- sequential and parallel.
Additionally, these I/O systems are designed to use the parent communication system
(PVM [16], MPI [37], and Mentat [18], respectively).

This approach of differentiating between parallel and sequential I/O streams both
complicates and simplifies the programmer’s coding strategy. It simplifies the problem
since only the parallel I/O is converted. The complication is that the user must choose
which files to be parallelize, and then decide on the parallel I/O model and its
implementation (library) before starting to write code. Templates allow the user to switch
between sequential and parallel I/O at any time, independently of the code. This leads to
more portable and maintainable code.

A template approach can use any low-level parallel I/O implementation that supports the
expressed parallel behaviour of the template. The basic types of parallel I/O are still the
same as when Crockett [11] first characterized them -- global, segmented, and
independent. How they are implemented, either as a library for a specialized file system, as
an operating system module, or even as hardware, is strictly a matter of efficiency. The
interface to the user must be simple enough to use, but flexible enough to allow
performance tuning for specific applications.

4

3 A Simple Example
This section presents a simple example that illustrates some of the obstacles that are

fundamental to parallelizing sequential I/O. The parallel program that is derived in this
section is not an example of how the parallelization would be accomplished using
templates. The example is intended to show what kind of code the user would need to
provide if the parallelization was done by hand. Alternatively, it shows what kind of code
must be generated if templates are used.

Figure 1 shows the sequential C code for this example, together with a sample input file
and its output. The sequential program opens two files, one for reading and one for
writing. The program reads integers from the input file and for each integer, outputs a line
to the output file containing multiple copies of that integer. The input file consists of a
series of ASCII character representations of integers, separated by new-line characters and
terminated by an end-of-file marker. The output file can be viewed as a series of variable
length character records, separated by new-line characters.

#include <stdio.h>

Parent(int argc, char **argv)
{

FILE *fin, *fout ;
fin = fopen(argv[1], “r”) ;
fout = fopen(argv[2], “w”) ;
while (! feof(fin)) {

Child(fin, fout) ;
}
fclose(fin) ;
fclose(fout) ;

}

Child(FILE *fin, FILE *fout)
{

int i, num ;
fscanf(fin, “%d”, &num) ;
for (i = 0; i < num; i++) {

fprintf(fout, “%d ”, num) ;
}
fprintf(fout, “\n”) ;

}

Sample input file:

 3
 6
 12
 9

Sequential output file:

3 3 3
6 6 6 6 6 6
12 12 12 12 12 12 12 12 12 12 12 12
9 9 9 9 9 9 9 9 9

Figure 1 - Example program and the sequential input and output files.

This example is a simple one, but it illustrates that the following basic considerations
must be made when converting from sequential to parallel I/O:

• When a file is opened by multiple processes, an access mechanism must be
specified. The three most common access mechanisms are: shared, independent or
segmented. Shared access means that movement of the file pointer by one process
affects the file pointers of the other processes. Independent access means that each
process has its own independent file pointer. Segmented access means that the
processes access mutually exclusive regions of the file with their own file pointers.
The code must be changed so that the access mechanism is explicit when a file is
opened.

• For each parallel access mechanism, there are different criteria for checking the end-
of-file condition and different actions must be taken to close the parallel file. These
differences must be reflected in the code.

• Access synchronization must be specified. For example, in order to prevent
unwanted interleaving of I/O operations by different processes, atomic I/O

5

transactions must be identified in the code. In addition, some synchronization may
be necessary between transactions.

• The format of a file may need to be changed to support a particular parallel access
mechanism.

These considerations are not intended to be exhaustive. They are given here to show that
even a simple program requires extensive modifications when its I/O is parallelized. The
goal is to generate these modifications automatically using parallel I/O templates.

A natural parallelization of the program in Figure 1 has the Parent function and
multiple copies of the function named Child each executed by its own process. Figure 2
shows a parallel version of the code that accomplishes this. A boldface font is used to
identify changes to the code.1 Only two constraints are placed on the parallelization. The
input file may only be read once and the output of each Child function may not be
interleaved with the output from any other. For example, it is not necessary for the 3's to
be printed before the 6's. However, it is necessary for the 3's to appear on a separate line
from the 6's.

#include <stdio.h>

Parent(int argc, char **argv)
{

par_FILE *fin, *fout ;
fin = par_fopen (argv[1], “r”, parMode , parGroup) ;
fout = par_fopen (argv[2], “w”, parMode , parGroup) ;
while (! par_feof (fin)) {

/* Wrapper function to send message to remote process executing Child */
par_Child (fin, fout) ;

}
par_fclose (fin) ;
par_fclose (fout) ;

}

Child(par_FILE *fin, par_FILE *fout)
{

int i, num ;
par_fscanf (fin, “%d”, &num) ;
par_IOstart (fout) ; /* Start I/O transaction */
for (i = 0; i < num; i++) {

par_fprintf (fout, “%d ”, num) ;
}
par_fprintf (fout, “\n”) ;
par_IOend (fout) ; /* Stop I/O transaction */

}

Figure 2 - A parallel version of the example sequential code.

The Parent process opens the input and output files using a generic parallel library
function par_fopen. The extra parameters indicate the parallel access mode of the file
(parMode) and the processes that will collectively share this parallel file (parGroup).
The par_feof function uses the parallel access mode set in the par_fopen function to
determine whether the end-of-file condition has been met. For example, if shared file
access was selected, then par_feof will be true whenever any Child process encounters
an end-of-file condition. If independent file access was selected, then par_feof will be
true only when the Parent's file pointer reaches the end-of-file mark. In this program, that
will never occur since the Parent never moves its file pointer. If segmented access is
selected then as Parent calls its children, Parent moves its own file pointer forward, one

1For brevity, the code for spawning remote processes, marshalling and demarshalling of parameters and
explicit process communication is not shown.

6

segment at a time. In this program, par_feof will be true when it passes the last segment
to a child.

The par_Child function is a glue function that contacts a remote process to execute the
Child functions. This function passes the parallel file descriptors to the remote Child
processes. Finally, the par_fclose function closes the file using the correct parallel access
mode to dispose of the appropriate file pointers.

The fundamental problem of parallel I/O programming is that multiple processes share a
common resource. One of the consequences of this is that a user cannot assume a
consistent I/O state between successive operations unless accesses are synchronized. Even
using a parallel I/O library, a series of output operations would be interleaved unless the I/O
library is informed that a succession of I/O actions are to be done as one transaction. The
output operations in the Child function are a perfect example of this situation since the user
wants all of the 3's to be output together on a line with all of the 6's on a different line.
There are four approaches to solving this transaction problem. In each case, we assume
that a single parallel I/O operation is atomic and we wish to build these into a larger atomic
transaction.

In the first approach, each line is printed in a single I/O statement. However, since the
number of output operations for each line is variable, we must explicitly write to a memory
buffer each time through the for loop and then explicitly write the buffer to the file at the
end of the loop.

In the second approach, an atomic block of output operations is explicitly identified to
the parallel I/O system. This choice is seen in Figure 2 by the placement of par_IOstart
and par_IOend functions around the atomic I/O operation.

