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Abstract. We present two new compiler optimizations for explicitly parallel pro-
grams based on the CSSAME form: Lock-Independent Code Motion (LICM) and
Mutex Body Localization (MBL). We have implemented these optimizations on
top of the SUIF framework and present performance results for selected SPLASH
applications.

1 Introduction

Optimizations for explicitly parallel programs fall into two classes: the adaptation of
sequential optimizations to a parallel environment; and the direct optimization of the
parallel structure of the program. There have been several recent advances in adapting
sequential optimizations such as global constant propagation and dead-code elimination
to explicitly parallel programs [6, 10, 13]. There has been less emphasis on optimizing
the parallel structure of the program itself.

We build on a concurrent dataflow analysis framework called CSSAME1[12] to
analyze and optimize the synchronization structure of bothtask and data parallel pro-
grams.Lock-Independent Code Motion (LICM) is an optimizing transformation that
can reduce the size of critical sections in the program.Mutex Body Localization (MBL)
is a new transformation that converts references to shared memory into references to lo-
cal memory inside critical sections of the code. We have implemented these algorithms
on top of the SUIF framework [5] and apply them to two SPLASH applications [15]:
Water and Ocean. We also show that our techniques can be used to automate common
optimizations that experienced programmers are currentlyforced to perform manually.

2 Related Work

Previous work in the area of optimizing explicitly parallelprograms has concentrated
on the adaptation of sequential optimization techniques tothe parallel case. Lee, Mid-
kiff and Padua propose a Concurrent SSA framework (CSSA) forexplicitly parallel
programs and interleaving memory semantics [9]. They adapta constant propagation

1 Concurrent Static Single Assignment with Mutual Exclusion. Pronouncedsesame.



algorithm using the CSSA form. In recent work they have also adapted other SSA-based
techniques including common subexpression elimination and code hoisting [10]. Their
work only considers event-based synchronization operations and imposes some restric-
tions on the input program. Knoop, Steffen and Vollmer developed a bitvector analysis
framework for parallel programs with shared memory and interleaving semantics [7].
They use their framework to adapt lazy code motion. However,their framework does
not include synchronization operations. This reduces the opportunities for optimization
in the general case.

In previous work we have extended the CSSA framework to incorporate mutual ex-
clusion synchronization [13]. Our work extends the analysis techniques proposed by
Lee et al. and shows the benefit of these extensions in the context of constant propa-
gation for explicitly parallel programs. We also adapt a sequential dead-code removal
algorithm that takes advantage of mutual exclusion information and describe an earlier
form of the LICM technique that we extend and improve in this paper.

3 The CSSAME Form

The CSSAME form is a refinement of the CSSA framework [9] that incorporates more
synchronization analysis to identify memory interleavings that are not possible at run-
time due to the synchronization structure of the program. While CSSA only recognizes
event synchronization, CSSAME extends it to include mutualexclusion synchroniza-
tion and barrier synchronization [12]. CSSAME can be applied to both task and data
parallel programs.

Like the sequential SSA form, CSSAME has the property that every use of a vari-
able is reached by exactly one definition. When the flow of control causes more than
one definition to reach a particular use, merge operators areintroduced to resolve the
ambiguity. Two merge operators are used in the CSSAME form:� functions and�
functions.� functions have the same meaning as in sequential SSA [4].� functions
merge concurrent reaching definitions. Concurrent reaching definitions are those that
reach the use of a variable from other threads.

The CSSAME form also examines� functions in critical sections of the code to
determine if they can be removed. Since these� functions are in serialized sections of
the code, some conflicts inside mutex bodies become superfluous and can be discarded.
This pruning process is based on two observations:

1. consecutive kills: only definitions that reach the exit points of a critical section can
be observed by other threads.

2. protected uses: if the use of a variable is protected by a definition local to the crit-
ical section, then definitions coming from concurrent critical sections will not be
observed in this thread.

These two conditions allow the removal of superfluous conflict edges which in turn
may lead to the complete removal of� functions, thus creating more opportunities
for optimization [12]. The mutex synchronization analyzermodifies every node in the
flowgraph so that they contain a use for each lock variableL (lock andunlock nodes
already contain a definition and a use forL). To determine whether or not a flow graph



noden is protected by lockL we compute reaching definition information for the use
of L atn. If at least one of the reaching definitions comes from anunlock node or if
there are no reaching definitions, then noden is not protected by lockL [12].

