
Distributed Game-Tree Search Using Transposition Table Driven Work
Scheduling

Akihiro Kishimoto and Jonathan Schaeffer
Department of Computing Science, University of Alberta,

Edmonton, Alberta, Canada T6G 2E8fkishi@cs.ualberta.ca, jonathan@cs.ualberta.cag
Abstract

The�� algorithm for two-player game-tree search has
a notorious reputation as being a challenging algorithm
for achieving reasonable parallel performance. MTD(f),
a new�� variant, has become the sequential algorithm
of choice for practitioners. Unfortunately, MTD(f) inher-
its most of the parallel obstacles of��, as well as creat-
ing new performance hurdles. Transposition-table-driven
scheduling (TDS) is a new parallel search algorithm that
has proven to be effective in the single-agent (one-player)
domain. This paper presents TDSAB, the first time TDS par-
allelism has been applied to two-player search (the MTD(f)
algorithm). Results show that TDSAB gives comparable
speedups to that achieved by conventional parallel�� al-
gorithms. However, since this is a parallelization of a supe-
rior sequential algorithm, the results in fact are better. This
paper shows that the TDS idea can be extended to more
challenging search domains.
Keywords: �� search, transposition-table-driven schedul-
ing, single-agent search, transposition table.

1. Introduction
The development of high-performance game-playing

programs has been the subject of over 50 years of artifi-
cial intelligence research. At the heart of these programs
is the�� tree search algorithm. The strong correlation be-
tween the depth of search and the resulting program’s per-
formance prompted researchers to quickly move to paral-
lel solutions, including multi-processor systems (e.g., WAY-
COOL using a 256-processor HyperCube [6], CRAY BLITZ

using a 16-processor Cray [8], SUN PHOENIX using a net-
work of 32 workstations [19], ZUGZWANG using 1,024
Transputers [4]) and special-purpose hardware (including
DEEP BLUE [7]). Of course, the most vivid demonstration
of this technology was the 1996 and 1997 matches between
DEEPBLUE and World Chess Champion Garry Kasparov.

Many artificial intelligence applications are search based
and require real-time responses. Clearly faster hardware en-

ables more computations to be performed in a fixed amount
of time, generally allowing for a better quality answer.
Dual-processor machines and clusters of inexpensive pro-
cessors are ubiquitous and are thede factoresearch com-
puting platforms used today.

Single-agent domains (puzzles) and two-player games
have been popular test-beds for experimenting with new
ideas in sequential and parallel search. This work trans-
fers naturally to many real-world problem domains, for ex-
ample planning, path-finding, theorem proving, and DNA
sequence alignment. There are many similarities in the ap-
proaches used to solve single-agent domains (A* and IDA*)
and two-player games (��). Many of the sequential en-
hancements developed in one domain can be applied (with
modifications) to the other.

Two recent developments have changed the way that re-
searchers look at two-player search. First, MTD(f) has
emerged as the new standard framework for the�� al-
gorithm preferred by practitioners [15]. Second, TDS is
a new, powerful parallel search paradigm for distributed-
memory hardware that has been applied to single-agent
search [17, 18]. Given that there is a new standard for se-
quential�� search (MTD(f)) and a new standard for paral-
lel single-agent search (TDS), the obvious question is what
happens when both ideas are combined.

In MTD(f), all searches are done with a so-called mini-
mal window [�; �+1]. Each search answers a binary ques-
tion: is the result� � or is it> �? At the root of the tree, a
series of minimal window searches are performed until the
result converges on the value of the search tree. MTD(f) has
been shown to empirically out-perform other�� variants. It
has the nice property of searching using a single bound, an
important consideration in a parallel search.

TDS is an elegant idea that reverses the traditional view
of parallel search. Instead of sending data to the work that
needs it, TDS sends the work to the data. This simple rever-
sal of the relationship between computation and data sim-
plifies the parallelism, reduces parallel overhead, and yields
impressive results for single-agent search applications.

1



This paper introduces TDSAB, TDS parallelism adapted
to �� search (specifically, MTD(f)) [9]. This is the first at-
tempt to integrate TDS parallelism into two-player search.
The speedups in two application domains (the game of
Awari, small branching factor; Amazons, large branching
factor) average roughly 23 on a network of 64 workstations,
a result that is comparable to what others have achieved us-
ing conventional parallel�� algorithms. However�� is
not the best sequential algorithm for searching game trees;
MTD(f) has been shown to be 5-15% better [15]. Parallel
performance must always be compared to that of the best se-
quential algorithm. Given that the game-development com-
munity is moving to MTD(f) as their sequential standard,
the results in this paper confirm that this algorithm is also
suitable for high-performance parallel applications.

