
Pattern{based Object{Oriented ParallelProgrammingSteve MacDonald, Jonathan Schae�er, and Duane SzafronUniversity of Alberta, Edmonton, Alberta CANADA T6G 2H1Email: fstevem,jonathan,duaneg@cs.ualberta.ca1 Introduction and MotivationOver the past �ve years there have been several attempts to produce template{based (or, as they are now called, pattern{based [4]) parallel programming sys-tems (PPS). By observing the progression of these systems, we can clearly seethe evolution of pattern{based computing technology. Our �rst attempt, Frame-Works [9], allowed users to graphically specify the parallel structure of a pro-cedural program in much the same way they would solve a puzzle, by piecingtogether di�erent components. The programming model of FrameWorks waslow{level and placed the burden of correctness on the user. This research led toEnterprise [7], a PPS that provided a limited number of templates that could becomposed in a structured way. The programming model in Enterprise was at amuch higher level, with many of the low{level details handled by a combinationof compiler and run{time technology.In this progression, we can see more emphasis placed on the usability of thetools rather than raw performance gains, as shown by Szafron and Schae�er[12]. Each successive system reduced the probability of introducing program-mer errors. However, since performance considerations cannot be ignored, eachsuccessive systems also supported incremental application tuning. A related per-formance issue identi�ed by Singh et al. [10] is openness, where a user is able toaccess low{level features in the PPS and use them as necessary. This work ledto a critical evaluation of pattern{based systems that provides the motivationfor our new system, CO2P3S (Correct Object{Oriented Pattern{based ParallelProgramming System, pronounced \cops").In this paper, we present an architecture and model for CO2P3S in which weaddress some of the shortcomings of FrameWorks and Enterprise. Our continu-ing goal is to produce usable parallel programming tools. The �rst shortcomingwe address is the loose relationship between the user's code and the graphi-cal speci�cation of the program structure. Enterprise improved on FrameWorksby verifying a correspondence between the parallel structure and the code atcompile{time. However, we feel that forcing the user to write a program thatconforms to an existing diagram is redundant. If the structure of the applicationis already known, then the basic framework can be generated automatically. Thisreduces the amount of e�ort required to write programs, while simultaneouslyreducing programmer errors even further. The CO2P3S architecture also sup-ports improved incremental tuning. The architecture is novel in that it provides



several user{accessible layers of abstraction. At any given time during perfor-mance tuning, a programmer can work at the appropriate level of abstraction,based on what is being tuned. This can range from modifying the basic parallelpattern at the highest level, to modifying synchronization techniques at the mid-dle layer, to modifying which communication primitives are used at the lowestlevel. Our goal is an open system where the performance of an application isdirectly commensurate with programmer e�ort.2 The Architecture of CO2P3SThe architecture of CO2P3S consists of three layers: Patterns, IntermediateCode, and Native Code. These layers represent di�erent levels of abstraction,where the abstraction of each layer is implemented by the one underneath.Each layer is transformed during compilation to the layer underneath. At thepattern layer, the developer selects a pattern using a graphical tool. The PPSthen generates a template for the parallel application and the user is restrictedto providing sequential application{speci�c code at particular locations in thegenerated template. At the pattern level, the PPS guarantees the correctness ofthe generated program by using conservative synchronization mechanisms thatmay not yield peak parallel performance.Unlike Enterprise, CO2P3S provides programmer access to the second layerwhere the templates can be edited. From this layer down, the programmer is re-sponsible for the correctness of the resulting program. To simplify this task, weprovide a high{level parallel programming language that is an extension of ex-isting OO languages (Java or C++). This superset includes keywords to denoteparallel classes, specify concurrent activities and express necessary synchroniza-tion (using constructs such as asynchronous methods, threads, and futures).Finally, the third layer is the native programming language augmented witha library that provides the services required by the �rst two layers. Users aregiven full access to all language features and library code.We believe that providing intermediate levels of abstraction can provide sev-eral bene�ts. First, by generating correct template code at the �rst level, wecan ensure that a user has a working parallel program before the tuning processbegins. Second, it eases the tuning process by introducing the run{time systemin smaller increments. These smaller increments provide better opportunities fornovice or intermediate users to �nd a comfortable level of abstraction while stillproviding full access to the run{time system for experienced users. Lastly, itshould always be possible to improve the performance of a program by using theabstraction of a lower level. If so, then the performance of an application shouldbe more directly commensurate with programmer e�ort.3 The ModelIn this section, we more fully specify the model and demonstrate it using an ex-ample program. Our example shows some details of a generic mesh computation.