Mutex bodies are defined in terms of lock-protected nodes. Ingeneral, a mutex
bodyBL(N) for lock variableL is a multiple-entry, multiple-exit region of the graph
that encompasses all the flowgraph nodes that are protected by a common set oflock
nodes (N ). In contrast, previous work [8, 11] has treated mutex bodies as single-entry,
single-exit regions. A mutex structure for a lock variableL is the set of all the mutex
bodies forL in the program.

4 Lock-Independent Code Motion

Lock-Independent Code Motion (LICM) is a code motion technique that attempts to
minimize the amount of code executed inside a mutex body. This optimization analyzes
each mutex body to find code that can be moved outside. If at theend of the transforma-
tion a mutex body only contains unlock nodes, then thelock andunlock instructions
are removed.

An expressionE inside a mutex bodyBL(N) is lock-independent with respect toL if movingE outsideBL(N) does not change the meaning of the program. Similarly,
a statement (or group of statements)s is lock independent with respect toL if all the
expressions and definitions ins are lock-independent. A flowgraph noden is lock inde-
pendent if all its statements are lock-independent. The concept of lock-independence is
similar to the concept of loop-invariant code for standard loop optimization techniques.
Loop invariant computations compute the same result whether they are inside the loop
or not. Analogously, lock-independent code computes the same result whether it is in-
side a mutex body or not. For instance, a statements that references variables private to
the thread will compute the same value whether it is executedinside a mutex body or
not. This is also true ifs references globally shared variables not modified by any other
thread concurrent withs.

Lock-independent code is moved to special nodes calledpremutex andpostmutex
nodes. For every mutex bodyBL(N) there is a premutex node, denotedpremutex(ni),
for eachlock nodeni 2 N . Each premutex nodepremutex(ni) immediate dom-
inates its associatedlock nodeni. Similarly, there is a postmutex node, denotedpostmutex(xi) for everyunlock nodexi. Postmutex nodes are created as immedi-
ate post-dominators of each exit nodexi.
4.1 Moving Statements to Premutex Nodes

Given a lock-independent statements inside a mutex bodyBL(N), LICM will attempt
to moves to premutex or postmutex nodes forBL(N). The selection oflock nodes to
receive statements in their premutex node is done satisfying the following conditions
(proofs of correctness are available separately [12]):

Protection. Candidatelock nodes are initially selected among all thelock nodes inN that reach the node containings (denotednode(s)). This condition provides an
initial set of candidatelock nodes calledprote
tors(s).



Reachability. Sinces is reached by all the nodes inprote
tors(s), there is a con-
trol path between eachlock node inprote
tors(s) andnode(s). Therefore, when
statements is removed from its original location, the statement must bereplaced
on every path from eachlock node tonode(s). This implies thats may need to
be replicated to more than one premutex node.
To determine whichlock nodes could receive a copy ofs we perform reacha-
bility analysis among thelock nodes reachings (prote
tors(s)). This analysis
computes a partition ofprote
tors(s), called re
eivers(s), that contains all the
lock nodes that may receive a copy of statements. The selection of receiver
nodes is done so that (a) there exists a path betweens and everylock node inprote
tors(s), and (b) instances ofs occur only once along any of these paths (i.e.,s is not unnecessarily replicated).
Algorithm 1 computes all the different sets oflock nodes that may receive a lock-
independent statements in their premutex nodes. Basically, the algorithm com-
putes reachability sets among the nodes inprote
tors(s). The setprote
tors(s)
is partitioned intok partitionsP1; P2; : : : Pk. Nodes in each partitionPj cannot
reach each other but put together they reach or are reached byevery other node inprote
tors(s). These partitions are the sets oflock nodes that can receive a copy
of s in their premutex nodes.

