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Abstract. We present two new compiler optimizations for explicitlygi¢el pro-
grams based on the CSSAME form: Lock-Independent Code M@tilCM) and
Mutex Body Localization (MBL). We have implemented thesémjzations on
top of the SUIF framework and present performance resultsdiected SPLASH
applications.

1 Introduction

Optimizations for explicitly parallel programs fall intavb classes: the adaptation of
sequential optimizations to a parallel environment; areldirect optimization of the
parallel structure of the program. There have been sevecaht advances in adapting
sequential optimizations such as global constant propagand dead-code elimination
to explicitly parallel programs [6, 10, 13]. There has bezsslemphasis on optimizing
the parallel structure of the program itself.

We build on a concurrent dataflow analysis framework call@SEME'[12] to
analyze and optimize the synchronization structure of lbedk and data parallel pro-
grams.Lock-Independent Code Motion (LICM) is an optimizing transformation that
can reduce the size of critical sections in the progrelntex Body Localization (MBL)
is a new transformation that converts references to shaesalary into references to lo-
cal memory inside critical sections of the code. We have @manted these algorithms
on top of the SUIF framework [5] and apply them to two SPLASHblagations [15]:
Water and Ocean. We also show that our techniques can beasetbmate common
optimizations that experienced programmers are currémtted to perform manually.

2 Redated Work

Previous work in the area of optimizing explicitly paralfglograms has concentrated
on the adaptation of sequential optimization techniqudbeqarallel case. Lee, Mid-
kiff and Padua propose a Concurrent SSA framework (CSSAgkpticitly parallel
programs and interleaving memory semantics [9]. They adayinstant propagation
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algorithm using the CSSA form. In recent work they have atiapded other SSA-based
technigues including common subexpression eliminatiehce hoisting [10]. Their
work only considers event-based synchronization operatimd imposes some restric-
tions on the input program. Knoop, Steffen and Vollmer depetl a bitvector analysis
framework for parallel programs with shared memory andrieéxing semantics [7].
They use their framework to adapt lazy code motion. Howeheir framework does
not include synchronization operations. This reduces ppodunities for optimization
in the general case.

In previous work we have extended the CSSA framework to jpm@te mutual ex-
clusion synchronization [13]. Our work extends the analysthniques proposed by
Lee et al.and shows the benefit of these extensions in the context ctaoinpropa-
gation for explicitly parallel programs. We also adapt ausadial dead-code removal
algorithm that takes advantage of mutual exclusion infdionaand describe an earlier
form of the LICM technique that we extend and improve in thaper.

3 TheCSSAME Form

The CSSAME form is a refinement of the CSSA framework [9] thabrporates more
synchronization analysis to identify memory interleawrtigat are not possible at run-
time due to the synchronization structure of the programil@®M®SSA only recognizes
event synchronization, CSSAME extends it to include muéaxalusion synchroniza-
tion and barrier synchronization [12]. CSSAME can be appt® both task and data
parallel programs.

Like the sequential SSA form, CSSAME has the property thatyeuse of a vari-
able is reached by exactly one definition. When the flow of mdrauses more than
one definition to reach a particular use, merge operatorsyaiuced to resolve the
ambiguity. Two merge operators are used in the CSSAME fafrfunctions andr
functions.¢ functions have the same meaning as in sequential SSAr[#jnctions
merge concurrent reaching definitions. Concurrent reactigfinitions are those that
reach the use of a variable from other threads.

The CSSAME form also examinesfunctions in critical sections of the code to
determine if they can be removed. Since thedanctions are in serialized sections of
the code, some conflicts inside mutex bodies become supesfara can be discarded.
This pruning process is based on two observations:

1. consecutive kills: only definitions that reach the exit points of a criticalti@t can
be observed by other threads.

2. protected uses: if the use of a variable is protected by a definition localhe trit-
ical section, then definitions coming from concurrent catisections will not be
observed in this thread.