In the third approach, each remote process gets a block of the file to which it has
exclusive access. However, this approach does not support variable length output records
since the block size cannot be easily determined in advance.

In the fourth approach, each remote process writes to a local file and after the
transaction is finished, the file is returned to the parent to be integrated into the master file.
This approach is similar to the first approach, except that it is intended to be managed by a
parallel I/O system instead of being the explicit responsibility of the user.

In addition to a mechanism to delimit atomic I/O transactions, it is often necessary to
specify the synchronization of I/O primitives themselves. For example, the par_fclose
function cannot actually close the file until all Child functions have finished with the file.
Code must be written in the par_fclose function to perform this synchronization.

Sometimes the structure of files must be changed to support a parallel access mode.
For example, if we wished to use segmented access of the input file for the program in
Figure 2, then fixed length records would be easiest to support. One way to do this would
be to store the integers in binary format instead of ASCII format. Alternately, if ASCII
format is necessary, then a fixed number of characters must be specified for each integer.
This has the disadvantage of restricting the range of the input data, say from -999 to 9999,
if four characters are used. Similarly, if segmented access to the output file is used, a fixed
size line for the output file would be required, and padding would need to be done.

This section has shown that even a very simple program requires extensive
modifications to parallelize the I/O operations. As the next two sections will show,
templates provide a good mechanism for generating much of this tedious code
automatically.

4 Parallel I/O Templates
Section 3 points out some of the complications of parallelizing code and I/O. Section

4.1 describes the parallel I/O templates proposed by this paper. Section 4.2 uses an
example to show how templates can be used to specify more complex parallel I/O access

7

patterns. Section 4.3 delves into the implementation algorithms used to develop the
templates.

4.1 Description of Parallel I/O Templates
There are five basic parallel I/O templates proposed in this paper. The hierarchical tree

(Figure 3) is similar to Crockett's proposal of global, independent, and segmented file
I/O [11]. Each I/O template (the shaded nodes in Figure 3) describes a simple parallel I/O
behaviour. There is also a sequential I/O class distinct from the parallel I/O templates.
Sequential I/O has no parallel behaviour.

An important aspect of any template is its ease of comprehension as to what the
template represents. These five templates are intended to be integrated with the parallel
computational templates to create a parallel application.

Meeting

Segmented I/OGlobal I/O

Sequential I/OIndependent I/O

Log Report Newspaper Photocopy

Figure 3 - Parallel I/O template hierarchy.

Meeting
The analogy comes from a meeting where only one person has control of the floor at a
time. The meeting template uses a global file pointer and all processes using it must
synchronize and coordinate access to the file. A meeting has both global read and
write capabilities. However, only the process that has control of the file may read or
write at any time.

Log
The analogy comes from maintaining a record of events. The log template uses a
global file pointer with the restriction that all write activity takes place at the end of the
file. After a write takes place, the global file pointer is left at the end of the file.

Report
Having a committee write a report usually involves the members collectively reading
several other sections prior, during or after writing their own section. As well,
comments may be written to other sections of the report which may or may not be
incorporated into these remote sections. A report template has both global and
segmented file properties. However, no segment has a fixed owner. A process must
obtain read or write permissions for the desired segment from a file manager. The size
of the segment is determined at run-time by a function supplied by the user.

Newspaper
A newspaper is composed of sections that can be read (or written) independently. The
newspaper template is a means to segment a file into independent pieces. Each
process gets exclusive access to a portion of the file. Any process that reaches the end

8

of the segment has reached its version of the end-of-file. Like the report, the size of a
given segment is determined at run-time by a function supplied by the user.

Photocopy
A familiar situation happens when an author distributes copies of a paper for review.
After the reviewers have made their comments on their private copy, the author
integrates all or some of the changes back into the original document. This may take
several iterations. A photocopy template is intended for independent file access.
Because multiple processes read the same file, one optimization is to selectively
replicate the file so that the I/O operations become local I/O instead of networked I/O.
However, a photocopy has the property that any write operation must be verified by
the owner or controller of the file before becoming visible to any other processes.
In addition to the base semantics, each template can have several attributes which refine

the base implementation behaviour. One attribute of all the parallel I/O templates presented
here is the ordering of I/O operations. Both the read and write operations can have
separately defined ordering. That is, the order in which a collection of processes
communicate with each other defines the access sequence and when updates become
visible. There are three possibilities: ordered, relaxed, and chaotic.

For example, assume processes perform blocks of I/O in the order: α1, α2, α3, β1, β2,
β3, using two loops. With ordered I/O, the I/O will be done in this identical order. With
relaxed I/O, the order is relaxed somewhat. Any process executing a βi operation will wait
until all of the αi are finished, but the αi and the βi themselves may be executed in any
order. With chaotic I/O, the ordering is completely relaxed so that any process can have
access to the file at any time. The ordering attribute does not change the base behaviour
unless synchronization was involved. For example, the meeting template still means one
process has access at a time. Depending on the type of parallelism chosen, a process may
or may not have to give up access or wait for access to a given file descriptor.

4.2 Composing Parallel I/O Templates

Newspaper

Meeting

Photocopy...

Figure 4 - Composing using parallel I/O templates.

The power of templates is that they can be arbitrarily composed to give more complex
behaviours. Figure 4 shows a more complex example which benefits from this approach.
In this example, the file is segmented so that concurrent processes are accessing different
portions of the file. However, within a given segment, a portion of that segment is
independently read by several other processes. The file is broken into three segments using
a newspaper template. Each segment is treated as a meeting (global file) until a

9

particular portion of the segment is reached. At that point, several processes are granted
independent access as photocopies. After the independent operations are finished, the
file access reverts back to a meeting (the global file pointer forms a barrier). A pipeline
model of computation could yield such an access pattern.

If the user tries to code all of this by hand, the amount of specialized code increases at
each level along with the chances of introducing errors. If the computational parallelism
changes, the restructuring of the code to reflect this is a potential source of errors. Suppose
this pipeline example has sufficient granularity to run efficiently on a shared-memory
multiprocessor system. If the code is ported to run on a network of workstations, the
granularity of the application may mean that one stage of the pipeline should be collapsed.
This is achieved by dropping the photocopy template along with the parallel
computational behaviour of the associated stage of the pipeline. The strength of a template
approach for both the computational and I/O parallelism is that any changes are quickly and
correctly implemented.

4.3 Implementation of Templates
This subsection describes how the templates were implemented. Users of the templates

do not need to know about this implementation and alternate implementations can be used
without affecting user programs.

The templates have been implemented to parallelize the standard C stream I/O library
(fopen , fclose , freopen , feof , fprintf , fscanf , fwrite , fread , fseek and the
variants using these functions such as rewind or printf). However, there is no reason
that they cannot be implemented to replace low-level I/O calls (open, write, close,
lseek). The Enterprise [31] PPS was used test these templates, however there is nothing
Enterprise specific in their design. Enterprise merely provided the necessary computational
framework to implement this design.