Section 2 discusses sequential and parallel game-tree
search algorithms. Section 3 introduces TDSAB, while Sec-
tion 4 presents experimental data on its performance. Sec-
tion 5 discusses future work on enhancing this algorithm.

2. Game-tree Search
This section gives a quick survey of�� searching. Good

surveys of the literature are available for sequential [12] and
parallel [1] game-tree search.

2.1. Sequential Search

For more than 30 years the�� algorithm has been the
most popular algorithm for two-player games. The algo-
rithm eliminates provable irrelevant nodes from the search.
Two bounds are maintained,� and�, representing the lower
and upper bounds respectively on the minimax value of the
search tree (the search window). The savings of�� come
from the observation that once the search proves that the
score of the node is outside the search window, then further
effort at that node is irrelevant.

Many enhancements have been added to�� to (dramati-
cally) improve the search efficiency. The most important of
these is the transposition table, a cache of the results from
previously searched sub-trees [20]. Its effectiveness is ap-
plication dependent. For chess, for example, it is worth a
factor of 10 in performance. Thus any high-performance
implementation must have a transposition table.

MTD(f) is recognized as the most efficient variant of se-
quential��. Figure 1 shows that MTD(f) is just a sequence
of minimal window�� calls, searching noden to depthd.
The initial search is centered around the valuef (usually
the value returned by the previous iteration in an iterative-
deepening search). This result is then monotonically in-
creased or decreased to the correct minimax value. The
transposition table is critical to the performance of MTD(f),
since the tree is repeatedly traversed, albeit with a differ-
ent search window. The table prevents nodes that have been
proven to be inferior from being searched repeatedly.

int MTD(node t n, int d, int f) f
int score;
int lowerbound =�1; upperbound =1;
if (f == -1) bound = f + 1;
else bound = f;
do f

/* Minimal window search */
(+) score = AlphaBeta(n, d, bound-1, bound);

if (score< bound) upperbound = score;
else lowerbound = score;
/* Re-set the bound */
if (lowerbound == score) bound = score + 1;
else bound = score;g while (lowerbound6= upperbound);g

Figure 1. MTD(f)

2.2. Obstacles to Parallel Search�� has proven to be a notoriously difficult algorithm to
get good parallel performance with. To achieve a sufficient
speedup, we must cope with the following obstacles:� Search overheadis the (usually) larger tree built by

the parallel algorithm as compared to the sequential
algorithm. This cost is estimated by:Searh overhead = parallel tree size� sequential tree sizesequential tree size :
Note that this overhead could be negative (super-linear
speedups are occasionally observed).� Synchronization overheadoccurs when processors
have to sit idle waiting for the results from other
searches. A good approximation for this is to measure
the average percent of idle time per processor. This
overhead can be reduced by increasing the amount of
concurrency (for example, speculative search), usually
at the cost of increasing the search overhead.� Communication overheadis the consequence of shar-
ing information between processors. In a shared-
memory environment, this is effectively zero (although
there may be some locking overhead). In a distributed-
memory environment, communication is done via
message passing. Since all messages are small (less
than 100 bytes), the overhead can be estimated by
counting messages and multiplying this by the average
cost of a message send. Note that fast communication
is critical to performance; a late message can result in
unnecessary work being spawned in parallel. Hence, a
faster network can improve the efficiency of the search.� Load balancingreflects how evenly the work has been
distributed between the processors. Ideally, each pro-
cessor should be given work that takes exactly the
same amount of time. In practice, this does not hap-
pen, and some processors are forced to wait for others
to complete their tasks. Note that load balancing is an
important influence on synchronization overhead,

2



None of these overheads is independent of each other. A
high-performance�� searcher needs to be finely tuned to
choose the right mix of parameters and algorithm enhance-
ments to balance the performance trade-offs.

2.3. Parallel Search Algorithms
Numerous parallel�� algorithms have been proposed.

The PV-Split algorithm invoked parallelism down the left-
most branch of the tree (theprincipal variation) [13]. In the
late 1980s, several algorithms appeared that initiated par-
allelism throughout the tree (Enhanced PV-Split [8], Dy-
namic PV-Split [19], Young Brothers Wait Concept [5]).
Further concurrency could be achieved using speculative
search (UIDPABS [14], APHID [3]).