These two conditions allow the removal of superfluous cardliges which in turn
may lead to the complete removal effunctions, thus creating more opportunities
for optimization [12]. The mutex synchronization analyrsvdifies every node in the
flowgraph so that they contain a use for each lock variakfleock andunl ock nodes
already contain a definition and a use 19t To determine whether or not a flow graph



noden is protected by locld. we compute reaching definition information for the use
of L atn. If at least one of the reaching definitions comes fronuahock node or if
there are no reaching definitions, then nads not protected by lock [12].

Mutex bodies are defined in terms of lock-protected nodegelmeral, a mutex
body By, (N) for lock variableL is a multiple-entry, multiple-exit region of the graph
that encompasses all the flowgraph nodes that are protegt@ddommon set of ock
nodes (V). In contrast, previous work [8, 11] has treated mutex bediesingle-entry,
single-exit regions. A mutex structure for a lock variallés the set of all the mutex
bodies forL in the program.

4 Lock-Independent Code Motion

Lock-Independent Code Motion (LICM) is a code motion tecjua that attempts to
minimize the amount of code executed inside a mutex bodg djpimization analyzes
each mutex body to find code that can be moved outside. If @ittief the transforma-
tion a mutex body only contains unlock nodes, then tbek andunl ock instructions
are removed.

An expression® inside a mutex bodyBy, (V) is lock-independent with respect to
L if moving E outsideB/, (V) does not change the meaning of the program. Similarly,
a statement (or group of statemendts}y lock independent with respect foif all the
expressions and definitions srare lock-independent. A flowgraph nodés lock inde-
pendent if all its statements are lock-independent. Theeoirof lock-independence is
similar to the concept of loop-invariant code for standaapl optimization techniques.
Loop invariant computations compute the same result winditiley are inside the loop
or not. Analogously, lock-independent code computes thees@sult whether it is in-
side a mutex body or not. For instance, a stateradimat references variables private to
the thread will compute the same value whether it is exedagde a mutex body or
not. This is also true if references globally shared variables not modified by angroth
thread concurrent with.

Lock-independent code is moved to special nodes caiteaiutex and postmutex
nodes. For every mutex bodyy, (V) there is a premutex node, denoedmutez(n;),
for eachl ock noden; € N. Each premutex nodgremutex(n;) immediate dom-
inates its associatedock noden;. Similarly, there is a postmutex node, denoted
postmutex(z;) for everyunl ock nodez;. Postmutex nodes are created as immedi-
ate post-dominators of each exit nade

4.1 Moving Statementsto Premutex Nodes

Given a lock-independent statemaritiside a mutex bodyy, (IV), LICM will attempt
to moves to premutex or postmutex nodes By, (V). The selection of ock nodes to
receive statementin their premutex node is done satisfying the following citinds
(proofs of correctness are available separately [12]):

Protection. Candidatd ock nodes are initially selected among all theck nodes in
N that reach the node containingdenotednode(s)). This condition provides an
initial set of candidaté ock nodes callegrotectors(s).



Reachability. Sinces is reached by all the nodes jrotectors(s), there is a con-
trol path between eadhock node inprotectors(s) andnode(s). Therefore, when
statement is removed from its original location, the statement mustdy@aced
on every path from eachock node tonode(s). This implies thats may need to
be replicated to more than one premutex node.

To determine whicH ock nodes could receive a copy efwe perform reacha-
bility analysis among thé ock nodes reaching (protectors(s)). This analysis
computes a partition oprotectors(s), called receivers(s), that contains all the

| ock nodes that may receive a copy of statemenThe selection of receiver
nodes is done so that (a) there exists a path betwesrd everyl ock node in
protectors(s), and (b) instances afoccur only once along any of these paths (i.e.,
s is not unnecessarily replicated).

Algorithm 1 computes all the different setslafck nodes that may receive a lock-
independent statemeastin their premutex nodes. Basically, the algorithm com-
putes reachability sets among the nodegnatectors(s). The setprotectors(s)

is partitioned intok partitions Py, P, ... P,. Nodes in each partitio®®; cannot
reach each other but put together they reach or are reacheeeby other node in
protectors(s). These partitions are the setslafck nodes that can receive a copy
of s in their premutex nodes.

