Why Not Use a Pattern-based Parallel
Programming System?

John Anvik, Jonathan Schaeffer, Duane Szafron, and Kai Tan

Department of Computing Science, University of Alberta
Edmonton, Alberta, Canada T6G 2E8
{janvik, jonathan, duane, cavalier}@cs.ualberta.ca

Abstract. Parallel programming environments provide a way for users
to reap the benefits of parallelism, while reducing the effort required to
create parallel applications. The CO3P3S parallel programming system
is one such tool, using a pattern-based approach to express concurrency.
This paper demonstrates that the CO2P3S system contains a rich set of
parallel patterns for implementing a wide variety of applications running
on shared-memory or distributed-memory hardware. Code metrics and
performance results are presented to show the usability of the CO2P3S
system and its ability to reduce programming effort, while producing
programs with reasonable performance.

1 Introduction

In sequential programming, a powerful paradigm has emerged to simplify the
design and implementation of programs. Design patterns encapsulate the knowl-
edge of solutions for a class of problems [4]. To solve a problem using a design
pattern, an appropriate pattern is chosen and adapted to the particular prob-
lem. By referring to a problem by the particular strategy that may be used to
solve it, a deeper understanding of the solution to the problem is immediately
conveyed and certain design decisions are implicitly made.

Just as there are sequential design patterns, there exist parallel design pat-
terns which capture the synchronization and communication structure for a
particular parallel solution. The notion of these commonly-occurring parallel
structures has been well-known for decades in such forms as skeletons [3, 5], or
templates [7]. Examples of common parallel design patterns are the fork/join
model, pipelines, meshes, and work piles.

Although there have been many attempts to build pattern-based high-level
parallel programming tools, few have gained acceptance by even a small user
community. The idea of having a tool that can take a selected parallel structure
and automatically generate correct structural code is quite appealing. Typically,
the user would only fill in application-dependent sequential routines to complete
the application. Unfortunately these tools have not made their way into practice
for a number of reasons:

1. Performance. Generic patterns produce generic code that is inefficient and
suffers from loss of performance.

2. Utility. The set of patterns in a given tool is limited, and if the application
does not match the provided patterns, then the tool is effectively useless.

3. Extensibility. High-level tools contain a fixed set of patterns and the tool
cannot be extended to include more.

The CO,P3S parallel programming system uses design patterns to ease the
effort required to write parallel programs. The system addresses the limitations
of previous high-level parallel programming tools in the following ways:

1. Performance. CO2P3S uses adaptive generative parallel design patterns [6],
an augmented design pattern which is parameterized so that it can be read-
ily adapted for an application, and used to generate a parallel framework
tailored for the application. In this manner the performance degradation of
generic frameworks is eliminated.

2. Utility. CO2P3S provides a rich set of parallel design patterns, including
support for both shared-memory and distributed-memory environments.

3. Extensibility. MetaCO2P3S is a tool used for rapidly creating and editing
CO2P3S patterns [2]. CO2P3S currently supports 17 parallel and sequential
design patterns, with more patterns under development.

This paper focuses on the utility aspect of CO2P3S. The intent is to show
that the use of a high-level pattern-based parallel programming tool is not only
possible, but more importantly, it is practical. The CO3P3S system can be used
to quickly generate code for a diverse set of applications with widely different
parallel structures. This can be done with minimum effort, where effort is mea-
sured by the number of additional lines of code written by the CO3P3S user.
The Cowichan Problems [8] are used to demonstrate this utility by showing
the breadth of applications which can be written using the tool. Furthermore,
it is shown that a shared-memory application can be recompiled to run in a
distributed-memory environment with no changes to the user code. We know of
no other parallel programming tool that can support the variety of applications
that CO5P3S can, is extensible, supports both shared-memory and distributed-
memory architectures, and achieves good performance for the user effort ex-
pended.