Data Dependencies. When moving a statements to one of the receiver sets fors, the
motion must not alter the original data dependencies for thestatement and other
statements in the program. IfPj is the selected receiver set fors, two restrictions
must be observed:
1. No variable defined bys may be used or defined along any path fromnode(s)

to every node inPj .
2. No variable used bys may be defined along any path fromnode(s) to every

node inPj .
These two restrictions are used to prune the set of receiver nodes computed in
Algorithm 1. Notice that since the program is in CSSAME form,� functions are
also considered definitions and uses for a variable.
When more than one statement is moved to the same premutex node, the original
data dependencies among the statements in the same premutexnode must also be
preserved. This is accomplished by maintaining the original control precedence
when moving statements into the premutex node.

It is also possible to move statements forward to postmutex nodes of a mutex bodyBL(N). The analysis for postmutex nodes is similar to the previouscase. The condi-
tions are essentially the reverse of the conditions required for premutex nodes [12].

The LICMS algorithm scans all the mutex bodies in the programlooking for lock-
independent statements to move outside the mutex body. Eachlock-independent state-
ments is checked against the conditions described previously. Lines8�15 in Algorithm
2 determine the sets of premutex receivers fors. The initial set of candidates computed
by Algorithm 1 checks every lock node in a mutex body against each other looking for
paths between them.

Notice that it might be possible that a statement can be movedto both the premutex
and the postmutex nodes. In that case a cost model should determine which node is more



Algorithm 1 Compute candidate premutex nodes (receivers).
INPUT: A mutex bodyBL(N) and a lock-independent statements.
OUTPUT: A list of receiver sets. Each receiver setPi containslock nodes whose premutex nodes may receives.

1: prote
tors(s) set oflock nodes that reachs.

2: Q prote
tors(s)
3: k  1
4: while Q 6= ; do
5: ni  first node inQ
6: P (k)  fnig
7: removeni fromQ /* Add to P (k) all the nodes that are notconnected with ni */
8: foreach nodenj 2 Q and Q 6= ; do
9: if (there is no pathni ! nj ) and (there is no pathnj ! ni) then
10: P (k)  P (k)Sfnjg
11: removenj fromQ
12: end if
13: end for
14: k  k + 1
15: end while

16: return re
eivers  P (1); P (2); : : : ; P (k � 1)
convenient. We will base our cost model on the effects of lockcontention. Suppose that
there is high contention for a particular lock. All the statements moved to premutex
nodes will not be affected by it because they execute before acquisition of the lock.
However, statements moved to the postmutex node will be delayed if there is contention
because they execute after the lock has been released. Therefore, when a statement can
be moved to both the premutex and postmutex nodes, the premutex node is selected.

The basic mechanism for moving statements outside mutex bodies can be used to
move lock-independent control structures. Control structures are handled by checking
and aggregating all the nodes contained in the structure into a single super-node and
treating it like a single statement. After this process, Algorithm 2 can be used to hoist
the structures outside mutex bodies [12].

4.2 LICM for Expressions

If hoisting statements or control structures outside mutexbodies is not possible, it may
still be possible to consider moving lock-independent sub-expressions outside mutex
bodies. This strategy is similar to moving statements (Algorithm 2) with the following
differences:

1. Sub-expressions do not define variables. They only read variables or program con-
stants.

2. If a sub-expression is moved from its original location, the computation performed
by the expression must be stored in a temporary variable created by the compiler.
The original expression is then replaced by the temporary variable. This is the same
substitution performed by common sub-expression and partial redundancy elimina-
tion algorithms [1, 3].

3. Contrary to the case with statements and control structures, expressions can only
be moved against the flow of control. The reason is that the value computed by the
expression needs to be available at the statement containing the original expression.