The Young Brothers Wait Concept (YBWC) serves as a
suitable framework for describing most of the commonly
used parallel�� implementations [4]. There are many vari-
ants of YBWC, but they only differ in the implementation
details (e.g., [10, 21]). Highly optimized sequential��
search algorithms usually do a good job of ordering moves
from best to worst. A well-ordered�� search tree has the
property that if a cut-off is to occur at a node, then the
first move considered has a high probability of achieving it.
YBWC states that the left-most branch at a node has to be
searched before the other branches at the node are searched.
This observation reduces the search overhead (by ensuring
that the move with the highest probability of causing a cut-
off is investigated before initiating the parallelism) at the
price of increasing the synchronization overhead (waiting
for the first branch to return).

To minimize synchronization overhead and improve load
balancing, many algorithms (including YBWC) usework
stealingto offload work from a busy processor to an other-
wise idle processor. When a processor is starved for work,
it randomly chooses a processor and then “steals” a piece
of work from its work queue. Although work stealing im-
proves the load balancing, on distributed-memory machines
this can have an adverse impact because of the lack of in-
formation available in the transposition table.

2.4. Parallel Transposition Tables
Practical�� search algorithms have transposition tables.

In a shared-memory environment, transposition tables can
be easily shared, making results from one processor avail-
able to others as soon as it has been computed. In a dis-
tributed memory environment, things are not so simple; the
efficient implementation of transposition tables becomes a
serious problem. Since processors do not share memory,
they cannot access the table entries of other processors with-
out incurring communication overhead.

There are three naive ways to implement transposition
tables on distributed-memory machines. Withlocal trans-
position tables, each processor has its own table. No table
entries are shared among processors. Therefore, looking up

and updating an entry can be done without communication.
However, local transposition tables usually result in a large
search overhead, because a processor may end up repeating
a piece of work done by another processor.

With partitioned transposition tables, each processor
keeps a disjoint subset of the table entries. This can be
seen as a large transposition table divided among all the
processors (e.g., [4]). LetL be the total number of table
entries withp processors, then each processor usually hasLp entries. When a processorP needs a table entry, it sends
a message to ask the processorQ which keeps the corre-
sponding entry to return the information toP (communica-
tion overhead).P has to wait forQ to send back the infor-
mation on the table entry toP (synchronization overhead).
When processorP updates a table entry, it sends a message
to the processor that “owns” that entry to update its table
entry. Updating messages can be sent asynchronously.

Usingreplicated transposition tablesresults in each pro-
cessor having a copy of the same transposition table. Look-
ing up a table entry can be done by a local access, but updat-
ing an entry requires a broadcast toall the other processors
to update their tables with the new information (excessive
communication overhead). Even if messages for updates
can be sent asynchronously and multiple messages can be
sent at a time by combining them as a single message, the
communication overhead increases as the number of pro-
cessors increases. As well, replicated tables have fewer ag-
gregate entries than a partitioned table.

All three approaches may do redundant search in the
case of a DAG (Directed Acyclic Graph). A search re-
sult is stored in the transposition tableafter having finished
searching. If identical nodes are allocated to different pro-
cessors, then duplicate search may occur, which increases
the search overhead. Because the efficient implementation
of transposition tables in a distributed environment is a chal-
lenging problem, researchers have been looking for better
solutions [2, 19].

2.5. TDS
Transposition-table Driven Scheduling (TDS) flips the

idea of work-stealing to solve the transposition table prob-
lem [17, 18]. Work-stealing moves the data to where the
work is located; TDS moves the work to the data. A similar
idea also appears in [11].

In TDS, transposition tables are partitioned over the pro-
cessors like a partitioned transposition table. Whenever a
node is expanded, its children are scattered to the proces-
sors (calledhome processors) which keep their transposi-
tion table entries. Once the work is sent to a processor, that
processor accesses the appropriate transposition table infor-
mation locally. All communication is asynchronous. Once
a processor sends a piece of work, it can immediately work
on another task. Processors periodically check to see if new
work has arrived.

3



The idea of TDS seems to be easily applied to two-player
games. However, there are important differences between
single-agent search (IDA*) and two-player search (��) that
complicate the issue:
(1) Pruning: ��’s scheme for pruning is different from

that of IDA*. IDA* uses a single bound;�� uses a
pair of bounds (the search window).