Data Dependencies. When moving a statemeastto one of the receiver sets ferthe
motion must not alter the original data dependencies foistalement and other
statements in the program. H; is the selected receiver set fortwo restrictions
must be observed:

1. No variable defined by may be used or defined along any path fronde(s)
to every node irP;.
2. No variable used by may be defined along any path fromde(s) to every
node inP;.
These two restrictions are used to prune the set of receiv@esrcomputed in
Algorithm 1. Notice that since the program is in CSSAME forgrfunctions are
also considered definitions and uses for a variable.
When more than one statement is moved to the same premutexthedoriginal
data dependencies among the statements in the same prerod&erust also be
preserved. This is accomplished by maintaining the origieatrol precedence
when moving statements into the premutex node.

It is also possible to move statements forward to postmubebes of a mutex body
By, (N). The analysis for postmutex nodes is similar to the previmse. The condi-
tions are essentially the reverse of the conditions reddoepremutex nodes [12].

The LICMS algorithm scans all the mutex bodies in the progl@wking for lock-
independent statements to move outside the mutex body.l&elkclindependent state-
ments is checked against the conditions described previoushed’&i—15 in Algorithm
2 determine the sets of premutex receiversstdrhe initial set of candidates computed
by Algorithm 1 checks every lock node in a mutex body agaiashether looking for
paths between them.

Notice that it might be possible that a statement can be mimvidth the premutex
and the postmutex nodes. In that case a cost model shouldnite¢evhich node is more



Algorithm 1 Compute candidate premutex nodescéivers).

INPUT: A mutex bodyBy, (N) and a lock-independent statement
OUTPUT. A list of receiver sets. Each receiver 9&t containd ock nodes whose premutex nodes may recgive

1: protectors(s) « setofl ock nodes that reach.

2. Q « protectors(s)

3ke1

4: whileQ # 0 do

5. n; < first node inQ

6: P(k) + {n:}

7:  removen; from Q /* Add to P(k) all the nodes that are nobnnected with n; */
8: foreachnoden; € Q and Q # 0 do

9 if (there is no patm; — n;) and (there is no patm; — n;) then

16: P(k) + P(k) J{n;}

11: removen; from Q

12: end if

13:  endfor

14: bk« k+1

15: end while

16: return receivers < P(1), P(2),...,P(k — 1)

convenient. We will base our cost model on the effects of lmmktention. Suppose that
there is high contention for a particular lock. All the stagnts moved to premutex
nodes will not be affected by it because they execute befogeisition of the lock.
However, statements moved to the postmutex node will beyddldthere is contention
because they execute after the lock has been releasedfdreermehen a statement can
be moved to both the premutex and postmutex nodes, the permaitle is selected.

The basic mechanism for moving statements outside muteleodn be used to
move lock-independent control structures. Control stes are handled by checking
and aggregating all the nodes contained in the structueeargingle super-node and
treating it like a single statement. After this process,okithm 2 can be used to hoist
the structures outside mutex bodies [12].

4.2 LICM for Expressions

If hoisting statements or control structures outside motkies is not possible, it may
still be possible to consider moving lock-independent suypressions outside mutex
bodies. This strategy is similar to moving statements (At 2) with the following
differences:

1. Sub-expressions do not define variables. They only redahles or program con-
stants.

2. If a sub-expression is moved from its original locatidrg tomputation performed
by the expression must be stored in a temporary variableéextdsy the compiler.
The original expression is then replaced by the temporaighie. This is the same
substitution performed by common sub-expression andgpaetiundancy elimina-
tion algorithms [1, 3].

3. Contrary to the case with statements and control strest@xpressions can only
be moved against the flow of control. The reason is that theevadmputed by the
expression needs to be available at the statement corgdigroriginal expression.



Algorithm 2 Lock-Independent Code Motion for Statements (LICMS).