2 The CO;P3S Parallel Programming System

The CO,P3S! parallel programming system is a tool for implementing parallel
programs in Java [6]. CO2P3S generates parallel programs through the use of
pattern templates. A pattern template is an intermediary form between a pat-
tern and a framework, and represents a parameterized family of design solutions.
Members of the solution family are selected based upon the values of the pa-
rameters for the particular pattern template. This is where CO5P3S differs from

! Correct Object-Oriented Pattern-based Parallel Programming System, ‘cops’.

other pattern-based parallel programming tools. Instead of generating an appli-
cation framework which has been generalized to the point of being inefficient,
CO3P3S produces a framework which accounts for application-specific details
through parameterization of its patterns.

A framework generated by CO2P3S provides the communication and syn-
chronization for the parallel application, and the user provides the application-
specific sequential code. These code portions are added through the use of se-
quential hook methods. This abstraction maintains the correctness of the parallel
application since the user cannot change the code which implements the paral-
lelism at the pattern level. However, due to the layered model of CO2P3S [6],
the user has access to lower abstraction layers when necessary in order to tune
the application.

Extensibility of a programming system supports increased utility. CO2P3S
improves its utility by allowing new pattern templates to be added to the system
using the MetaCO»P3S tool [2]. Pattern templates added through MetaCO5P3S
are indistinguishable in form and function from those already contained in
CO>P3S. This allows CO,;P3S to adapt to the needs of the user; if CO5P3S
lacks the necessary pattern for a problem then MetaCOyP3S supports its rapid
addition to CO,P3S.

3 Using CO3;P3S to Implement the Cowichan Problems

The number of test suites which address the wutility or usability of a system are
few. For parallel programming systems, we know of only one non-trivial set, the
Cowichan Problems [8,9], a suite of seven problems specifically designed to test
the breadth and ease of use of a parallel programming tool.>

When the Cowichan problems were analyzed, it became evident that CO5P3S
lacked the necessary patterns to implement four of these problems. For any other
high-level programming system, the experiment would have been over. However,
using MetaCO-P3S, we were able to extend CO2P3S to fit our requirements
through the addition of two new patterns: the Wavefront pattern and the Search-
Tree pattern [1]. For each of these patterns, simple parameterization made them
general enough to handle a wide class of applications.

Table 1 provides a summary of which CO5P3S pattern was used to solve each
of the Cowichan Problems. Note that while CO,P3S supports using multiple
patterns in an application, this capability was not needed here.

4 Evaluating CO,;P3S

The results of using CO,P3S to implement solutions to the Cowichan Problems
are presented here. The results take on two forms: code metrics to show the
effort required by a user to take a sequential program and convert it into a
parallel program, and performance results. Together, these results show that

2 One modification was made to the original problem set. The single-agent search
problem (Active Chart Parsing) takes only a few seconds of CPU time on a mod-
ern processor. Therefore, a different single-agent search (IDA*), which was more
representative of this class of problems, was used.

Table 1. Patterns used to solve the Cowichan Problems.

| Algorithm | Application | Pattern |
IDA* search Fifteen Puzzle Search-Tree
Alpha-Beta search Kece Search-Tree

LU-Decomposition |Skyline Matrix Solver | Wavefront
Dynamic Programming|Matrix Product Chain| Wavefront
Polygon Intersection Map Overlay Pipeline
Image Thinning Graphics Mesh
Gauss-Seidel/Jacobi | Reaction/Diffusion Mesh

Table 2. Code metrics for the shared-memory implementations.

| Application ||Sequential||Parallel| Generated|Reused|New|
Fifteen Puzzle 125 308 123 122 47
Kece 375 539 135 362 42

Skyline Matrix Solver 196 390 224 144 22
Matrix Product Chain 68 296 223 60| 13
Map Overlay 85 455 235 60| 160
Image Thinning 221 529 350 170 9
Reaction/Diffusion 263 434 205 177 52

with minimal user effort, reasonable speedups can be achieved. The speedups
are not necessarily the best, since the applications could be further tuned to
improve performance using the CO3P3S layered model [6].