(2) Cut-offs: IDA* only aborts parallel activity when the
final search result has been determined.�� cut-offs
occur throughout the search. When a cut-off occurs at
a node, there has to be a way to abort all work spawned
from that node.

(3) Search window: �� can search identical nodes with
different search windows.

(4) Priority of nodes: The order in which nodes are con-
sidered is more important in�� than in IDA*. In
IDA*, move ordering only affects the efficiency of the
last iteration, while in�� it impacts every node in the
tree. For IDA*, a stack is sufficient to prioritize nodes;
for ��, this is insufficient.

(5) Saving the tree: An IDA* tree node does not need to
know its parent. In��, values must be passed back
from child nodes to parent nodes. This requires an��
implementation that guarantees the search tree is saved
in the transposition table.

However, TDS has several important advantages that can
facilitate the parallel performance of��:
(1) All transposition table accesses are done locally. All

communication is asynchronous.
(2) DAGs are not a problem, since identical positions are

guaranteed to be assigned to the same processor.
(3) Given that positions are mapped to random numbers to

be used for transposition table processor assignments,
statistically good load balancing happens for free.

Since TDS has proven to be so successful in single-agent
search, the obvious question to ask is how it would fare in
two-player search.

3. TDSAB
This section presents a new parallel�� algorithm,

TDSAB (Transposition-table Driven Scheduling Alpha-
Beta), the first attempt to parallelize MTD(f) using the TDS
algorithm. Transposition tables are critical to the perfor-
mance of MTD(f), and a TDS-like search addresses the
problem of an efficient implementation of this data struc-
ture in a distributed-memory environment.

3.1. The TDSAB Algorithm
MTD(f) has an important advantage over classical��

for parallel search; since all searches use a minimal win-
dow, the problem of disjoint and overlapping search win-
dows will not occur (a serious problem with conventional
parallel�� implementations). The disadvantage is that for

each iteration of MTD(f), there may be multiple calls to��,
each of which incurs a synchronization point (at line “+” in
Figure 1). Each call to�� has the parallelism restricted to
adhere to the YBWC restriction to reduce the search over-
head. The distribution of nodes to processors is done as in
TDS.

Since TDSAB follows the TDS philosophy of moving
work to the data, the issues explained in the last section have
to be resolved. The following new techniques are used for
TDSAB:

(1) Search order: The parallel search must preserve the
good move ordering (best to worst) that is seen in se-
quential��. Our solution to this issue is similar to that
used in APHID [2]. Each node is given a priority based
on how “left-sided” it is. To compute the priority of a
node, the path from the root to that node is considered.
Each move along that path contributes a score based
on whether the move is the left-most in the search tree,
left-most in that sub-tree, or none of the above. These
scores are added together to give a priority, and nodes
are sorted to determine the order in which to consider
work (see [9] for details).

(2) Signatures: When searching the children of a node in
parallel and a cut-off score is returned, further work at
this node is not necessary; all outstanding work must
be stopped. However, since TDS does not have all the
descendants of a node on the same processor, we have
to consider an efficient way of tracking down this work
(and any work that has been spawned by it) and termi-
nating it. Cut-offs can be elegantly handled by the idea
of giving each node asignature. When a cut-off hap-
pens at a nodeP , TDSAB broadcasts the signature ofP to all the processors. A processor receiving a cut-off
signature examines its local priority queue and deletes
all the nodes whose signatureprefix is the same as the
signature ofP (see Section 3.2).

(3) Synchronization of nodes: The search order of iden-
tical nodes must be considered carefully in the case
of cyclic graphs, in order to avoid deadlock. We have
developed a strategy for synchronizing identical nodes
that is deadlock-free (see Section 3.3).

Figure 2 gives pseudo code for TDSAB. For simplic-
ity, we just explain TDSAB without YBWC and also do
not use the negamax form. The functionParallelMWS
does one iteration of a minimal window search [�; � + 1]
in parallel. The end of the search is checked by the func-
tionFinishedSearhingRoot, which can be implemented
by broadcasting a message when the score for the root has
been decided. The functionRevNode checks regularly if
new information comes to a processor.RevNode receives
three kinds of information:

1. NEW WORK: a processor has examined a node and
spawned the node’s children to be evaluated in parallel.

4



The new work arrives, assigned a priority, and inserted
in the priority queue (lines marked “=”). Eventually
this work will reach the head of the priority queue (if it
is not cut-off). If the work to be searched is terminal or
a small piece of work then it is immediately searched
locally (the cost of doing it in parallel out-weighs the
benefits) and sent back to its parent node (lines marked
“-” in the figure). Otherwise, the children of the node
are generated and sent to theirHomeProessors to
be searched (lines marked “!”).