INPUT: A CCFG G = (N, E, Entryg, Ezitg) in CSSAME form with pre and postmutex nodes inserted in

every mutex body
OUTPUT. The program with lock-independent statements moved toctiieesponding premutex and postmutex

nodes

1: foreach lock variableL; do

2. foreach mutex bodyBy,; (N) € MutezStruct(L;) do
3 n; < node(L;)

4 foreach lock-independent statemesteached by:; do
5: D, + variables defined by

6: U, < variables used by

7 /* Determine which premutex nodes can receivé/

8 P «+ receivers ofs at premutex nodes (Algorithm 1)
9 foreach P; € P do

10: foreach noden € P; do

11: if (any path between n and node(s) defines or uses a variable inD,)
or (any path between andnode (s) defines a variable if/;) then

12: removeP; from P

13: end if

14: end for

15: end for

16: /* Determine which postmutex nodes can receive/

17: X < receivers ofs at postmutex nodes

18: foreach X; € X do

19: foreach nodez € X; do

20: if (any path between z and node(s) defines or wuses a variable inDy)
or (any path betweem andnode(s) defines a variable iV, ) then

21: removeX; from X

22: end if

23: end for

24. end for

25: /* Sets P and X contain sets of premutex and postmutex nodes that can eeceiv

26: if P # 0 then

27 select oneP; € P (cost model or random)

28: removes from its original location

29: replicates to each nodex € P;

30: elseif X # () then

31: select oneX; € X (cost model or random)

32: removes from its original location

33: replicates to each node: € X;

34 end if

35: end for

36: * Remove the mutex body if it is empty. */

37: if B;(N) = 0then

38: remove all thd ock andun| ock nodes ofBy; (N)

39: end if

40:  end for

41: end for




Algorithm 3 finds and removes lock-independent expressimm mutex bodies
in the program. The process of gathering candidate exjpresss similar to that of
SSAPRE, an SSA based partial redundancy elimination akgorj3]. Mutex bodies
are scanned for lock-independent first-order expressimhigh are expressions that
contain only one operator. Higher order expressions ardlbdiy successive iterations
of the algorithm.

Algorithm 3 Lock-Independent Code Mation for Expressions (LICME).

INPUT: A CCFG in CSSAME form
OouTPUT. The graph with lock-independent expressions moved todh@sponding premutex nodes

1: repeat

2. foreach lock variableL; do

3 foreach mutex bodyBr; (N) € Mg, do

4 E«+ E U set of lock-independent expressionsin, ; (N).
5: if E # 0 then

6: foreach expressior®; € E do

7. P «+ premutex receivers foE; (Algorithm 1)

8 candidates + 0

9: foreach P; € P do

10: if Yn € P; : (n DOM node(E;)) or (node(E;) PDOM n) then
11: candidates + P;

12: stop looking for candidates

13: end if

14: end for

15: if candidates # ( then

16: insert the statement; = E; in all the premutex nodes férock nodes incandidates
17: end if

18: end for

19: end if

20: end for

21: endfor

22:. [*Replace hoisted expressions inside each mutex body. */
23: foreach lock variableL ; do
24: foreach mutex bodyBr; (N) € Mg, do

25: replace hoisted expressionsBy, ; (V) with their corresponding temporaries
26: end for
27. endfor

28: until no more changes have been made

Once lock-independent expressions are identified, theigigolooks for suitable
premutex or postmutex nodes to receive each expression.bdéne that since ex-
pressions can only be hoisted up in the graph, it is not nacgss consider postmutex
nodes when moving lock-independent expressions. Dotk nodes are considered by
the algorithm. Furthermore, the candidateck must dominate or be post-dominated
by the node holding the expression (lires 13 in Algorithm 3).

The acceptable receiver sets are stored in theuselidates. It can be shown that in
this case, the algorithm for computing receiver premutedesqAlgorithm 1) will find
none or exactly one set bbck nodes that can receive the expression in their premutex
nodes [12].

Figure 1 shows an example program before and after runnenbItBM algorithm.
When LICM is applied to the program in Figure 1(a), the firsagh of the algorithm



moves the statement at lirfieand the assignment = 0 to the premutex node. The
statement at lin@0 is sunk to the postmutex node resulting in the equivalengianm
in Figure 1(b). There is still some lock-independent codéhis mutex body, namely
the expressiong < M at line7, the statement++ at line7 and the expressiogj] +
sgrt(a) = sqrt(b) at line8. The only hoistable expressiondgrt(a) * sqrt(b) because
it is the only expression with all its reaching definitiongside the mutex body (Figure
1(c)). Note that a loop-invariance transformation woulsiéhdetected this expression
and hoisted it out of the loop. LICM goes a step further angdtsdahe expression outside
the mutex body.