The templates are intended to work within a computational parallel hierarchy. Any
process that makes a remote call to another process creates a parallel computational
hierarchy. The templates are implemented using a client-server model that is distinct from
the computational model. If the remote call includes a file pointer, the file pointer is treated
as a parallel file pointer. If the user does not specify the parallel behaviour of the passed
file pointer, it is considered an error. Or, if a file is collectively opened by a group of
processes, this is also treated as a parallel I/O object if it is identified as such by the user.
The manager (server) of an I/O object is the process that actually coordinates the file access
pattern in the user's source code. In the case of multiple or replicated processes
concurrently opening the same file descriptor, only one of the replicated processes becomes
the manager.

There are several ways to select the manager: the first process that opens the file
becomes the manager, the user designates a specific client process (the process is local to
the disk file), or the PPS spawns a new manager process. The other processes become
clients for I/O purposes only. It is also important to realize that a client becomes a "branch"
manager when the user’s process (which contains the I/O client), in turn, makes remote
calls to other processes.

All template I/O operations involve two processes -- the client and the manger. The
manager is responsible for synchronizing accesses and merging results. The client must
recognize when access permissions are required, execute the user’s code, and end the I/O
transactions properly.

The client starts when the user makes an I/O call using a file pointer. The client
determines if the file pointer is to be treated as a parallel I/O file pointer. If the file pointer
is for sequential I/O, the I/O operation proceeds normally and control is returned to the

10

user’s code when the I/O operation finishes. If the file pointer is considered to be parallel,
the client determines if it has access to the file. If it does not, the manger of the I/O object
is sent a message requesting access.

When the manager receives a request for access, it searches its order queue to
determine if access can be granted. This queue is filled as the manager process invokes
remote functions passing I/O objects as arguments. The access permissions for that I/O
variable are determined by the ordering selected by the user. If access is not allowed at this
point, the request is queued at the manager in its pending queue until the request can be
satisfied. If the access can be granted, the manager marks the request in the order queue
as active, updates the parallel I/O data structure, and sends a message containing the
access permission along with any new global information to the client. When the client
receives the manager’s message, the client’s file data structure is updated to reflect the new
global information.

When access is allowed at the client process, the I/O operation is verified, performed
and the parallel file pointer is locally updated. If the atomicity of the parallel I/O operations
is set to be a single I/O operation, the client surrenders control by sending the manager a
message containing the surrendered access permission and the updated information for that
parallel I/O object. If the I/O operation takes place within a defined transaction, control is
retained until the transaction is finished. Finally, the client process returns to the user’s
code. When the manager receives the access surrender message from the client, the
manager searches the order queue for the active I/O object and removes it. The manager
then searches the pending queue for the next I/O request that can be satisfied.

The global file pointer templates have I/O stream behaviour similar to the sequential
behaviour. There are differences when fclose and freopen are done by a client or when
collective or group fopen occurs. Closing a file on the client side causes the manager to
invalidate all remaining I/O requests left on the pending queue for that particular I/O object.
Reopening the file causes all subsequent I/O accesses to use the new file. When a
collective fopen is done, as pointed out earlier, one process is designated as the manager
to control access to the file pointer. The ordering attribute for the template (Section 4.1)
defines which process next gets access to the file.

The segmented file pointer templates are different in that a client receives access
permissions for a file pointer that lies within a range specified by the base or starting point
in the file and the extent or the number of bytes that define the limit of the segment. At
run-time, the base and extent for the client are determined by the manager using the user’s
supplied function with the manager advancing its file descriptor to point past the last
segment boundary. The client uses a local copy of the segment if the file is opened in write
or update mode. One attribute allows segmented files opened in read-only mode to be
copied if so desired by the user. If fixed-length records are specified, the segments are
updated as-received.

If a newspaper template that uses a defined-length extent (greater than zero) is
selected, each process must stay between these two limits (base to base+extent).
Defined-length segments do not mean fixed-length records. Currently the file is
segmented by a user-supplied function at run-time. In the future, we hope to derive the
segment size by analyzing the code. The user can specify unknown-length records by
supplying an extent of 0. This unknown-length extent is only useful if the file is opened
using write-only mode. One side-effect of using unknown-length extents is that both
testing for end-of-file or any read or write operation now block until the outstanding
segments have been processed and reassembled in the file.

The order attribute indicates how the file will be reassembled when a client is finished
with a segment. For example, if ordered I/O is specified, the segments are integrated as
specified by the call ordering. If relaxed I/O is used, segments representing similar work
(α type) are assembled in an as-received order with the other segments (β type) blocked

11

from being committed to disk until all α segments are finished. Chaotic I/O allows any
segment to be re-integrated into the manager’s file in an as-received fashion.

If a report template is used, unknown-length extents are not appropriate. When a
report I/O operation crosses a segment boundary (either less than base or greater than
extent), the client requests permission from the manager to access the new segment. The
manager waits until the requested segment is free or it asks the client that owns the
requested segment to temporarily give the requested read or write permission to the
segment. If the segment is free, the manager passes the new segment on to the client. To
prevent deadlock, the client gives up its current segment before receiving the new segment.

To ensure that multiple processes do not have access to the same segment, the manager
blocks if the user attempts to fseek back in the file when there are still segments left in the
pending queue. Seeking forward is not an error and does not block unless the manager
exceeds its defined boundaries. Similarly, the manager blocks on an fclose until the
outstanding segments are consumed. The freopen does not affect processes currently
working with a particular segment but any outstanding segments waiting for a process are
modified to point to the new file.

When a client is finished with a file segment, it sends a message to the manager that it is
finished. If the segment has been modified, the message also contains the modified
segment. The manager processes the client’s message and updates its file appropriately

The independent templates treat files similar to the sequential stream I/O except that
write operations are visible only to the local client. When the client is finished processing
the file, the manager gets the updated file. The ordering of the write operations determines
when changes to the manager’s file become visible to the collective.

5 Programming with Parallel I/O Templates
This section examines in detail the parallelization of a real problem to illustrate the

software engineering advantages of template I/O. The program is derived from a molecular
docking problem in biochemistry. In Figure 5 the application specifics have been
abstracted out, leaving the high-level I/O view of the program. The code looks similar to
that in Figure 1, but the Child functions, of course, are different. As well, the rewind
introduces new considerations. A template I/O (Enterprise [31]) version of this program
will be compared to a hand-coded (PIOUS [27]) implementation.

#include <stdio.h>

main(int argc, char **argv)
{

FILE *fin, *fout ; /* Input and output file descriptors */

fin = fopen(argv[1], “r”) ; /* Open the input file */
fout = fopen(argv[2], “w+”) ; /* Open the output file */
while (! feof(fin)) { /* Until end of file work */

Child(fin, fout) ;
}
fclose(fin) ; /* Close the input file */
rewind(fout) ; /* Rewind the output file to the beginning */
Stats(fout) ; /* Perform summary statistics on output */
fclose(fout) ; /* Close the output file */
return 0 ;

}

Figure 5 - Sequential code for fine-grained I/O test program.
In the sequential version, the Child reads from a file (fin) and performs calculations,

with the results going to an output file (fout). Once the input is exhausted, the main
program rereads the output file to analyze the results (Stats).