2. CUT-OFF: a signature is received and used to remove
work from the priority queue. If a processor receives
a signature, the functionCutAllDesendants exam-
ines its local queue and discards all nodes with a
matching signature prefix (see the pseudo-code at “*”).

3. SEARCH RESULT: the minimax score of a node is be-
ing returned to its parent node (lines marked “+”).

If new information arrives at a processor,GetNode,GetSignature, and GetSearhResult get information
on a node, signature, and score for a node respectively.GetLoalJob determines a node to be expanded from its
local priority queue, andDeleteLoalJob deletes a node
from the queue. We note that TDSAB keeps information
on nodes being searched unlike the IDA* version of TDS.SendNode sends a node to the processor chosen by the
functionHomeProessor, which returns the id of the pro-
cessor having the table entry for the node (a function of the
transposition table keyTTKey).

When receiving a search result, TDSAB has to consider
two cases (StoreSearhResult). If a score proves a fail
high (result> �), TDSAB does not need to search the rest
of the branches. The fail-high score is saved in the transpo-
sition table (TransFailHighStore), the node is dequeued
from the priority queue, and the score is sent to the pro-
cessor having the parent of the node (SendSore). Only
after a processor has completed searching a node is it dis-
carded. Because searching the rest of the branches has al-
ready started, the processor broadcasts a signature to abort
useless search, then deletes the node. When a fail low hap-
pens (result� �), a processor stores the maximum score of
the branches. If all the branches of a node are searched, the
fail-low score for the node is stored in the transposition ta-
ble (TransFailLowStore), and the score is reported back
to its parent.

3.2. Signatures
Let P be a node andQ be a child ofP . When searching

the children ofP in parallel, ifQ returns a score that causes
a cut-off atP , searching other children ofP is not neces-
sary. If any child ofP is currently being searched, then it
must be stopped. TDSAB, therefore, has to stop any use-
less searches in order to avoid increasing the search over-
head. However, because all the descendants ofP are not
always on the same processor in the TDS framework, we

int �; /* A search window is set to[�; �+ 1℄. */
/* Granularity depends on machines, networks, and so on. */
const int granularity;

void ParallelMWS()f
int type, v;
node t p;
signature t sig;
do f

/* Check if new information arrives. */
if (RecvNode(&type) == TRUE)f

switch(type)f
(=) /* New work is stored in its priority queue. */
(=) case NEW WORK:
(=) GetNode(&p); Enqueue(p);break;
(*) /* Obsolete nodes are deleted from its priority queue. */
(*) case CUT OFF:
(*) GetSignature(&sig); CutAllDescendents(sig);break;
(+) /* A search result is saved in the transposition table. */
(+) case SEARCHRESULT:
(+) GetSearchResult(&p,&v); StoreSearchResult(p,v);break;gg

GetLocalJob(&p);
if (p == FOUND)f

(-) if (p == terminaljj p.depth� granularity)f
(-) /* Local search is done for small work. */
(-) v = AlphaBeta(p,p.depth,�,�+ 1);
(-) SendScore(p.parent,v);

DeleteLocalJob(p);g else f /* Do one-ply search in parallel. */
(!) for (int i = 0; i < p.numof children; i++)f
(!) int pe = HomeProcessor(TTKey(p.childnode[i]));
(!) p.child node[i].depth = p.depth - 1;
(!) SendNode(p.childnode[i],pe);gggg while (!FinishedSearchingRoot());g
void StoreSearchResult(node t p, int value)f

if (value> �) f /* Fail high */
TransFailHighStore(p,value);
SendScore(p.parent,value);
SendPruningMessage(p.signature); DeleteLocalJob(p);g else f /* Fail low */
p.score = MAX(p.score,value); p.numreceived ++;
if (p.numreceived == p.numof children)f

/* All the scores for its children are received. */
TransFailLowStore(p,p.score);
SendScore(p.parent,p.score);
DeleteLocalJob(p);ggg

Figure 2. Simplified Pseudo Code for TDSAB

5



Root

1 2

1 2

1

1 2

1

A B

A

Signature

B

1 1 1

2 1 1

Figure 3. Signatures

have to consider an efficient implementation for cut-offs in
TDSAB. In a naive implementation, when a cut-off hap-
pens at a node, a message has to be sent to all processors
searching that node’s children asking them to remove the
child node from their priority queue (and, in turn, messages
to their children to stop searching, and so on). This ap-
proach clearly results in the exchange of many messages
which can lead to a large increase in communication over-
head, and also a delay in killing unnecessary work (which,
in turn, results in more search overhead).

