
APHID: Asynchronous Parallel Game-Tree Search

Mark G. Brockington and Jonathan Schaeffer
Department of Computing Science

University of Alberta
Edmonton, Alberta T6G 2H1

Canada

February 12, 1999

1



Running Head: APHID: Asynchronous Parallel Game-Tree Search
Send Proofs To:
Jonathan Schaeffer
615 General Services Building
Department of Computing Science
University Of Alberta
Edmonton, AB T6G 2H1
Canada
(403) 492-3851

Abstract

Most parallel game-tree search approaches use synchronousmethods, where the work is
concentrated within a specific part of the tree, or at a given search depth. This article shows
that asynchronous game-tree search algorithms can be as efficient as or better than synchronous
methods in determining the minimax value.

APHID, a new asynchronous parallel game-tree search algorithm, is presented. APHID is
implemented as a freely-available portable library, making the algorithm easy to integrate into
a sequential game-tree searching program. APHID has been added to four programs written
by different authors. APHID yields better speedups than synchronous search methods for an
Othello and a checkers program, and comparable speedups on two chess programs.

Keywords: parallel search, alpha-beta, computer games, heuristic search.



List of Symbols:��: alpha, betad: deed0: dee prime



1 Introduction

Making computers play games in a skillful manner, comparable to that of a strong human player, is

a challenging problem that has attracted the attention of many computer scientists over the last fifty

years. Two-player zero-sum games with perfect information, such as chess, Othello1 and checkers,

are programmed using the same basic techniques. The�� algorithm [9] is used to exhaustively

search variations that ared moves deep in a depth-first manner to determine the best move and its

value. A large hash table, called thetransposition table [5], is used to store previously determined

best moves and values for positions. The values from this table are re-used during the search to

prevent the same position from being explored twice.

Instead of immediately searching a variationd moves deep (ord ply), most programs search

to 1 ply, then to 2 ply,et cetera. This technique is known asiterative deepening [16], and is used

to acquire move-ordering information in the transposition table. The best move for a(d � 1)-ply

search is likely to be the best move for ad-ply search, and the�� algorithm will build a smaller

search tree (by eliminating, or cutting-off, irrelevant subtrees) if the best move is searched first.

A game-playing program that can out-search its opponent has a high probability of winning. It

has been shown that there is a strong correlation between the search depth andthe relative strength

of chess, Othello and checkers programs [8]. Thus, programs are developed to search as deeply as

possible while staying within the time constraints imposed by the rules of the game.

When using parallelism to search game trees deeper, almost all of the research has concentrated

on synchronous parallel search algorithms. These algorithms force work on one part of the tree

to be completed before work on the rest of the tree can be carried out. There areglobal synchro-

nization points during the search that all processors must reach before any process is allowed to

proceed. In some synchronous algorithms, the work is synchronized at every choice along the hy-

pothesized best-move sequence, commonly known as the principal variation. In all synchronized

algorithms, the work is synchronized at the root of the tree between steps of iterative deepening; a1Othello is a registered trademark of Tsukuda Original, licensed by AnjarCo.

1



completed-ply search must be finished before the(d+ 1)-ply search can begin.

The advantage of the synchronous approaches is that they can use the value of the principal

variation in the same way as the sequential search algorithm does. Synchronous parallel algorithms

are successful at keeping the size of the search tree built close to the sequential search tree size,

assuming that processors are able to share transposition table information inan efficient manner.

However, there are fundamental problems with synchronous parallel�� search algorithms:

1. There are many times when there is insufficient parallelism to keep all the processors busy.

If there are more processors than work granules at a synchronization point, then somepro-

cessors must go idle. This idle time increases in magnitude (and significance)as the number

of processors increases. This problem is exacerbated in games that have a small average

number of move choices.

2. They require an efficient implementation of a shared transposition table between the pro-

cesses to achieve high performance. Typically, the algorithms will exhibit poorperformance

without such a table, since each processor’s search results must be made available to all other

processes. Because of this, most synchronous algorithms are tested on shared memory sys-

tems. On distributed memory systems, sharing a table is not as efficient,and the speedups

portrayed in the literature for shared memory systems are not achievable.

3. Many synchronous algorithms attempt to initiate parallelism at nodes which are better done

sequentially. For example, having searched the first branch at a node and not achieved a

cut-off, the remaining branches are usually searched in parallel. However, if the second

branch causes a cut-off, then all of the work done on the third and subsequent branches was

unnecessary. This suggests that parallelism should only be initiated at nodes where there is

a high probability that all branches must be considered.

4. Many of the synchronous algorithms do not integrate well into typical sequential algorithms.

This causes many changes to the main search algorithm to incorporate parallelism. This will

likely result in a parallel program for which it is difficult to verify its correctness.

2



In other work, a theoretical model was developed for comparing a typical synchronous game-

tree search algorithm to an asynchronous one [2]. The theoretical results indicated that an asyn-

chronous algorithm could outperform a synchronous algorithm on game trees similar to those seen

in practice. This paper shows that it is possible for asynchronous search algorithms to outperform

their synchronous counterparts in practice.

