APHID: Asynchronous Parallel Game-Tree Search

Mark G. Brockington and Jonathan Schaeffer
Department of Computing Science
University of Alberta
Edmonton, Alberta T6G 2H1
Canada

February 12, 1999

Running Head: APHID: Asynchronous Parallel Game-Tree Search
Send Proofs To:

Jonathan Schaeffer

615 General Services Building

Department of Computing Science

University Of Alberta

Edmonton, AB T6G 2H1

Canada

(403) 492-3851

Abstract

Most parallel game-tree search approaches use synchrometh®ds, where the work is
concentrated within a specific part of the tree, or at a giwanch depth. This article shows
that asynchronous game-tree search algorithms can becsrdftis or better than synchronous
methods in determining the minimax value.

APHID, a new asynchronous parallel game-tree search tiguris presented. APHID is
implemented as a freely-available portable library, mgkhre algorithm easy to integrate into
a sequential game-tree searching program. APHID has bekddd four programs written
by different authors. APHID yields better speedups tharclssanous search methods for an
Othello and a checkers program, and comparable speedup®ahéss programs.

Keywords: parallel search, alpha-beta, computer games, heuristic search.

List of Symbols:
af: alpha, beta
d: dee

d': dee prime

1 Introduction

Making computers play games in a skillful manner, comparable to that of a stronglplayar, is

a challenging problem that has attracted the attention of many computerssiengr the last fifty
years. Two-player zero-sum games with perfect information, such as ctitesipCand checkers,

are programmed using the same basic techniques.aBregorithm [9] is used to exhaustively
search variations that aremoves deep in a depth-first manner to determine the best move and its
value. A large hash table, called ttransposition table [5], is used to store previously determined
best moves and values for positions. The values from this table are re-used therisearch to
prevent the same position from being explored twice.

Instead of immediately searching a variatibmoves deep (o ply), most programs search
to 1 ply, then to 2 plygt cetera. This technique is known aterative deepening [16], and is used
to acquire move-ordering information in the transposition table. The best foowa (d — 1)-ply
search is likely to be the best move forigly search, and the algorithm will build a smaller
search tree (by eliminating, or cutting-off, irrelevant subtrees) if tlet lD®ve is searched first.

A game-playing program that can out-search its opponent has a high probability of winning. It
has been shown that there is a strong correlation between the search depphrahative strength
of chess, Othello and checkers programs [8]. Thus, programs are developeattoasedeeply as
possible while staying within the time constraints imposed by the rules of the.game

When using parallelism to search game trees deeper, almost all of #aeaiesas concentrated
on synchronous parallel search algorithms. These algorithms force work on one peettade
to be completed before work on the rest of the tree can be carried out. Theyelaésynchro-
nization points during the search that all processors must reach before angspioe#owed to
proceed. In some synchronous algorithms, the work is synchronized at every choicehalbyg t
pothesized best-move sequence, commonly known as the principal variatiohsyndaironized

algorithms, the work is synchronized at the root of the tree between steps t¥@&@epening; a

!Othello is a registered trademark of Tsukuda Original, licensed by Agar

completed-ply search must be finished before {lale+ 1)-ply search can begin.

The advantage of the synchronous approaches is that they can use the value of the principal
variation in the same way as the sequential search algorithm does. Synchroratlesgdgorithms
are successful at keeping the size of the search tree built close togiiensi@l search tree size,
assuming that processors are able to share transposition table informadioefiicient manner.

However, there are fundamental problems with synchronous pasailleéarch algorithms:

1. There are many times when there is insufficient parallelism to ké#pegorocessors busy.
If there are more processors than work granules at a synchronization point, thepresme
cessors must go idle. This idle time increases in magnitude (and significsite number
of processors increases. This problem is exacerbated in games that havik a/erage

number of move choices.

2. They require an efficient implementation of a shared transposition tabledetthe pro-
cesses to achieve high performance. Typically, the algorithms will exhibitgedéormance
without such a table, since each processor’s search results must be mkadeeatcaall other
processes. Because of this, most synchronous algorithms are tested on shaoeg sgem
tems. On distributed memory systems, sharing a table is not as effiareghthe speedups

portrayed in the literature for shared memory systems are not achievable.

3. Many synchronous algorithms attempt to initiate parallelism at nodes wtedbetter done
sequentially. For example, having searched the first branch at a node and notcehieve
cut-off, the remaining branches are usually searched in parallel. Howévee second
branch causes a cut-off, then all of the work done on the third and subsequent branches was
unnecessary. This suggests that parallelism should only be initiated at nodestiéreris

a high probability that all branches must be considered.

4. Many of the synchronous algorithms do not integrate well into typical sequentialthlgeri
This causes many changes to the main search algorithm to incorporatelisanalldnis will

likely result in a parallel program for which it is difficult to verifysitcorrectness.

2

In other work, a theoretical model was developed for comparing a typical synchronous game
tree search algorithm to an asynchronous one [2]. The theoretical results éddicat an asyn-
chronous algorithm could outperform a synchronous algorithm on game trees similar togése s
in practice. This paper shows that it is possible for asynchronous search algotdtionperform
their synchronous counterparts in practice.