In TDSAB, when a cut-off occurs, we reduce the number
of messages exchanged by using asignature. Intuitively, the
signature forP is the path traversed from the root node toP . Every branch of a node has a tag which differentiates it
from other branches at that node; a signature ofP is seen
as a sequence of these tags from the root toP . Figure 3
illustrates an example of signatures. The decimal number
on each branch between two nodes is the tag. The signature
of A is 111 derived from the path from the root toA; the
signature ofB is 211.

When a cut-off happens at a nodeP , TDSAB broadcasts
the signature ofP to all the processors. When a processor
receives a cut-off signature, it examines its local priority
queue and deletes all the nodes which have the same paths
from the root toP . For example, in Figure 3, if TDSAB
wants to prune all the children ofA, the signature111 is
broadcast and each processor prunes all the nodes that begin
with the signature “111 � � �”.
3.3. Deadlock

The search order of identical nodes has to be carefully
handled in order to avoid deadlock. Assume that a proces-
sor has two identical nodes. If searching the second node is
alwaysdelayed until after the completion of the first node,
then a deadlock may occur. Figure 4 illustrates this prob-
lem. Suppose thatB andB 0 are identical nodes. If these
nodes are searched in the following order, a deadlock will
occur: (1)A is expanded, andB andE are sent to their
home processors. (2)B is expanded, andC is sent. IfB’s
processor receives a nodeB 0 identical toB, searchingB 0 is

C

D

E

A

B

B’

Figure 4. Deadlock with Cycles

delayed until it receives a score forB. (3)E is expanded,
andD is sent. (4)D is expanded, andB 0 is sent. SearchingB0 is done after finishingB. (5)C is expanded, andD is
sent. In this case,B waits for the score forC, C waits forD, D waits forB0, andB0 waits forB. Therefore a cyclic
wait has been created and a deadlock ensures.

To eliminate the possibility of deadlock, if two identi-
cal nodes are encountered and neither of the nodes has been
searched yet, then TDSAB searches the shallower one first.
When a noden1 whose search depth is shallower or equiva-
lent to an identical noden2 whose search has already begun,
thenn2 waits untiln1’s search completes. When a deeper
search has already started, the shallower search of an iden-
tical node is also started. This strategy avoids a deadlock
by preventing a shallower node from waiting for a deeper
node to return its score, which happened in Figure 4. How-
ever, some nodes can be searched more than once even if it
does not cause a deadlock, when a deeper node is expanded
before a shallower identical node. In practice, this addi-
tional overhead is small. The correctness of this approach
is proven in [9].

3.4. Implementation Details
TDSAB has been implemented for the games of Awari

and Amazons (seewww.cs.ualberta.ca/˜games ).
The African game of Awari is characterized by a low
branching factor (less than 6) and an inexpensive evalua-
tion function. Amazons is a new game that has grown in
popularity since it seems to be intermediate in difficulty be-
tween chess and Go. It has a very large branching factor
(2,176 at the start of the game) and an expensive evaluation
function. These games have different properties that exhibit
themselves by different characteristics of a parallel search.

Historically, chess has been used to benchmark the per-
formance of parallel�� algorithms. Chess is no longer
in vogue, and researchers have moved on to other games
with interesting research problems. Both Awari and Ama-
zons are the subject of active research efforts and thus are
of greater interest.

For Amazons the YBWC strategy was modified. Be-

6



Number of Execution Speedup Search Synch. Comm.
Processors Time Overhead Overhead Overhead

(seconds) (%) (%) (%)

1 2177.2 - - - -
8 463.81 4.69 18.5 20.3 0.8
16 253.48 8.59 15.3 30.1 1.1
32 152.67 14.26 15.6 40.5 1.5
64 99.80 21.82 15.6 55.0 3.6

Table 1. Awari Performance, 24-ply

Number of Execution Speedup Search Synch. Comm.
Processors Time Overhead Overhead Overhead

(seconds) (%) (%) (%)

1 1604.1 - - - -
8 343.58 4.67 55.8 11.1 0.9
16 180.11 8.90 55.2 15.1 1.0
32 116.11 13.81 79.2 25.4 1.3
64 68.25 23.50 66.4 35.5 3.6

Table 2. Amazons Performance, 5-ply

cause of the large branching factor the basic YBWC strat-
egy distributes too many nodes to the processors, resulting
in a lot of search overhead. Therefore, if the first branch of a
node does not cause a cut-off, a smaller number of children
(P whereP is the number of processors) are searched in
parallel at a time. If none of these branches causes a cut-off
then the nextP nodes are searched in parallel, and so on.