Algorithm 2 Lock-Independent Code Motion for Statements (LICMS).
INPUT: A CCFG G = hN;E;EntryG;ExitGi in CSSAME form with pre and postmutex nodes inserted in

every mutex body
OUTPUT: The program with lock-independent statements moved to thecorresponding premutex and postmutex

nodes

1: foreach lock variableLi do
2: foreach mutex bodyBLi (N) 2MutexStru
t(Li) do
3: ni  node(Li)
4: foreach lock-independent statements reached byni do
5: Ds  variables defined bys
6: Us  variables used bys
7: /* Determine which premutex nodes can receives. */
8: P  receivers ofs at premutex nodes (Algorithm 1)
9: foreach Pi 2 P do
10: foreach noden 2 Pi do
11: if (any path between n and node(s) defines or uses a variable inDs)

or (any path betweenn andnode(s) defines a variable inUs) then
12: removePi fromP
13: end if
14: end for
15: end for

16: /* Determine which postmutex nodes can receives. */
17: X  receivers ofs at postmutex nodes
18: foreach Xi 2 X do
19: foreach nodex 2 Xi do
20: if (any path between x and node(s) defines or uses a variable inDs)

or (any path betweenx andnode(s) defines a variable inUs) then
21: removeXi fromX
22: end if
23: end for
24: end for

25: /* SetsP andX contain sets of premutex and postmutex nodes that can receives. */
26: if P 6= ; then
27: select onePi 2 P (cost model or random)
28: removes from its original location
29: replicates to each noden 2 Pi
30: else if X 6= ; then
31: select oneXi 2 X (cost model or random)
32: removes from its original location
33: replicates to each nodex 2 Xi
34: end if
35: end for

36: /* Remove the mutex body if it is empty. */
37: if BLi (N) = ; then
38: remove all thelock andunlock nodes ofBLi (N)
39: end if
40: end for
41: end for



Algorithm 3 finds and removes lock-independent expressionsfrom mutex bodies
in the program. The process of gathering candidate expressions is similar to that of
SSAPRE, an SSA based partial redundancy elimination algorithm [3]. Mutex bodies
are scanned for lock-independent first-order expressions,which are expressions that
contain only one operator. Higher order expressions are handled by successive iterations
of the algorithm.

Algorithm 3 Lock-Independent Code Motion for Expressions (LICME).

INPUT: A CCFG in CSSAME form
OUTPUT: The graph with lock-independent expressions moved to the corresponding premutex nodes

1: repeat
2: foreach lock variableLi do
3: foreach mutex bodyBLi (N) 2 MLi do

4: E  ES set of lock-independent expressions inBLi (N).
5: if E 6= ; then
6: foreach expressionEj 2 E do
7: P  premutex receivers forEj (Algorithm 1)
8: 
andidates  ;
9: foreach Pi 2 P do
10: if 8n 2 Pi : (nDOM node(Ej)) or (node(Ej) PDOM n) then
11: 
andidates  Pi
12: stop looking for candidates
13: end if
14: end for
15: if 
andidates 6= ; then
16: insert the statementtj = Ej in all the premutex nodes forlock nodes in
andidates
17: end if
18: end for
19: end if
20: end for
21: end for
22: /* Replace hoisted expressions inside each mutex body. */
23: foreach lock variableLi do
24: foreach mutex bodyBLi (N) 2MLi do
25: replace hoisted expressions inBLi (N) with their corresponding temporaries
26: end for
27: end for
28: until no more changes have been made

Once lock-independent expressions are identified, the algorithm looks for suitable
premutex or postmutex nodes to receive each expression. We observe that since ex-
pressions can only be hoisted up in the graph, it is not necessary to consider postmutex
nodes when moving lock-independent expressions. Onlylock nodes are considered by
the algorithm. Furthermore, the candidatelock must dominate or be post-dominated
by the node holding the expression (lines7� 13 in Algorithm 3).

The acceptable receiver sets are stored in the set
andidates . It can be shown that in
this case, the algorithm for computing receiver premutex nodes (Algorithm 1) will find
none or exactly one set oflock nodes that can receive the expression in their premutex
nodes [12].

Figure 1 shows an example program before and after running the LICM algorithm.
When LICM is applied to the program in Figure 1(a), the first phase of the algorithm



moves the statement at line6 and the assignmentj = 0 to the premutex node. The
statement at line10 is sunk to the postmutex node resulting in the equivalent program
in Figure 1(b). There is still some lock-independent code inthe mutex body, namely
the expressionsj < M at line7, the statementj++ at line7 and the expressiony[j℄ +sqrt(a) � sqrt(b) at line8. The only hoistable expression issqrt(a) � sqrt(b) because
it is the only expression with all its reaching definitions outside the mutex body (Figure
1(c)). Note that a loop-invariance transformation would have detected this expression
and hoisted it out of the loop. LICM goes a step further and hoists the expression outside
the mutex body.