12

The input and output files contain data objects within data objects within data objects.
Each object has its own specific read and write functions and knows how many immediate
sub-objects it contains. All I/O is spread throughout the code and is quite fine-grained (one
to several hundred bytes at most for any individual I/O operation). In the real application,
the data objects are all variable length but to keep this example simple, the records were all
set to a fixed length.

5.1 Parallel Design Considerations
Since each Child computation is independent of the others, multiple Child processes

can run concurrently. They need only coordinate reading from the input file and writing to
the output file. There is no need to preserve the correlation between the input file order and
the output file order.

Coordination of the input file must guarantee that each input datum is read precisely
once. Since it does not matter which Child does which piece of work, segmenting the
input file avoids the inefficiency of having to synchronize file access. Each Child process
reads a contiguous disjoint interval in the file. The program has been set to use a segment
size of roughly 300K bytes. Output file access also needs to be synchronized. The
sequential program appends to the end of the output file. Since the output data is a fixed
size for each piece of input data, the output file can also be segmented.

Segmenting both the input and output files eliminates the need for Child processes to
synchronize their concurrent activities. However, they must synchronize before the
sequential Stats function can be called. A barrier is necessary to guarantee that all the
results are in the output file. The barrier is found in the rewind function since this
function puts the Parent’s file pointer in a position that potentially allows two processes
access to the same segment. Stats does a sequential read of the output file, summarizing
each record. Note that the parallel programmer must be careful with the output file, since
the Child function treats it as parallel I/O, while Stats treats it as sequential I/O.

Since there are few constraints on the ordering of input and output, it allows us to
experiment with a variety of parallel I/O implementations.

5.2 Template I/O in Enterprise
#include <stdio.h>
Parent (int argc, char **argv)
{

FILE *fin, *fout ; /* input and output file descriptors */

fin = fopen(argv[1], “r”) ; /* Open the input file */
fout = fopen(argv[2], “w+”) ; /* Open the output file */
while (! feof(fin)) { /* Until end of file work */
 Child(fin, 1, fout , 1) ;
}
fclose(fin) ; /* Close the input file */
rewind(fout) ; /* Rewind the output file to the beginning */
Stats(fout) ; /* Perform summary statistics on output */
fclose(fout) ; /* Close the output file */
return 0;

}

Figure 6 - Modifications to sequential code for Enterprise.

Using a graphical interface, the programmer specifies that one process, called Parent,
can call multiple instances of the Child process. To have this program run correctly under
Enterprise, the user must make a number of small changes, as shown in bold in Figure 6.
All the changes to the user code are Enterprise-specific (for data marshalling purposes) and
have nothing to do with parallel I/O. In the implementation generated by Enterprise, all
calls to Child will be translated to a message sent to a remote process. The Enterprise run-

13

time system takes care of the spawning of processes, communication (sending, receiving,
marshaling/demarshalling of data), synchronization and program termination.

The application parallelism is specified graphically in Enterprise and saved in a file
separate from the sequential source code (the graph file). For this example, to specify the
newspaper template add the following parallel I/O annotation in the graph file for the
Parent:

fin newspaper fout newspaper

The Enterprise compiler will ensure that all occurrences of these file pointers in Parent and
Child will have the appropriate parallel I/O semantics enforced.

A newspaper (segmented file) requires a segment size. Ideally, this consideration
should be transparent to the user but, unfortunately, it is difficult to automatically choose a
good segment size. The user knows best how the I/O is to be accessed, so for segmented
files, the user must provide a call-back function that specifies the segment offsets. Figure 7
shows an example of the function appropriate for this application. The bolded code
indicates the user-supplied portion, while the rest indicates the Enterprise predefined code
that the user does not modify.

unsigned long
Enterprise_SegmentFnc(FILE *fp, char *AssetName, char *VariableName)
{

/* Based on the process name and file descriptor, return the */
/* file’s segment size. It is possible to use the file */
/* pointer to derive a dynamic segment size but it is not */
/* necessary for this example. */
/* For clarity, the following is in pseudo-code */
if (AssetName == “Child” && VariableName == “fin”)

return ChildInBufferSize ;
if (AssetName == “Child” && VariableName == “fout”)

return ChildOutBufferSize ;
if (AssetName == “Parent” && VariableName == “fin”)

return ParentInBufferSize ;
if (AssetName == “Parent” && VariableName == “fout”)

return ParentOutBufferSize ;
return 0 ;

}

Figure 7 - I/O segmentation function used by template I/O in Enterprise.

Enterprise uses a source-to-source translation to insert the correct code to do message
communication and synchronization. The translator has been modified to look for parallel
I/O file descriptors (as identified in the graph file) and replace them with calls to parallel I/O
functions. The machine-generated source code is then conventionally compiled and linked
for a target architecture. The Enterprise run-time library uses the graph file and run-time
computational behaviors to implement the parallel I/O operations. Since the I/O behavior is
interpreted at run-time, the user can change the I/O templates without having to recompile
the program. For example, the parallel template for fin can be changed from newspaper
to meeting and the program immediately re-run. As well, fin could be converted back to
sequential I/O without any additional effort by the user. This makes it easy for the user to
experiment with different types of I/O (and computational) parallelism. Note that in any
other system, changing the I/O behavior would necessitate many changes to the source
code.

5.3 PIOUS Implementation
This section describes our experiences in implementing the program of Figure 5 using

PIOUS [27]. First, the MPI-IO alpha versions had just been released at the time of testing.
Testing and comparing alpha software is not appropriate or fair to either system. PIOUS has
been available for about a year and seems reasonably stable. Second, PIOUS and Enterprise

14

both work well using PVM. By keeping the hardware and the communications software
constant, more meaningful comparisons can be drawn.

Comparing PIOUS with template I/O is not intended as a critique of PIOUS or of any
other parallel I/O system. Rather, it is intended as an experiment to see if parallel I/O
templates are viable. It is assumed that the low-level libraries and systems would be
integrated with these high-level templates in a fashion similar to what Enterprise has
demonstrated with computational parallelism.

Several PIOUS implementations of the example application were built. Any PIOUS
application must to import a file into the PIOUS file system before it can be accessed.
Similarly, the output file must be exported back to the file system. The user needs to write
these conversion routines.

The first PIOUS version used global file pointers. Because the ordering of the input and
output file is not required for this application, the input and output files could be treated as
globally shared resources. Globally shared files effectively have one global file descriptor,
for which all processes have to synchronize their access. (This is similar to the meeting
or log templates.) The program retrieved an entire data segment as one big block I/O
operation and cached the block on local disk storage (/tmp). The locally cached data was
processed using the conventional stream I/O (Child code was not touched) with the output
again going to local disk storage. After processing, the results were exported as another
big block I/O operation. When the end of the input file is reached, all the Child processes
notify the Parent. When all the children have reported in, the Parent continues on to the
sequential part of the computation.