1 double X[]; /* sharedx/ 1 double X[]; /* sharedx/ 1 double X[]; /* sharedx/
2 parloop (i, 0, N) { 2 2 parloop (i, 0, N) {
3 double a b; /* local */ 3 parloop (i, 0, N) { 3 double a b; /* local */
4 double y[]; /= local %/ 4 double a b; /x local =/ 4 double y[]; /* local */
5 lock(L); 5 double y[]; / local x/ 5 b =a=x* sin@);
6 b =ax sin@a); 6 6 j=0;
7 for =0, < M;j++) { 7 .. 7t = sar(@ * sqrib);
8 X[il = ylil + sar(@) 8 b =a=x* sin@); 8 lock(L);
* sqrib); 9 j=0 9 for ;] < M;j++) {

9 1} 10  lock(L); 10 X[1 = y0i] + t;
10 a=yfi; 11 for G j < M;j++) { 1}
11 unlock(L); 12 X[l = yil + sar(® 12 unlock(L);
12 } * sqri(b); 13 a =y

3} 14 }

14 unlock(L);

15 a=yli;

16 ...

17 }

(a) Program before LICM. (b) LICM on statements. (c) LICM on expressions.

Fig. 1. Effects of lock-independent code motion (LICM).

The individual LICM algorithms can be combined into a singl€M algorithm.
There are four main phases to the algorithm. The first phasesléor mutex bodies
that have nothing but lock-independent nodes. These arsirtifest cases. If all the
nodes in a mutex body are lock-independent, thenl thek operations at the lock
nodes and thanl ock operations in the body can be removed. The next three phases
move interior lock-independent statements, control siines and expressions outside
the mutex bodies in the program.

5 Mutex Body L ocalization

Consider a mutex bodj;, that modifies a shared variablé (Figure 2(a)). With the

exception of the definition reaching the unlock node3gf, all the modifications done
to V inside the mutex body can only be observed by the thread eTdrey, it is legal to

create a local copy df and replace all the referencesidnside the mutex body to ref-
erences to the local copy. We call this transformatimtex body localization (MBL).



double V = 0; double V = 0; double V = 0; double V = 0;

parloop (i, 0, N) { parloop (i, 0, N) { parloop (i, 0, N) { parloop (i, 0, N) {
double x, y[I; double x, y[1, p-V; double x, y[], p-V; double x, y[], p-V;
int i; int i; int i; int i;
lock(L); lock(L); p-vV = 0;
lock(L); p_vV =V, p_vV = 0; i=0;
i=0; i=0; i=0; while (p-V <= x) {
while (V <= x) { while (p_V <= x) { while (p_V <= x) { p_V = p.V + y[i++];
V =V + yfi++]; p-V = p.V + yli++]; p-V = p_V + yli++]; }
} lock(L)
unlock(L); V = p.V,; V=V +pV; V =V +pV,
. unlock(L); unlock(L); unlock(L);
} } }

(a) A mutex body be- (b) After localization. (c) After  reduction ~ (d) After LICM.
fore localization. recognition.

Fig. 2. Applications of mutex body localization.

While LICM looks for lock-independent code, MBL createskaodependent code by
introducing local copies of a shared variable. The basitsfiamation is straightfor-
ward:

1. Atthe start of the mutex body a local copy of the sharechléeiis created if there
is at least one use for the variable with reaching definitmrside the mutex body.

2. At the mutex body exits, the shared copy is updated fronmdbal copy of the
variable if at least one internal definition of the variabéaches that particular
unlock node.

3. All the interior references to the shared variable areifreatiso that they reference
the local copy.

Notice that this transformation is legal provided that tlifected references are
always made inside mutex bodies. Otherwise, the transtiwmiaight prevent memory
interleavings that were allowed in the original program.