1 double X[ ]; =� shared�=
2 parloop (i, 0, N) f
3 double a, b; =� local �=
4 double y[ ]; =� local �=
5 lock(L);
6 b = a � sin(a);
7 for (j = 0; j < M; j++) f
8 X[j] = y[j] + sqrt(a)� sqrt(b);
9 g

10 a = y[j];
11 unlock(L);
12 g

(a) Program before LICM.

1 double X[ ]; =� shared�=
2
3 parloop (i, 0, N) f
4 double a, b; =� local �=
5 double y[ ]; =� local �=
6
7 . . .
8 b = a � sin(a);
9 j = 0;

10 lock(L);
11 for (; j < M; j++) f
12 X[j] = y[j] + sqrt(a)� sqrt(b);
13 g
14 unlock(L);
15 a = y[i];
16 . . .
17 g

(b) LICM on statements.

1 double X[ ]; =� shared�=
2 parloop (i, 0, N) f
3 double a, b; =� local �=
4 double y[ ]; =� local �=
5 b = a � sin(a);
6 j = 0;
7 t1 = sqrt(a) � sqrt(b);
8 lock(L);
9 for (; j < M; j++) f

10 X[j] = y[j] + t1;
11 g
12 unlock(L);
13 a = y[j];
14 g

(c) LICM on expressions.

Fig. 1. Effects of lock-independent code motion (LICM).

The individual LICM algorithms can be combined into a singleLICM algorithm.
There are four main phases to the algorithm. The first phase looks for mutex bodies
that have nothing but lock-independent nodes. These are thesimplest cases. If all the
nodes in a mutex body are lock-independent, then thelock operations at the lock
nodes and theunlock operations in the body can be removed. The next three phases
move interior lock-independent statements, control structures and expressions outside
the mutex bodies in the program.

5 Mutex Body Localization

Consider a mutex bodyBL that modifies a shared variableV (Figure 2(a)). With the
exception of the definition reaching the unlock node ofBL, all the modifications done
to V inside the mutex body can only be observed by the thread. Therefore, it is legal to
create a local copy ofV and replace all the references toV inside the mutex body to ref-
erences to the local copy. We call this transformationmutex body localization (MBL).



double V = 0;
parloop (i, 0, N) f

double x, y[ ];
int i;

. . .
lock(L);
i = 0;
while (V <= x) f

V = V + y[i++];g
unlock(L);
. . .g

(a) A mutex body be-
fore localization.

double V = 0;
parloop (i, 0, N) f

double x, y[ ], p V;
int i;
. . .
lock(L);
p V = V;
i = 0;
while (p V <= x) f

p V = p V + y[i++];g
V = p V;
unlock(L);
. . .g

(b) After localization.

double V = 0;
parloop (i, 0, N) f

double x, y[ ], p V;
int i;
. . .
lock(L);
p V = 0;
i = 0;
while (p V <= x) f

p V = p V + y[i++];g
V = V + p V;
unlock(L);
. . .g

(c) After reduction
recognition.

double V = 0;
parloop (i, 0, N) f

double x, y[ ], p V;
int i;
. . .
p V = 0;
i = 0;
while (p V <= x) f

p V = p V + y[i++];g
lock(L);
V = V + p V;
unlock(L);
. . .g

(d) After LICM.

Fig. 2. Applications of mutex body localization.

While LICM looks for lock-independent code, MBL creates lock-independent code by
introducing local copies of a shared variable. The basic transformation is straightfor-
ward:

1. At the start of the mutex body a local copy of the shared variable is created if there
is at least one use for the variable with reaching definitionsoutside the mutex body.

2. At the mutex body exits, the shared copy is updated from thelocal copy of the
variable if at least one internal definition of the variable reaches that particular
unlock node.

3. All the interior references to the shared variable are modified so that they reference
the local copy.

Notice that this transformation is legal provided that the affected references are
always made inside mutex bodies. Otherwise, the transformation might prevent memory
interleavings that were allowed in the original program.