For Awari, the search was modified to consider all the
children of the root node in parallel. Although this is a
search overhead versus synchronization overhead trade-off,
it solves a serious problem for any domain with a small
branching factor: insufficient work to keep the processors
busy (starvation).

4. Experiments
The Awari and Amazons programs were written in C and

used PVM. Tables 1 and 2 show the experimental results.
All results were obtained using Pentium IIIs at 933 Mhz,
connected by a 100Mb Ethernet. Each processor had its
own 200 MB transposition table. Each data point is the av-
erage of 20 test positions. The search depths were chosen so
that a test position would take 1-2 minutes on 64 processors
(i.e., the typical speed seen in tournaments). Awari, with
its low branching factor and inexpensive evaluation func-
tion, can search 24-ply deep in roughly the time it takes to
search Amazons (and its large branching factor and expen-
sive evaluation function) 5-ply deep (one ply is one move
by one player).

To measure synchronization and communication over-
heads, we used an instrumented version of the programs.
Therefore, we note that the theoretical speedups calcu-
lated by these overheads do not always reflect the observed
speedups in each game.

The Awari results can be compared to previous work us-

Figure 5. Awari Idle Times

ing checkers, which has a similarly small branching factor.
The TDSAB speedup of 21.8 on 64 processors easily beats
the APHID speedup of 14.35 using comparable hardware
[2]. Analysis of the overheads shows that synchronization
is the major culprit. This is not surprising, given that there
are 12 iterations (the program iterated in steps of two ply at
a time), and an average of 3 synchronization points per iter-
ation. Figure 5 shows a graph of processor idle time (white
space) for a typical search. The Y-axis is the processor num-
ber (0-31) and the X-axis is time. The vertical lines show
where a synchronization point occurred. The last few syn-
chronization points resulted in lots of idle time, limiting the
speedup.

Amazons has only slightly better performance (23.5-
fold speedup), which may seem surprising given the large
branching factor (and, hence, no shortage of work to be
done). The very large branching factor turns out to be a
liability. At nodes where parallelism can be initiated, many
pieces of work are generated, creating lots of concurrent
activity (which is good). If a cut-off occurs, many of these
pieces of work may have been unnecessary resulting in in-
creased search overhead (which is bad). In this case, search
overhead limits the performance, suggesting that the pro-
gram should be more prudent than it currently is in initiating
parallel work. Other parallel implementations have adopted
a similar policy of searching subsets of the possible moves
at a node, precisely to limit the impact of unexpected cut-
offs (for example, [21]).

Multigame is the only previous attempt to parallelize
MTD(f) [16] (conventional parallel�� was used). Multi-
game’s performance at checkers (21.54-fold speedup) is
comparable to TDSAB’s result in Awari. For chess, Multi-
game achieved a 28.42-fold speedup using partitioned trans-
position tables; better than TDSAB’s results in Amazons.
However, comparing these numbers is not fair. The Multi-

7



game results were obtained using slower machines (Pen-
tium Pros at 200 Mhz versus Pentium IIIs at 933 Mhz),
a faster network (Myrinet 1.2Gb/s duplex network versus
100Mb/s Ethernet), longer execution times (roughly 33%
larger), and different games.

When comparing TDSAB’s parallel performance to that
of other implementations (including ZUGZWANG), one
must take into account that “standard”�� is now an inferior
sequential algorithm. MTD(f) builds trees that are 5-15%
smaller on average [15]. All speedups should be computed
relative to thebest sequential algorithm. Now that a new
standard for sequential�� performance has been set, pre-
viously published parallel algorithms and results should be
re-evaluated.

5. Conclusions
The results of our work on TDSAB are encouraging.

Clearly, the TDS framework offers important advantages
for a high-performance search application, including asyn-
chronous communication and effective use of memory.
However, these advantages are partially offset by the in-
creased synchronization overhead of MTD(f). The end re-
sult of this work are speedups that are comparable to what
others have reported, perhaps even better when one takes
into account the differences between MTD(f) and��. This
is the first attempt to apply TDS to the two-player domain,
and undoubtedly improvements will be found to further en-
hance performance.