Algorithm 5 makes local copies of a variahlénside a mutex body,(N) if the
variable can be localized. To determine whether the vaialohn be localized it calls
Algorithm 4 (a subroutine of Algorithm 5) which returmuk if a can be localized
inside mutex bodyBy, (V). The localization algorithm relies on two data structubes t
can be built during the rewriting phase of the CSSAME algorithm:

exposedUses(N) is the set of upward-exposed uses from the mutex bBgyN).
This set is associated with the entry node&iin
reachingDefs(X) is the set of definitions that can reach the exit nallesf By, (V).

Algorithm 5 starts by checking whether the variable can loaliaed (linesl — 4).
It then checks where the local copies are needed. If thengpavard-exposed uses @f
a copy is needed at the start of the mutex body (lhesl6). If there are definitions of



a reaching an exit node, the shared copy ofiust be updated before exiting the mutex
body (lines17 — 29). The final phase of the algorithm updates the interior exfees to

a to be references tp_a (lines30 — 34). After this phase, the CSSAME form for the
program has been altered and it should be updated. The sinvpdgy to do this is to
run the CSSAME algorithm again. However, this might be expenif the localization
process is repeated many times.

An alternate solution is to incrementally update the CSSAbth after the variable
has been localized. Although this is generally considetegrd problem, the following
are some guidelines that should be considered when perigram incremental update
of the CSSAME form:

1. If the local copy is created at the start of the mutex bduy,dtatemenpt_a = a
contains a use af. This use of: will have the same control reaching definition that
the upward-exposed uses@have. Notice that all the upward-exposed uses of
have the same control reaching definition.

Since this statement has a conflicting use oit requires ar function. The argu-
ment list to thisr function is the union of all the arguments to all théunctions

for a inside the mutex body. Notice that thdunctions fora should be for upward-
exposed uses af. This is because the program is in CSSAME form and all con-
flicting references ta are made inside mutex bodies of the same mutex structure
(i.e.,a is localizable).

2. All the 7 functions fora inside the mutex body must disappear because all the
interior references ta are replaced by referencesyta.

3. All the interior¢ functions fora must be converted int$ functions forp_a.

4. If the shared copy is updated at the end of the mutex bodstdtement = p_a
contains a use gf_a whose control reaching definition should be the definition of
p_a reaching the exit node.

Algorithm 4 Localization test focalizable).

INPUT: A variablea and mutex bodyBr, (N)
OUTPUT. TRUE if a can be localized iBz, (), FALSE otherwise

1: M1 «+ mutex structure containingr, (N)

2: I* Check every conflicting referenceto a in the program. All the conflicting */

3: /* references tax must occur inside mutex bodies 81, otherwisen is not localizable. */
4: foreach conflicting reference € Refs(a) do

5. *If we cannot findr in any of the mutex bodies d¥/7,, thena is not localizable. */

6. protected < FALSE

7:  foreach mutex bodyB} (N') € My, do

8: if node(r) is reached by somleock node inN' then
9: protected < TRUE

10: end if

11: endfor

12: if not protected then

13: return FALSE

14: endif

15: end for

16: /* All the references ta are protected. Therefore,is localizable. */
17: return TRUE




Algorithm 5 Mutex body localization.

INPUT: (1) An explicitly parallel progran® in CSSAME form, (2) A variable: to be localized, (3) A mutex body
Br(N
OUTPUT. By (NN) with variablea localized

. [* Check if a can be localized (Algorithm 4) */
. if not localizable(a, By (N)) then
return
end if
. [* Check for upward-exposed usesafSince the program is in CSSAME form, */
. [* upward-exposed uses have already been computed. If énerg
. I* upward-exposed uses afthen we need to make a local copym#t the start ofBz, (V). */
. needEntryCopy < FALSE
. foreach useu € ezposedUses(IN) do
10: if uwis ause ofz then
11: need EntryCopy < TRUE
12: endif
13: end for
14: if needEntryCopy then
15: insertthe statemepta = a at the start of the mutex body
16: endif
17: /* Check if any definition ofa reaches the exit nodes &z, (N). */
18: /* Since the program is in CSSAME form, the definitions thatafe the exit nodeX */
19: /* have already been computed. If a definition */
20: /* of a reaches:, we need to make a copy afbefore leaving the mutex body. */
21: needEzitCopy «+ FALSE
22: foreach definitiond € reachingDefs(X) do
23. if dis a definition ofa then