The paper’s major contributions include:

1. The APHID (Asynchronous Parallel Hierarchical Iterative Deepening) algorithm is intro-

duced that addresses the previously mentioned problems. First, the algorithm is asynchronous

in nature; it removes all global synchronization points from the�� search and from iterative

deepening. Second, the algorithm does not require a shared transposition table for move

ordering information. Third, parallelism is only applied at nodes that have a high probability

of needing parallelism.

2. APHID has been designed to conform to the structure of the sequential��-based game-tree

search algorithm. Consequently, parallelism can be added to an existing application with

minimal effort. APHID has been programmed as an application-independent and portable

library.2 This was used to generate all of the parallel applications reported in this article.

Each of the implementations took less than a day of programming time to achieve aparallel

program that executed in the same way as the sequential program, and a few days of addi-

tional tuning to achieve the reported speedups. In contrast, adding a synchronous parallel

algorithm to an existing sequential algorithm may take months of work.

3. APHID’s performance for four game-playing programs is presented. APHID yieldsbetter

speedups than synchronous search methods for an Othello and a checkers program, and

comparable speedups on two chess programs.

Section 2 gives a brief survey of relevant parallel search methods. Section 3 describes the

APHID algorithm in detail, along with an illustrative example of how to addAPHID into existing2It is freely available athttp://www.cs.ualberta.ca/˜games/aphid/ .

3



sequential game-tree search code. Section 4 shows the experimental results of adding APHID to

four applications. Section 5 summarizes this paper.

2 Previous Work

2.1 The �� Algorithm

In a two player zero-sum game with perfect information and a finite number of moves, an optimal

strategy can be determined by the minimax algorithm. In general, minimax isa depth-first search

of a game tree. Each node represents a position, and the links between nodes representthe move

required to reach the next position. The player to move alternates at each level of the tree. The

evaluation of each leaf node in the search is based on an approximation of whetherthe first player is

going to win the game (heuristic evaluation function). Whenever the first player moves, he chooses

a move to maximize his evaluation (so-called Max nodes in the search tree). Conversely, when the

second player has to move at a node, he will choose the move that minimizes the evaluation (Min

nodes).

Although the tree is finite, it can get quite large. To search a tree of depthd and withb branches

at every node,bd nodes would be evaluated. Fortunately, there are straightforward “bounding”

techniques that can prove some evaluations are irrelevant. The most popular of these is the��
algorithm, given in Figure 1.

The�� algorithm only considers nodes that are relevant to the search window [�, �]. � rep-

resents the best value that the side to move can achieve thus far in the search. Additional search

at this node is intended to find moves that improve this lower bound (i.e. have a value> �). �
is the best that the player to move can achieve or, conversely, the smallest value that the opponent

can provably restrict the side to move to. When� � �, no additional search is needed at this

node (acut-off occurs). In effect, thisprunes parts of the tree that provably cannot contribute to

the minimax value. It has been shown that the�� algorithm will return the correct minimax value

if the root position is searched with� = �1, � = +1 [9]. For a depthd tree withb branches

at every node,�� has the potential to search the minimum number of leaf nodes possible to de-

4



for(i=1; i <= numOfSuccessors; i++) {

/* move counter */
/* score returned by search */int sc;

} /* AlphaBeta */

return(alpha);
}

if (alpha >= beta) { return(alpha); }
alpha = max(alpha, sc);
sc = -AlphaBeta(p.succ[i],-beta,-alpha);

numOfSuccessors = GenerateSuccessors(p);

if (EndOfSearch(p)) { return(Evaluate(p)); }

int i;
int numOfSuccessors; /* total moves */

int AlphaBeta(position p, int alpha, int beta) {

Figure 1: A Negamax Formulation of the�� Algorithm

termine the minimax value:bd d2 e + bb d2 c � 1 (assuming that there are no transpositions in the tree).

This best case is achieved when the “best” move is considered first at allnodes in the search tree

(a perfectly-ordered tree).

There is a portion of the�� tree that must always be searched to determine the minimax value.

This critical tree is defined as the perfectly-ordered tree that is generated when�� is started with

the search window (�1,+1). Figure 2 shows the structure of the critical tree. Nodes marked

ALL have all of their successors explored by��. Nodes marked CUT have at least one branch that

can cut off further search at this node. In the critical tree, first move searched at all CUT nodes

causes a cut-off. CUT and ALL nodes are also known as type-2 and type-3 nodes, respectively [9].

The principal variation (type-1 nodes, labeled PV in Figure 2) of an�� critical tree is the first

(left-most) branch searched. All of the PV nodes are searched with the window(�1,+1). Thus,

all children at PV nodes are searched, meaning that they are effectively ALL nodes.

2.2 Parallel ��-based Search Algorithms

The PV-Split algorithm [13] is based on the regular structure of the critical game tree. The first

stage of the algorithm involves a recursive call to itself as PV-Split travels down the principal

variation. Once the left subtree of a PV node has been examined, all of the other subtrees below that

PV node are searched in parallel. Each processor is given one subtree at a time to search, without

5