This approach proved to be the easiest to implement since most of the explicit
parallelism is hidden by the global shared file synchronization. It allowed minimal impact
on the existing user’s code by using the standard I/O operations to read the local file and
then create the output data segment.

A second implementation involved importing the input file into PIOUS as a list of
segments and creating a corresponding list of empty output file segments. (This is similar
to the newspaper or report templates.) The user had to write additional code to
distribute the input segments as they were requested by idle Child processes. Initially, the
Parent allocates one segment to each Child, but as a Child completes its work, the
Parent is responsible for allocating it a new segment.

Each Child process opens the appropriate input and output file segments, copies the
local segment of work to a temporary file in one I/O operation, opens the temporary output
file, performs the work and then exports the local output file back to the parallel output file
(again in one operation). This repeats until all segments are distributed. The Parent
process is then informed and the Child process exits after cleaning up the temporary files.
The advantage of this method is that the output is in the same order as the sequential
version. Again, the Child code was not touched.

The final method was to write a pure PIOUS application. It used the PIOUS segmented
file capabilities. However, instead of importing or exporting a block of work to local
storage, all parallel I/O operations were identified and replaced with the appropriate PIOUS
function calls. This was the most intrusive solution as significant portions of the Child
code needed modifications.

Each approach requires a significant amount of new code. This would also be true
when using any other low-level parallel I/O library. The caching version of the program
using the global file pointers is given in Appendix A (note that much of the implementation
has been abstracted into subroutines that, for brevity, are not included). The original
sequential version is about 530 lines of code. The parallel version is approximately 350
lines longer. Any changes in the I/O functionality of the program must be reflected in the
source code. For example, if the user wants to do the equivalent of changing a

15

newspaper to a meeting, a considerable number of changes have to made to the source
code, with the resulting overhead of testing and debugging the changes.

6 Performance
Section 5 showed the differences in implementing a parallel I/O algorithm in PIOUS and

Enterprise. If the number of lines of extra code is used as a metric, it appears that templates
are a better choice. However, is the performance of a template approach comparable to a
hand-crafted version?

This section presents the performance results of two applications. The first is the fine-
grained I/O application discussed in Section 5; the second is disk-based matrix multiply
which is implemented as a large-grained I/O application. Both applications have similar
parallel computational behaviours. However, they are quite different in their I/O
behaviours. Both PIOUS and Enterprise use PVM as the message passing library; all
applications were compiled to the same level of optimization (-O2).

The eleven processors used were a Sparc 5 (32MB) with 2GB disk, two SUN Classics
(32MB), four SUN ELCs (one 24MB and three 16MB), and four SUN SLCs (16MB).
One SUN Classic has a 2GB local disk attached to it as well. All processors used local
disks for swap and temporary files (/tmp). The network consisted of two Ethernet
subnets. One of the subnets is further segmented to get more concurrent usage of the
network. Where possible, machines that were physically on one segment or subnet were
used. However, some configurations did cross net boundaries since the gain in processor
speed overcame any network delays. It should be noted that when network boundaries
were crossed, the deviation of results grew larger, as did the impact of the application on
other users of the network.

It is difficult to get meaningful sequential times. The two processors that have the local
disks are the most obvious ones to use. The fastest processor of the group used for testing
is also one of the file servers and was eventually used to generate the base sequential time.
However, there is a significant difference in the processor speeds in the cluster. Therefore
the values presented here should be compared for their relative performances and not as
absolute speedups. All times reported are the best of at least five runs. The best time is
used instead of an average time because exclusive access to both the network and
workstations was not an option.

6.1 Fine Grained I/O

This fine-grained I/O application has been discussed in Section 5. A total of seven
PIOUS versions were developed and three of them are presented along with the segmented
I/O Enterprise version. Each of the other PIOUS versions gave similar results to one of the
three that is presented. The versions not reported used large system buffers to try to reduce
the number of physical disk accesses or used low-level I/O calls.

The first PIOUS version uses global file semantics with local file caching of file
segments (Global Stream PIOUS, or GSP for short). That is, a large PIOUS I/O operation is
done and the resulting block is cached on a local disk. The user's code reads from this
local file while writing to another local file. After the work is finished for this segment, the
local output file is read in and written to the PIOUS file in one operation. The second
version uses a similar approach except that the files are segmented by PIOUS rather than the
user (Stream Segmented PIOUS, SSP). However, the user is responsible for distributing
the segments. In the third implementation, all the I/O is done in a segmented file system
using PIOUS function calls, without any caching (Pure Segmented PIOUS, PSP). From the
programming perspective, this version required the most number of code changes.

Enterprise has one version that gives acceptable parallel I/O performance: both the input
and output files are segmented using the newspaper template. Another version uses the
newspaper template for the input and the log template for the output. This did not give

16

good performance because the output file was locked until all the write operations for a
given Child process were finished. The other Child processes were blocked waiting for
access. The times for this inferior version are not shown.

Children PIOUS
used Enterprise Pure Segmented

(PSP)
Stream Segmented

(SSP)
Global Stream

(GSP)
2 1484 1917 1409 1322
5 813 1040 704 699
10 513 799 509 505

Table 1 - Elapsed times in seconds for Enterprise and PIOUS (PSP, SSP and GSP). Import
and export times are not included. Sequential time was 1914 seconds.

Table 1 shows the results for the small-grained I/O tests. For both systems, the time
for spawning the remote processes is ignored. The cost of the PIOUS import operation (30-
60 seconds depending on the segmentation factor) is ignored as this could be considered a
one-time cost if the input file was generated in situ. Similarly, the costs of creating and ex-
porting the output file back to the network file system are ignored (5-10 seconds).

The results show the effect of using two file systems for the physical storage. In the
case of Enterprise, the input file was on one file system and the output was on the other.
PIOUS distributes files between the two file systems. In all instances, wherever possible,
the effect of the network was minimized. The number of processors used was one more
than the number of children. No processor ran more than one Child process.

The Enterprise performance, although comparable, was slightly inferior to the GSP and
SSP versions. Even though it used a similar design in its implementation, the cost of using
templates to abstract the parallel I/O diminished only with a larger replication of the
workers. The Enterprise implementation checks every I/O operation if the file pointer has
parallel behaviour. If there are many I/O operations, this cost becomes more significant.
Clearly, for this example there is a small performance cost to using templates. However,
the Enterprise application still shows improved performance compared with the sequential
time. Future work on optimization using pre-fetching and compiler code analysis to order
I/O operations will only improve the template performance.

The benefits of templates are seen in the amount of modification to the user’s code and
the ease of changing parallel behaviours. Each PIOUS version took several hours to modify
and debug. For the Enterprise version, the changes to the sequential code, as specified in
Section 5.2, were done and the application was generated. This took about twenty minutes
from starting with the sequential code until the first test run. The application was first
tested using a meeting template for fin and a log template for fout. Performance runs
were generated in newspaper mode simply by changing the parallel behaviour type for
both file descriptors and making no changes to the code! No recompilation was necessary
as the segmentation function had already been written in anticipation of using the
newspaper template. Any performance penalty for using templates should be weighed
against the potential benefits of quickly getting the parallel application up and running.