Moving TDS from the single-agent domain to the two-
player domain proved challenging. New techniques had to
be invented to accommodate the needs of��. In many
ways,�� is a worst-case scenario; most artificial intelli-
gence search algorithms do not need all the parallel capa-
bilities required by��. This work generalizes TDS and
shows that it can be a powerful parallel paradigm for a wide
class of search algorithms.

There are numerous ideas yet to explore with TDSAB
including: better priority queue node ordering, reducing
MTD(f) synchronization, controlling the amount of paral-
lelism initiated at a node, and speculative search. As well,
a TDS implementation of�� (not MTD(f)) would be use-
ful for comparison purposes. All these ideas are topics of
current research.

6. Acknowledgments
Financial support was provided by the Natural Sciences

and Engineering Research Council of Canada (NSERC)
and Alberta’s Informatics Circle of Research Excellence
(iCORE).

References

[1] M. Brockington. A taxonomy of parallel game-tree search
algorithms. International Computer Chess Association

Journal, 19(3):162–174, 1996.
[2] M. Brockington.Asynchronous Parallel Game-Tree Search.

PhD thesis, Dept. of Computing Science, Univ. of Alberta,
1998.

[3] M. Brockington and J. Schaeffer. Aphid: Asynchronous par-
allel game-tree search.Journal of Parallel and Distributed
Computing, 60:247–273, 2000.

[4] R. Feldmann.Game Tree Search on Massively Parallel Sys-
tems. PhD thesis, Univ. of Paderborn, August 1993.

[5] R. Feldmann, B. Monien, P. Mysliwietz, and O. Vornberger.
Distributed game tree search.Journal of the International
Computer Chess Association, 12(2):65–73, 1989.

[6] E. Felten and S. Otto. Chess on a hypercube. In G. Fox, ed-
itor, Third Conference on Hypercube Concurrent Comput-
ers and Applications, volume II-Applications, pages 1329–
1341, 1988.

[7] F. Hsu. IBM’s Deep Blue chess grandmaster chips.IEEE
Micro, (March-April):70–81, 1999.

[8] R. Hyatt and B. Suter. A parallel alpha/beta tree searching
algorithm.Parallel Computing, 10:299–308, 1989.

[9] A. Kishimoto. Transposition Table Driven Scheduling for
Two-Player Games. Master’s thesis, Dept. of Computing
Science, Univ. of Alberta, 2002.

[10] B. Kuszmaul.Synchronized MIMD Computing. PhD thesis,
Massachusetts Institute of Technology, 1994.

[11] U. Lorenz. Parallel controlled conspiracy number search. In
13th Annual Symposium on Parallel Algorithms and Archi-
tectures (SPAA2001), pages 320–321, 2001.

[12] T. Marsland. Relative performance of alpha-beta implemen-
tations. InIJCAI, pages 763–766, 1983.

[13] T. Marsland and F. Popowich. Parallel game-tree search.
IEEE PAMI, 7(4):442–452, 1985.

[14] M. Newborn. Unsynchronized iteratively deepening parallel
alpha-beta search.IEEE PAMI, 10(5):687–694, 1988.

[15] A. Plaat, J. Schaeffer, W. Pijls, and A. de Bruin. Best-
first fixed-depth minimax algorithms.Artificial Intelligence,
87(1–2):1–38, 1996.

[16] J. Romein. Multigame - An Environment for Distributed
Game-Tree Search. PhD thesis, Vrije Universitat Amster-
dam, 2001.

[17] J. Romein, H. Bal, J. Schaeffer, and A. Plaat. A per-
formance analysis of transposition-table-driven scheduling.
IEEE PDS, 2002. To appear.

[18] J. Romein, A. Plaat, H. Bal, and J. Schaeffer. Transposition
table driven work scheduling in distributed search.AAAI
National Conference, pages 725–731, 1999.

[19] J. Schaeffer. Distributed game-tree searching.Journal of
Parallel and Distributed Computing, 6:90–114, 1989.

[20] D. Slate and L. Atkin. CHESS 4.5 - The Northwestern Uni-
versity Chess Program. In P. Frey, editor,Chess Skill in Man
and Machine, pages 82–118. Springer-Verlag, 1977.

[21] J.-C. Weill. The ABDADA distributed minmax-search algo-
rithm. International Computer Chess Association Journal,
19(1):3–16, 1996.

8