Algorithm 5 makes local copies of a variablea inside a mutex bodyBL(N) if the
variable can be localized. To determine whether the variablea can be localized it calls
Algorithm 4 (a subroutine of Algorithm 5) which returnsTRUE if a can be localized
inside mutex bodyBL(N). The localization algorithm relies on two data structures that
can be built during the� rewriting phase of the CSSAME algorithm:exposedUses(N) is the set of upward-exposed uses from the mutex bodyBL(N).

This set is associated with the entry nodes inN .rea
hingDefs(X) is the set of definitions that can reach the exit nodesX of BL(N).
Algorithm 5 starts by checking whether the variable can be localized (lines1� 4).

It then checks where the local copies are needed. If there areupward-exposed uses ofa,
a copy is needed at the start of the mutex body (lines5� 16). If there are definitions of



a reaching an exit node, the shared copy ofa must be updated before exiting the mutex
body (lines17� 29). The final phase of the algorithm updates the interior references toa to be references top a (lines30 � 34). After this phase, the CSSAME form for the
program has been altered and it should be updated. The simplest way to do this is to
run the CSSAME algorithm again. However, this might be expensive if the localization
process is repeated many times.

An alternate solution is to incrementally update the CSSAMEform after the variable
has been localized. Although this is generally considered ahard problem, the following
are some guidelines that should be considered when performing an incremental update
of the CSSAME form:

1. If the local copy is created at the start of the mutex body, the statementp a = a
contains a use ofa. This use ofa will have the same control reaching definition that
the upward-exposed uses ofa have. Notice that all the upward-exposed uses ofa
have the same control reaching definition.
Since this statement has a conflicting use ofa, it requires a� function. The argu-
ment list to this� function is the union of all the arguments to all the� functions
for a inside the mutex body. Notice that the� functions fora should be for upward-
exposed uses ofa. This is because the program is in CSSAME form and all con-
flicting references toa are made inside mutex bodies of the same mutex structure
(i.e.,a is localizable).

2. All the � functions fora inside the mutex body must disappear because all the
interior references toa are replaced by references top a.

3. All the interior� functions fora must be converted into� functions forp a.
4. If the shared copy is updated at the end of the mutex body, the statementa = p a

contains a use ofp a whose control reaching definition should be the definition ofp a reaching the exit nodex.

Algorithm 4 Localization test (lo
alizable).
INPUT: A variablea and mutex bodyBL(N)
OUTPUT: TRUE if a can be localized inBL(N), FALSE otherwise

1: ML  mutex structure containingBL(N)
2: /* Check every conflicting referencer to a in the program. All the conflicting */
3: /* references toa must occur inside mutex bodies ofML, otherwisea is not localizable. */
4: foreach conflicting referencer 2 Refs(a) do
5: /* If we cannot findr in any of the mutex bodies ofML, thena is not localizable. */
6: prote
ted  FALSE

7: foreach mutex bodyB0L(N 0) 2 ML do
8: if node(r) is reached by somelock node inN 0 then
9: prote
ted  TRUE

10: end if
11: end for
12: if not prote
ted then
13: return FALSE

14: end if
15: end for
16: /* All the references toa are protected. Therefore,a is localizable. */
17: return TRUE



Algorithm 5 Mutex body localization.
INPUT: (1) An explicitly parallel programP in CSSAME form, (2) A variablea to be localized, (3) A mutex bodyBL(N)
OUTPUT: BL(N) with variablea localized

1: /* Check if a can be localized (Algorithm 4) */
2: if not lo
alizable(a;BL(N)) then
3: return
4: end if
5: /* Check for upward-exposed uses ofa. Since the program is in CSSAME form, */
6: /* upward-exposed uses have already been computed. If thereare */
7: /* upward-exposed uses ofa then we need to make a local copy ofa at the start ofBL(N). */
8: needEntryCopy  FALSE

9: foreach useu 2 exposedUses(N) do
10: if u is a use ofa then
11: needEntryCopy  TRUE