The PSP implementation uses PIOUS to perform significant numbers of fine-grained I/O
operations. This is very expensive as each I/O operation is converted to a message.
However, it does show a performance gain over the sequential version but not as much as
the other two implementations. The GSP version using global file pointers shows little
difference from the SSP version except when only two child processes were used.
Possibly, the cost of segmentation was finally showing.

It is interesting that by using the global synchronization offered by PIOUS with the
caching of input and output segments to allow stream I/O operations, this application

17

shows the best performance. However, would this be the case if the application only does
large-grained I/O?

6.2 Large Grained I/O
The large-grained I/O application chosen was disk-based matrix multiplication,

C = A * B.
This application is simple to code and can be done using large-grained I/O operations. The
A and C matrices were segmented into user-specified stripes with the B matrix
independently read by each processor. The B matrix was transposed on disk to make data
input faster.

The same parent-child computational parallelism used by the fine-grained I/O
application was used. In this case, the application had three parallel file pointers (the A , B,
and C matrix data files). The PIOUS version took about 375 extra lines of code to
implement both the computational and I/O parallelism. The Enterprise version had to add
about 20 extra lines for the segmentation function in addition to the modifications for
passing the file pointers.

Children 50 rows per stripe
used Enterprise PIOUS

2 2225 2684
5 1473 1662
10 1598 1580

Table 2 - Disk-based matrix multiply timings in seconds for 2000 by 2000 matrix of
doubles (reals) using Enterprise and PIOUS (input and export times not included).
Sequential time is 2352 seconds for stream I/O.

Table 2 shows the results for Enterprise and a PSP implementation multiplying two
2000 by 2000 matrices of doubles (reals) stored in binary format and using a striping factor
of 50 rows. Again, the cost of importing and exporting the files into and out of PIOUS (180
seconds) is not included in the test results. Preliminary experiments showed that using this
striping factor gave better performance than using 100 or 25 rows per stripe. This is due to
the ratio of work to message size and the different CPU speeds for the given network
configuration.

The Enterprise results are better than PIOUS when using fewer child processes. This
was unexpected but one explanation is offered. PIOUS uses direct process-to-process
TCP/IP message-passing for parallel I/O, thereby by-passing the PVM daemons. On the
other hand, Enterprise uses both the network file system (on-demand small messages) and
default routing through the PVM daemons to communicate messages and file information.
The differences can be attributed to the cost of using TCP/IP instead of UDP to transport
data across the network. These differences are magnified because of the amount of data
being accessed (1344 Mbytes). Using a replication factor of ten shows comparable results
for either system. This is likely due to the network becoming saturated (measurements
showed the network to be between 81% and 87% of maximum utilization).

These results highlight the difficulty of using performance as the determining metric for
deciding the effectiveness of a given parallel I/O system. Just because Enterprise uses the
network file system, which in turn uses a different protocol for transmitting data,
Enterprise performs better for this particular example. In contrast, the previous example
shows that PIOUS is somewhat better than Enterprise. The observed performance has little
to do with the actual implementation of the I/O templates in Enterprise but rather the
implementation of the network file system. Nevertheless, templates once again yield
comparable performance.

18

Ultimately, it is the network availability that determines the overall performance of a
parallel I/O application. Being able to experiment with different implementations that
exhibit the same parallel behaviour gives more flexibility in tuning an application to a
specific network, processor, and loading. Templates offers this flexibility with little cost.

7 Conclusions
The experiments demonstrate that template I/O is competitive in performance to the

hand-coded alternative. The templates provide acceptable performance in return for
minimal programming effort. Template I/O allows the user to quickly experiment and
modify the parallel I/O characteristics with little or no modifications to the sequential source
code. Changing the parallelism is a matter of changing either the computational or I/O
templates. Because of the integration provided by the PPS, any changes to one aspect of
the parallelism will be reflected (if necessary) in all other aspects.

Keying a parallel implementation to a specific underlying communication and parallel
I/O library has positive and negative aspects. One positive benefit is that the best
performance, tuned for specific architectures and systems, is usually possible. The
negative aspects can be seen in the number of additional lines of code that are needed to be
written. There is the disruption of the original sequential code to implement the parallel
mode(s). As well, there is the difficulty of changing the parallelism to reflect modifications
in the original application, changing system libraries, or the hardware used to run the
parallel application. Finally, better performance may be achieved using a different parallel
I/O system.

The benefits of using parallel I/O templates in a parallel programming system are:
• It is easy to change the I/O parallelism.
• The templates are simple and can be combined to create more complicated parallel

I/O abstractions.
• The computational and file I/O parallelisms are integrated.
• Correct code is generated for the chosen parallel behaviour.
The benefits of achieving high performance, hand-tuned parallel I/O must be amortized

against the cost of developing, debugging and testing the custom code. For many
applications, the performance gains possible from a low-level implementation do not justify
the additional effort.

Acknowledgments
Enterprise is a large team project and very little of this could be accomplished without the
efforts of many graduate students and researchers. We would specifically like to thank
Diego Novillo, Steve MacDonald, Randal Kornelsen, and Paul Iglinski for their
contributions to this project. As well, we would like to thank Steve Moyer for his advice
on the PIOUS implementations and discussions on the test results. This research was
supported by research grants from NSERC and a grant from IBM Canada.

Bibliography
[1] Ö. Babaoglu, L. Alvisi, A. Amoroso, and R. Davoli, “Paralex: An Environment for

Parallel Programming in Distributed Systems,” University of Bologna, Italy,
Technical Report UP-LCS-91-01, February 1991.

[2] A. Beguelin, J. Dongarra, A. Geist, R. Manchek, and K. Moore, “HeNCE: A
Heterogeneous Network Computing Environment,” University of Tennessee,
Technical Report CS-93-205, August 1993.

19

[3] M. Beltrametti, K. Bobey, R. Manson, M. Walker, and D. Wilson, “PAMS/SPS-2
System Overview,” In proceedings of Supercomputer Symposium, pp. 63-71,
Ontario, Canada, 1989.

[4] R. Bennett, K. Bryant, A. Sussman, R. Das, and J. Saltz, “Jovian: A Framework
for Optimizing Parallel I/O,” In proceedings of Scalable Parallel Libraries
Conference, pp. 10-20, Mississippi State, Mississippi, 1994.

[5] R. Bordawaekar and A. Choudhary, “Language and Compiler Support for Parallel
I/O,” In proceedings of IFIP WG 10.3 Programming Environments for Massively
Parallel Distributed Systems, pp. 26.1-26.8, Monte Verità, Ascona, Switzerland,
1994.

[6] R. Bordawekar and A. Choudhary, “Communication Strategies for Out-of-core
Programs on Distributed Memory Machines,” Syracuse University, Syracuse, NY
13244, USA, NPAC Technical Report SCCS-667, December 1994.