The paper’s major contributions include:

1. The APHID (Asynchronous Parallel Hierarchical Iterative Deepening) idthgoris intro-
duced that addresses the previously mentioned problems. First, the algoritymcisrasous
in nature; it removes all global synchronization points fromdivesearch and from iterative
deepening. Second, the algorithm does not require a shared transposition table for move
ordering information. Third, parallelism is only applied at nodes that have a highlplibpa

of needing parallelism.

2. APHID has been designed to conform to the structure of the sequefitizhsed game-tree
search algorithm. Consequently, parallelism can be added to an existingagippliwith
minimal effort. APHID has been programmed as an application-independent andi@orta
library2 This was used to generate all of the parallel applications reported in thilear
Each of the implementations took less than a day of programming time to aclpevelke!
program that executed in the same way as the sequential program, and a few digis of a
tional tuning to achieve the reported speedups. In contrast, adding a synchronous paralle

algorithm to an existing sequential algorithm may take months of work.

3. APHID’s performance for four game-playing programs is presented. APHID yhelder
speedups than synchronous search methods for an Othello and a checkers program, and

comparable speedups on two chess programs.

Section 2 gives a brief survey of relevant parallel search methodsio®se&ctescribes the

APHID algorithm in detail, along with an illustrative example of how to #&fHID into existing

21t is freely available ahttp://www.cs.ualberta.ca/"games/aphid/

3

sequential game-tree search code. Section 4 shows the experimentaloéadiling APHID to

four applications. Section 5 summarizes this paper.

2 Previous Work

21 Theap Algorithm

In a two player zero-sum game with perfect information and a finite number oéspawn optimal
strategy can be determined by the minimax algorithm. In general, minimregeépth-first search
of a game tree. Each node represents a position, and the links between nodes rdprerexe
required to reach the next position. The player to move alternates at eatlofiehe tree. The
evaluation of each leaf node in the search is based on an approximation of vihetfiest player is
going to win the game (heuristic evaluation function). Whenever the first plageesnhe chooses
a move to maximize his evaluation (so-called Max nodes in the seamh @enversely, when the
second player has to move at a node, he will choose the move that minimizesltregiengMin
nodes).

Although the tree is finite, it can get quite large. To search a tree of detd withb branches
at every node)? nodes would be evaluated. Fortunately, there are straightforward “bounding”
techniques that can prove some evaluations are irrelevant. The most populaseofsthieec
algorithm, given in Figure 1.

The o algorithm only considers nodes that are relevant to the search windo#.[« rep-
resents the best value that the side to move can achieve thus far in tbie. sedditional search
at this node is intended to find moves that improve this lower bound (i.e. havee@wvak). 3
is the best that the player to move can achieve or, conversely, the stvallee that the opponent
can provably restrict the side to move to. When> [, no additional search is needed at this
node (acut-off occurs). In effect, thiprunes parts of the tree that provably cannot contribute to
the minimax value. It has been shown that éhealgorithm will return the correct minimax value
if the root position is searched with = —oo, f = 400 [9]. For a depthl tree withb branches

at every nodegq 3 has the potential to search the minimum number of leaf nodes possible to de-

4

int AlphaBeta(position p, int alpha, int beta) {

int numOfSuccessors; /* total moves */
inti; /* move counter */
int sc; [* score returned by search */

if (EndOfSearch(p)) { return(Evaluate(p)); }

numOfSuccessors = GenerateSuccessors(p);
for(i=1; i <= numOfSuccessors; i++) {
sc = -AlphaBeta(p.succli],-beta,-alpha);
alpha = max(alpha, sc);
if (alpha >= beta) { return(alpha); }

return(alpha);

} /* AlphaBeta */

Figure 1: A Negamax Formulation of the3 Algorithm

termine the minimax valuei' ¢! + b5/ — 1 (assuming that there are no transpositions in the tree).
This best case is achieved when the “best” move is considered firstratdsb in the search tree
(a perfectly-ordered tree).

There is a portion of the 5 tree that must always be searched to determine the minimax value.
This critical treeis defined as the perfectly-ordered tree that is generated wheés started with
the search window-{oo,+oc). Figure 2 shows the structure of the critical tree. Nodes marked
ALL have all of their successors exploreddy. Nodes marked CUT have at least one branch that
can cut off further search at this node. In the critical tree, first meaeched at all CUT nodes
causes a cut-off. CUT and ALL nodes are also known as type-2 and type-3 nodestivespi®].

The principal variation (type-1 nodes, labeled PV in Figure 2) ofiArcritical tree is the first
(left-most) branch searched. All of the PV nodes are searched with the windaw+oc). Thus,

all children at PV nodes are searched, meaning that they are effectikklpddes.

2.2 Parallel a-based Search Algorithms

The PV-Salit algorithm [13] is based on the regular structure of the critical game tree. she fi
stage of the algorithm involves a recursive call to itself as PV-Sgditels down the principal
variation. Once the left subtree of a PV node has been examined, all of the otheesbletmv that

PV node are searched in parallel. Each processor is given one subtree ata $march, without

5