©ONOU BWNE

24 needEzitCopy < TRUE
25 endif
26: end for

27: if needEzitCopy then

28: insert the statement = p_a at the exit nodes of the mutex body
29: end if

30: /* Update references to inside the mutex body to reference */
31: /* the local versiorp,, instead of the shared versian*/

32: foreach reference ta inside Bz, (N) do

33: replacea with p_a

34: end for

35: update CSSAME information for all referencesgitar inside Bz, (V)

The MBL transformation by itself does not necessarily inygrthe performance of
a program but it opens up new optimization opportunities ftain benefit of local-
ization is that it might create more lock-independent cdet®. instance, if a thread
contains read-only references to a variable localizing V' will make those reads
into lock-independent operations which in turn might mdie whole statement lock-
independent. Consider the sample program in Figure 2(dgr Adcalization (Figure
2(b)), most statements inside the mutex body Ioare lock-independent. However,
none can be moved outside because of the read and write ioper&d the shared
variableV at the fringes of the mutex body. If the compiler incorposagereduction
recognition pass, it is possible to do the reduction locafig only updaté” at the end
(Figure 2(c)). Now all the lock-independent code in the muiedy can be moved to
the premutex node resulting in the equivalent program infei@(d).



6 Experimental results

The algorithms discussed in this paper have been impleniinta prototype compiler
for the C language using the SUIF compiler system [5]. Outinug system leverages
on the SUIF runtime system to execute the parallel program.

Once the program has been parsed by the SUIF front-end, thpiles creates the
corresponding CCFG and its CSSAME form. We do not transfdveninput program
into SSA form. Instead we use factored use-def chains [1ffidrlowgraph and display
the source code annotated with the appropriatend ¢ functions (variables are not
renamed but referenced using line number information incibreespondingr or ¢
functions). The CCFG can be displayed using a variety oflgkagualization systems.
The CSSAME form for the program can also be displayed as aprogEinally, the
compiler incorporates mutual exclusion validation tegeis to warn the user about
potential problems with the synchronization structurenaefprogram [14].

Synchronization overhead is sometimes exacerbated bymensixve implementa-
tion of | ock andunl ock operations. To address this problem, several techniques ha
been proposed to implement more efficient locking prim#i{# 16]. But there is an-
other source of overhead that even the most efficient impigtien cannot alleviate:
contention. Lock contention occurs when the demand for tiqoidar lock variable is so
high that threads spend a significant amount of time waitimgfher threads to release
the lock. The techniques for eliminating superfluous syoetmation operations devel-
oped in this paper can complement the benefits of using aeeffiocking mechanism.

6.1 Water

The Water application simulates forces and potentials irystesn of liquid water
molecules. The simulation is done over a specified numbemat-steps until the sys-
tem reaches equilibrium. Mutual exclusion synchronizai®used when computing
inter-molecular interactions and for keeping a global shat ts computed every time-
step.

To study the effects of LICM in Water, we performed experitsehat varied the
total number of moleculesY), the number of molecule lock94L), and, the number
of simulation time-stepsXS). Experiments were performed on an SGI PowerChal-
lenge with 8 processors and 384Mb of memory. The implemientaises SGI native
threads ¢pr oc) and hardware lockau{ ock). All the experiments were executed on
8 processors with no other system activity.

The first experiment studies the performance effects of L&\ function of syn-
chronization overhead. As the number of time-steps ineigaso does synchroniza-
tion overhead. Table 1 shows the speedups obtained as aofuétthe number of
time-steps and number of molecules simulated. Notice hevgpleedups obtained with
LICM are lower when a larger number of molecules are simdlal&is is caused by the
larger computation to synchronization ratio in the largetpem. Also, by restricting
the number of molecule locks available we are increasingdoatention. Naturally, as
the number of available locks increases, the effects of LEE&Idiminished.