[7] R. Bruce, S. Chapple, N. MacDonald, and A. Trew, “CHIMP and PUL: Support
for Portable Parallel Computing,” Edinburgh Parallel Computing Centre, The
University of Edinburgh, The King’s Buildings, Mayfield Road, Edinburgh, EH9
3JZ, U.K., Technical Report EPCC-TR93-07, March 1993.

[8] P. Corbett, D. Feitelson, Y. Hsu, J.-P. Prost, M. Snir, S. Fineberg, B. Nitzberg,
B. Traversat, and P. Wong, “Overview of the MPI-IO Parallel I/O Interface,” In
proceedings of Third Annual Workshop on Input/Output in Parallel Distributed
Systems, pp. 1-15, Santa Barbara, California, 1995.

[9] P. F. Corbett, S. J. Baylor, and D. G. Feitelson, “Overview of the Vesta Parallel
File System,” In proceedings of IPPS ‘93 Workshop on Input/Output in Parallel
Computer Systems, pp. 1-16, Newport Beach, CA, 1993.

[10] P. E. Crandall, R. A. Aydt, A. A. Chien, and D. A. Reed, “Input/Output
Characteristics of Scalable Parallel Applications,” In proceedings of
Supercomputing’95, pp. , San Diego, CA, 1995.

[11] T. W. Crockett, “File Concepts For Parallel I/O,” In proceedings of
Supercomputing’89, pp. 574-579, Reno Nevada, USA, 1989.

[12] D. L. Eager and J. Zahorjan, “Chores: Enhanced Run-time Support for Shared
Memory Parallel Computing,” ACM Transactions on Computer Systems, 11(1),
pp. 1-32, 1993.

[13] W. Fenton, B. Rankumar, V. A. Salctore, A. B. Sinha, and L. V. Kale,
“Supporting Machine Independent Parallel Programming on Diverse Architectures,”
In proceedings of 1991 International Conference on Parallel Processing, pp. II-
193-201, Boca Raton, Florida, 1991.

[14] J. Flower and A. Kolawa, “Express is not just a message passing system: Current
and future directions in Express,” Parallel Computing, 20(4), pp. 597-614, 1994.

[15] I. Foster, C. Kesselman, and S. Tuecke, “Nexus: Runtime Support for Task
Parallel Programming Languages,” Argonne National Laboratory, Technical Report
ANL/MCS TM 205, February 1995.

[16] G. Geist and V. Sunderam, “Network-Based Concurrent Computing on the PVM
System,” Concurrency: Practice and Experience, 4(4), pp. 293-311, 1992.

[17] K. Goldman, M. Anderson, and B. Swaminathan, “The Programmers’
Playground: I/O Abstraction for Heterogeneous Distributed Systems,” Department
of Computer Science, Washington University, Saint Louis, MO 63130-4899,
Technical Report WUCS-93-29, June 1993.

[18] A. S. Grimshaw, “Easy-to-Use Object-Oriented Parallel Processing with Mentat,”
Computer, 26(5), pp. 39-51, 1993.

[19] A. S. Grimshaw and E. C. Loyot Jr., “ELFS: Object-Oriented Extensible File
Systems,” University of Virginia, Computer Science Report TR-91-14, July 1991.

[20] M. Harry, J. M. del Rosario, and A. Choudhary, “The Design of VIP-FS: A
Virtual, Parallel File System for High Performance Parallel and Distributed
Computing,” Operating Systems Review, 23(3), pp. 35-48, 1995.

20

[21] J. H. Hartman and J. K. Ousterhout, “The Zebra Striped Network File System,”
ACM Transactions on Computer Systems, 13(3), pp. 274-310, 1995.

[22] M. Henderson, B. Nickless, and R. Stevens, “A Scalable High-performance I/O
System,” In proceedings of Scalable High-Performance Computing Conference,
pp. 79-86, Knoxville, Tennessee, 1994.

[23] V. Karamcheti and A. Chien, “Concert - Efficient Runtime Support for Concurrent
Object Oriented Programming Languages on Stock Hardware,” In proceedings of
Supercomputing’93, pp. 598-607, Portland, Oregon, 1993.

[24] D. Kotz, “Interfaces for Disk-Directed I/O,” Department of Computer Science,
Dartmouth College, Hanover, NH 03755-3510, Technical Report PCS-TR95-270,
September 1995.

[25] D. Kotz and N. Nieuwejaar, “Dynamic File-Access Characteristics of a Production
Parallel Scientific Workload,” In proceedings of Supercomputing ‘94, pp. 640-
649, Washington, DC, 1994.

[26] O. Krieger and M. Stumm, “HFS: A Performance-Oriented Flexible File System
Based on Building-Block Compositions,” In proceedings of Fourth Workshop on
Input/Output in Parallel and Distributed Systems, pp. 95-108, Philadelphia, 1996.

[27] S. A. Moyer and V. S. Sunderam, “Scalable Concurrency Control for Parallel File
Systems,” In proceedings of Third Annual Workshop on Input/Output in Parallel
and Distributed Systems, pp. 90-106, Santa Barbara, CA, 1995.

[28] N. Nieuwejaar and D. Kotz, “Low-level Interfaces for High-level Parallel I/O,” In
proceedings of Third Annual Workshop in Input/Output in Parallel and Distributed
Systems, pp. 47-62, Santa Barbara, CA., 1995.

[29] N. Nieuwejaar, D. Kotz, A. Purakayastha, C. Schlatter Ellis, and M. Best, “File-
Access Characteristics of Parallel Scientific Workloads,” IEEE Transactions on
Parallel and Distributed Systems, 3(1), pp. 51-60, 1995.

[30] A. Purakayastha, C. Schlatter Ellis, D. Kotz, N. Nieuwejaar, and M. Best,
“Characterizing Parallel File-Access Patterns on a Large-Scale Multiprocessor,” In
proceedings of Ninth International Parallel Processing Symposium, pp. 165-172,
Santa Barbara, CA, 1995.

[31] J. Schaeffer, D. Szafron, G. Lobe, and I. Parsons, “The Enterprise Model for
Developing Distributed Applications,” IEEE Parallel & Distributed Technology,
1(3), pp. 85-96, 1993.

[32] D. Szafron and J. Schaeffer, “Experimentally assessing the Usability of Parallel
Programming Systems,” In proceedings of IFIP WG10.3 Programming
Environments for Massively Parallel Distributed Systems, pp. 19.1-19.7, Monte
Verità, Ascona, Switzerland, 1994.

[33] R. Thakur, R. Bordawekar, A. Choudhary, R. Ponnusamy, and T. Singh,
“PASSION Runtime Library for Parallel I/O,” In proceedings of Scalable Parallel
Libraries Conference, pp. 119-128, Mississippi State, Mississippi, 1994.

[34] R. Thakur, W. Gropp, and E. Lusk, “An Experimental Evaluation of the Parallel
I/O Systems of the IBM SP and Intel Paragon using a Production Application,”
Mathematics and Computer Science Division, Argonne National Laboratory,
Argonne, IL 60439, USA, Technical Report MCS-P569-0296, February 1996.