12: end if
13: end for
14: if needEntryCopy then
15: insert the statementp a = a at the start of the mutex body
16: end if
17: /* Check if any definition ofa reaches the exit nodes ofBL(N). */
18: /* Since the program is in CSSAME form, the definitions that reach the exit nodesX */
19: /* have already been computed. If a definition */
20: /* of a reachesx, we need to make a copy ofa before leaving the mutex body. */
21: needExitCopy  FALSE

22: foreach definitiond 2 rea
hingDefs(X ) do
23: if d is a definition ofa then
24: needExitCopy  TRUE

25: end if
26: end for
27: if needExitCopy then
28: insert the statementa = p a at the exit nodes of the mutex body
29: end if

30: /* Update references toa inside the mutex body to reference */
31: /* the local versionpa instead of the shared versiona. */
32: foreach reference toa insideBL(N) do
33: replacea with p a
34: end for
35: update CSSAME information for all references top a insideBL(N)

The MBL transformation by itself does not necessarily improve the performance of
a program but it opens up new optimization opportunities. The main benefit of local-
ization is that it might create more lock-independent code.For instance, if a thread
contains read-only references to a variableV , localizing V will make those reads
into lock-independent operations which in turn might make the whole statement lock-
independent. Consider the sample program in Figure 2(a). After localization (Figure
2(b)), most statements inside the mutex body forL are lock-independent. However,
none can be moved outside because of the read and write operations to the shared
variableV at the fringes of the mutex body. If the compiler incorporates a reduction
recognition pass, it is possible to do the reduction locallyand only updateV at the end
(Figure 2(c)). Now all the lock-independent code in the mutex body can be moved to
the premutex node resulting in the equivalent program in Figure 2(d).



6 Experimental results

The algorithms discussed in this paper have been implemented2 in a prototype compiler
for the C language using the SUIF compiler system [5]. Our runtime system leverages
on the SUIF runtime system to execute the parallel program.

Once the program has been parsed by the SUIF front-end, the compiler creates the
corresponding CCFG and its CSSAME form. We do not transform the input program
into SSA form. Instead we use factored use-def chains [17] inthe flowgraph and display
the source code annotated with the appropriate� and� functions (variables are not
renamed but referenced using line number information in thecorresponding� or �
functions). The CCFG can be displayed using a variety of graph visualization systems.
The CSSAME form for the program can also be displayed as an option. Finally, the
compiler incorporates mutual exclusion validation techniques to warn the user about
potential problems with the synchronization structure of the program [14].

Synchronization overhead is sometimes exacerbated by an expensive implementa-
tion oflock andunlock operations. To address this problem, several techniques have
been proposed to implement more efficient locking primitives [2, 16]. But there is an-
other source of overhead that even the most efficient implementation cannot alleviate:
contention. Lock contention occurs when the demand for a particular lock variable is so
high that threads spend a significant amount of time waiting for other threads to release
the lock. The techniques for eliminating superfluous synchronization operations devel-
oped in this paper can complement the benefits of using an efficient locking mechanism.

6.1 Water

The Water application simulates forces and potentials in a system of liquid water
molecules. The simulation is done over a specified number of time-steps until the sys-
tem reaches equilibrium. Mutual exclusion synchronization is used when computing
inter-molecular interactions and for keeping a global sum that is computed every time-
step.

To study the effects of LICM in Water, we performed experiments that varied the
total number of molecules (N ), the number of molecule locks (ML), and, the number
of simulation time-steps (TS ). Experiments were performed on an SGI PowerChal-
lenge with 8 processors and 384Mb of memory. The implementation uses SGI native
threads (sproc) and hardware locks (ulock). All the experiments were executed on
8 processors with no other system activity.

The first experiment studies the performance effects of LICMas a function of syn-
chronization overhead. As the number of time-steps increases, so does synchroniza-
tion overhead. Table 1 shows the speedups obtained as a function of the number of
time-steps and number of molecules simulated. Notice how the speedups obtained with
LICM are lower when a larger number of molecules are simulated. This is caused by the
larger computation to synchronization ratio in the larger problem. Also, by restricting
the number of molecule locks available we are increasing lock contention. Naturally, as
the number of available locks increases, the effects of LICMare diminished.