2 Apreliminary version is available at t p: / / ww. ¢s. ual bert a. ca/ ~j onat han/ CSSAVE/



64 molecules (10 molecule lock)16 molecules (10 molecule locks)

Time| no LICM |with LICM| Relative|| no LICM | LICM Relative
stepstime (secsjtime (secs) Speedup|time (secstime (secs) Speedup
70 157, 144 1.09 1527 1463 1.04
80 183 171 1.07 1772 1763 1.00
100 235 219 1.07 2344 2284 1.02
120 296 269 1.10 2827 2809 1.00

Table 1. Speedups obtained by LICM on Water as a function of the nurobsimulation time-
steps.

Since molecule locks are accessed more as the number oteps-increases, the
contention on these locks also increases. To measure lotkrdgn we used the hard-
ware timers provided by the system to measure the averagg dehcquiring a lock.
We then computed the average delay overlihenolecule locks. This is shown in Ta-
ble 2. This table shows how average lock contention on theeout locks increases
as a function of the number of simulation time-steps. Notitd although LICM re-
duces lock contention significantly, its impact on the mnatiof the program may not
be too noticeable if the ratio of computation to synchrotiarais high enough. Again
notice how lock contention decreases with the larger protdize. This explains the
diminished effects of LICM on large problems.

64 molecules 216 molecules

no LICM|with LICM no LICM|with LICM
Time|avg delay avg delay|Ratio|avg delay avg delay|Ratio

steps (usecs)| (usecs) (usecs)| (usecs)
70 699 72 9.71 561 68| 8.25
80 712 73 9.75 575 72| 7.99
100 718 71/10.11 557 70| 7.96
120 729 85 8.58 564 62| 9.10

Table 2. Effects of LICM on lock contention in Water.

6.2 Ocean

Ocean studies eddy and boundary currents in large-scaavevements. Mutual
exclusion is used to update global sums and to access a glmargence flag used in
the iterative solver. The update of global sums is done withdame strategy used in
Water. A local sum is computed and aggregated to the glolal su
To study the effect of MBL and LICM on this application, we gilified some rou-

tines in Ocean to compute global sums directly (the origimagram computes global
sums by aggregating locally computed partial sums). We dahie new version Sim-
ple Ocean. The intention is to demonstrate how some of them@ations that are tradi-
tionally performed manually by the programmer can be autethasing the techniques



developed in this paper. Table 3 shows the performance wepments obtained by ap-
plying MBL and LICM to Simple Ocean. The program was execudrd processors

with four different ocean sizes and a time-stefd & seconds.

Ocean [no MBL+LICM|with MBL+LICM |Relative
size time (sec) time (sec) |Speedu

66 x 66 21 19 1.11
130 x 130 69 56 1.23
258 x 258 258 198 1.30
514 x 514 865 787 1.10

Table 3. Effects of MBL and LICM on Simple Ocean.

The performance improvements obtained on Simple Oceag BL and LICM
are the same improvements obtained by the manual optimizatione in the original
program. The important point of this experiment is to shoat tising the techniques de-
veloped in this paper it is possible to automatically optieiinefficient synchronization
patterns. We do not expect experienced programmers to sutdte inefficient synchro-
nization, but this kind of code could be found in programsten by a less experienced
programmer or generated from generic code templates ingrgoroning environment.

7 Conclusions and futurework

We have shown how the CSSAME form allows new optimizationapmities by tak-
ing advantage of the semantics imposed by mutual exclugiochsonization. In pre-
vious work we have shown how the reduction of memory confict®ss threads can
improve the effectiveness of adapted scalar optimizaticategies [13]. In this paper,
we have introduced two new optimization techniques thatspeeifically targeted at
explicitly parallel programsock-1ndependent Code Motion (LICM) moves code that
does not need to be locked outside critical sectiond\dutex Body Localization (MBL)
converts shared memory references into local memory meéese We consider these
techniques a step towards a unified analysis and optimiz&thonework for explicitly
parallel programs. In turn this should facilitate the admpbdf high-level systems with
language-supported parallelism and synchronizations& lsgstems typically provide
powerful abstractions that make parallel programmingezabut those same abstrac-
tions often hinder performance. Experienced programnezsgnize these limitations
and manually circumvent them by removing abstraction layeispeed-up their code.
With the techniques developed in this paper, we can tratiséebburden of these trans-
formations to the compiler.
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