[35] R. Thakur, E. Lusk, and W. Gropp, “I/O Characterization of a Portable
Astrophysics Application on the IBM SP and Intel Paragon,” Mathematics and
Computer Science Division, Argonne National Laboratory, Argonne, IL, Technical
Report MCS-P534-0895, August 1995.

[36] D. E. Vengroff and J. S. Vitter, “I/O-Efficient Scientific Computation Using
TPIE,” In proceedings of 1995 IEEE Symposium on Parallel and Distributed
Processing, pp. 74-77, San Antonio, TX, 1995.

[37] D. W. Walker, “The Design Of A Standard Message Passing Interface For
Distributed Memory Concurrent Computers,” Parallel Computing, 20(4), pp. 657-
673, 1994.

21

APPENDIX A: A PIOUS Implementation
This appendix contains the PVM/PIOUS implementation for the small-grained I/O

example program. From the original sequential code, there is a significant amount of new
code that needs to be written. The original version is about 530 lines of code. Converting
to parallel increases the program size by approximately 350 lines. The bolded lines in the
code represent additional parallel code that the user had to write. For this example, the
sequential code for Child did not have to be modified. As much as possible, the PVM
code for the computational parallelism has been hidden away.

There are several functions that the P a r e n t process calls to create
(CreateFileInPIOUS), import files into (ImportFileToPIOUS), or export files from
(ExportFileFromPIOUS) the PIOUS files system. These are tuned to the application
granularity of an I/O segment and are specific to the application.

The Parent spawns all the Child processes (CreatePVMChildren) and waits for all
the Child processes to finish (WaitForChildrenToFinish) before proceeding with the
summary statistics (Stats). In the case of the segmented I/O, the Parent must also
coordinate the access of the segments by the Child processes to ensure that all the
segments are read and written only once. Note the distinction between the parallel and
sequential I/O for the same file.

A Child process opens the global input and output files, copies the local segment of
work (in one operation) to a temporary file, opens the temporary output file, performs the
work and then exports the local output file back to the parallel output file (again one
operation). This repeats until the global input file is exhausted. The Parent process is
then informed and the Child process gracefully exits after cleaning up the temporary files.

#include <pvm3.h>
#include <pious1.h>
#include <stdio.h>

#define GROUP “iog”
#define MYMESSAGE 1234
#define MAXPATHLEN 1024
#define INBUFSIZE 352108
#define OUTBUFSIZE 18050
#define REGMODE ((PIOUS_modet) (PIOUS_IRUSR | PIOUS_IWUSR | \

PIOUS_IRGRP | PIOUS_IROTH))
main(int argc, char **argv)
{

int myTID ; /* my PVM handle */
int myParentTID ; /* My parent’s PVM handle */
int *childTID ; /* List of children’s PVM handles */
int dscnt ; /* PIOUS handle */
int nchild ; /* Number of children wanted */
int infd, outfd ; /* The parallel file descriptors */
int i ; /* A counter */
int bufid, status; /* PVM buffer handle and status */
FILE *fp ; /* Local segment’s input file handle */
FILE *ofp ; /* Local segment’s output file handle */
char ibuffer[INBUFSIZE] ; /* Input buffer */
char obuffer[OUTBUFSIZE] ; /* Output buffer */
char inFile[MAXPATHLEN] ; /* Global input and */
char outFile[MAXPATHLEN] ; /* Output file path */
char myTmpInFile[MAXPATHLEN] ; /* Temporary input and */
char myTmpOutFile[MAXPATHLEN] ; /* Output file paths */

if ((myParentTID = pvm_parent()) == PvmNoParent) {
/* Parent -- spawn child processes */
/* argv[0]: process name argv[1]: input file name */
/* argv[2]: output filename argv[3]: # of child processes */

22

nchild = atoi(argv[3]) ;
ImportFileToPIOUS(argv[1]) ;
CreateFileInPIOUS(argv[2]) ;
childTID = (int *)malloc(nchild * sizeof(int)) ;
CreatePVMChildren(childTID, argc, argv) ;
WaitForChildrenToFinish(nchild) ;
free(childTID) ;
ExportFileFromPIOUS(argv[2]) ;
fp = fopen(argv[2], “r”) ; /* Open sequential file */
Stats(fp) ; /* Calculate the totals */
pvm_exit() ; /* Leave PVM */

} else { /* I'm a child process */

/* Child process -- wait for names of files to open */
bufid = pvm_recv(myParentTID, MYMESSAGE) ;
status = pvm_upkstr(inFile) ; /* The input file */
status = pvm_upkstr(outFile) ; /* The output file */

/* Ask for PIOUS default information */
dscnt = pious_sysinfo(PIOUS_DS_DFLT) ;

/* Open the pious input and output files */
infd = pious_popen(GROUP, inFile, PIOUS_GLOBAL, INBUFSIZE,
PIOUS_VOLATILE, PIOUS_RDONLY, PIOUS_IRUSR, dscnt) ;
if (infd < 0)
printError(status, “Opening input file: child”) ;
outfd = pious_popen(GROUP, outFile, PIOUS_GLOBAL, OUTBUFSIZE,

PIOUS_VOLATILE, PIOUS_RDWR | PIOUS_CREATE |
PIOUS_TRUNC, REGMODE, dscnt) ;

if (outfd < 0)
printError(status, “Opening output file: child”) ;

/* Create local copy of input/output files for this segment */
sprintf(myTmpInFile, “/tmp/in.%x”, pvm_mytid()) ;
sprintf(myTmpOutFile, “/tmp/out.%x”, pvm_mytid()) ;
while (1) {

/* Read in the next block of work */
status = pious_read(infd, ibuffer, INBUFSIZE) ;
if (status < 0) { /* Error */

printError(status, “Reading input: child”) ;
} else if (status == 0) { /* All done */

break ;
} else if (status > 0) { /* Normal situation */

/* Open local input file */
fp = fopen(myTmpInFile, “w+”) ;

/* Fill it up */
fwrite(ibuffer, sizeof(char), INBUFSIZE, fp) ;

/* Get it ready for the user’s code */
rewind(fp) ;

/* Open the local output file */
ofp = fopen(myTmpOutFile, “w+”) ;

Child(fp, ofp) ; /* Call user’s code */

/* Export the local output file to the global file */
rewind(ofp) ;
status = fread(obuffer, sizeof(char), OUTBUFSIZE, ofp) ;
status = pious_write(outfd, obuffer, status * sizeof(char)) ;

/* Close the local input and output files */
fclose(fp) ;
fclose(ofp) ;

23

}
}
/* Shutdown this child and let the parent know */
bufid = pvm_initsend(PvmDataRaw); /* A buffer please */
status = pvm_send(myParentTID, MYMESSAGE) ; /* Tell parent */
status = pious_close(infd) ; /* Close PIOUS input file */
status = pious_close(outfd) ; /* Close PIOUS output file */
pvm_exit() ; /* Exit pvm */
unlink (myTmpInFile) ; /* Remove the local input file */
unlink (myTmpOutFile) ; /* Remove the local output file */

}
return 0 ;

}