2 A preliminary version is available athttp://www.cs.ualberta.ca/�jonathan/CSSAME/



64 molecules (10 molecule locks)216 molecules (10 molecule locks)
Time no LICM with LICM Relative no LICM LICM Relative
stepstime (secs)time (secs) Speedup time (secs)time (secs) Speedup
70 157 144 1.09 1527 1463 1.04
80 183 171 1.07 1772 1763 1.00
100 235 219 1.07 2344 2285 1.02
120 296 269 1.10 2827 2809 1.00

Table 1. Speedups obtained by LICM on Water as a function of the numberof simulation time-
steps.

Since molecule locks are accessed more as the number of time-steps increases, the
contention on these locks also increases. To measure lock contention we used the hard-
ware timers provided by the system to measure the average delay of acquiring a lock.
We then computed the average delay over the10 molecule locks. This is shown in Ta-
ble 2. This table shows how average lock contention on the molecule locks increases
as a function of the number of simulation time-steps. Noticethat although LICM re-
duces lock contention significantly, its impact on the runtime of the program may not
be too noticeable if the ratio of computation to synchronization is high enough. Again
notice how lock contention decreases with the larger problem size. This explains the
diminished effects of LICM on large problems.

64 molecules 216 molecules
no LICM with LICM no LICM with LICM

Time avg delay avg delay Ratio avg delay avg delay Ratio
steps (�secs) (�secs) (�secs) (�secs)
70 699 72 9.71 561 68 8.25
80 712 73 9.75 575 72 7.99
100 718 71 10.11 557 70 7.96
120 729 85 8.58 564 62 9.10

Table 2. Effects of LICM on lock contention in Water.

6.2 Ocean

Ocean studies eddy and boundary currents in large-scale ocean movements. Mutual
exclusion is used to update global sums and to access a globalconvergence flag used in
the iterative solver. The update of global sums is done with the same strategy used in
Water. A local sum is computed and aggregated to the global sum.

To study the effect of MBL and LICM on this application, we simplified some rou-
tines in Ocean to compute global sums directly (the originalprogram computes global
sums by aggregating locally computed partial sums). We named this new version Sim-
ple Ocean. The intention is to demonstrate how some of the optimizations that are tradi-
tionally performed manually by the programmer can be automated using the techniques



developed in this paper. Table 3 shows the performance improvements obtained by ap-
plying MBL and LICM to Simple Ocean. The program was executedon 8 processors
with four different ocean sizes and a time-step of180 seconds.

Ocean no MBL+LICM with MBL+LICM Relative
size time (sec) time (sec) Speedup66� 66 21 19 1.11130� 130 69 56 1.23258� 258 258 198 1.30514� 514 865 787 1.10
Table 3. Effects of MBL and LICM on Simple Ocean.

The performance improvements obtained on Simple Ocean using MBL and LICM
are the same improvements obtained by the manual optimizations done in the original
program. The important point of this experiment is to show that using the techniques de-
veloped in this paper it is possible to automatically optimize inefficient synchronization
patterns. We do not expect experienced programmers to writesuch inefficient synchro-
nization, but this kind of code could be found in programs written by a less experienced
programmer or generated from generic code templates in a programming environment.

7 Conclusions and future work

We have shown how the CSSAME form allows new optimization opportunities by tak-
ing advantage of the semantics imposed by mutual exclusion synchronization. In pre-
vious work we have shown how the reduction of memory conflictsacross threads can
improve the effectiveness of adapted scalar optimization strategies [13]. In this paper,
we have introduced two new optimization techniques that arespecifically targeted at
explicitly parallel programs:Lock-Independent Code Motion (LICM) moves code that
does not need to be locked outside critical sections andMutex Body Localization (MBL)
converts shared memory references into local memory references. We consider these
techniques a step towards a unified analysis and optimization framework for explicitly
parallel programs. In turn this should facilitate the adoption of high-level systems with
language-supported parallelism and synchronization. These systems typically provide
powerful abstractions that make parallel programming easier, but those same abstrac-
tions often hinder performance. Experienced programmers recognize these limitations
and manually circumvent them by removing abstraction layers to speed-up their code.
With the techniques developed in this paper, we can transferthe burden of these trans-
formations to the compiler.
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