The results are presented in two tables. Table 2 shows the code metrics from
the various implementations and contains the sizes of the sequential and parallel
programs, how much of the parallel code was generated by CO3P3S, how much
code was reused from the sequential application, and how much new sequential
code the user was required to write. Table 3 provides performance results for a
shared-memory computer.

Table 2 shows that a sequential program can be adapted to a shared-memory
parallel program with little additional effort on user’s part. The time required
to move from a sequential implementation to a parallel implementation took in
the range of a few hours to a few days (if a new pattern had to be created) in
each case. The additional code that the user was required to write was typically
changes to the sequential driver program to use the parallel framework, and/or
changes necessary due to the use of the sequential hook methods. The extreme
case of this is for the Map Overly problem where there was a fundamental change
in paradigm between the two implementations. To use the Pipeline pattern,
the user is required to create classes for various stages of the pipeline. Each
of these classes is required to contain a specific hook method for performing
the computation of that stage, and for transforming the current object to the
object representing the next stage. As this was not necessary in the sequential
application, the user had to write more code to use the Pipeline pattern. For all

Table 3. Speedups for the shared-memory implementations.

| Application [2] 4] 8] 16
Fifteen Puzzle [[1.74[3.56]6.70[10.60
Kece 1.93[3.42]4.83] 5.80

Skyline Matrix Solver [|1.93|3.89|7.84|14.86
Matrix Product Chain|[1.81|3.64|7.80(13.37
Map Overlay 1.56|3.11|4.67 -
Image Thinning 1.88|3.53|6.39(10.43
Reaction/Diffusion ||1.75|3.13[4.92| 6.50

Table 4. Code metrics for the distributed-memory implementations.

| Application ||Sequential||Parallel| Generated|Reused|New|
Skyline Matrix Solver 196 1929 1760 144 25
Matrix Product Chain 68 1534 1458 60| 16
Image Thinning 221 2138 1968 170 12
Reaction/Diffusion 263 1476 1304 177| 55

the other patterns, the user only had to fill in the hook methods for a generated
class.

The performance results presented in Table 3 are for a shared-memory archi-
tecture. The machine used to run the applications was an SGI Origin 2000 with
46 MIPS R100 195 MHz processors and 11.75 GB of memory. A native threaded
Java implementation from SGI (Java 1.3.1) was used with optimizations and
JIT turned on, and the virtual machine was started with 1 GB of heap space.

Table 3 shows that the use of the patterns can produce programs that have
reasonable scalability. Again, these figures are not the best that can be achieved;
all of these programs could be furthered tuned to improve the performance.
While most of the programs show reasonable scalability, the two that do not,
Kece and Map Overlay, are the result of application-specific factors and not a
consequence of the use of the specific pattern. In the case of Kece, the number
of siblings processed in parallel during the depth-first search was found to never
exceed 20, and was usually less than 10 resulting in processors being starved for
work. For the Map Overlay, the problem was only run using up to 8 processors,
as the application ran for 5 seconds using 8 processors for the largest dataset
size that the JVM could support.

Table 4 shows the code metrics for using CO2P3S to generate distributed-
memory code. As the distributed implementations of the Pipeline and Search-
Tree patterns have not been done (a lack of resources), only a subset of the
problems are shown. A key point is that although CO3P3S generates very differ-
ent frameworks for the shared and distributed-memory environments, the code
that the user provides is almost identical. There are only two small one-line
differences (to handle distributed exceptions).

5 Conclusions

While parallel programs are known to improve the performance of
computationally-intensive applications, they are also known to be challenging
to write. Parallel programming tools, such as CO2P3S, provide a way to allevi-
ate this difficulty. The CO5P3S system is a relatively new addition to a collection
of such tools and before it can gain wide user acceptance there needs to be a
confidence that the tool can provide the assistance necessary. To this end, the
utility of the CO5P3S system was tested by implementing the Cowichan Problem
Set. This required the addition of two new patterns to CO2P3S, highlighting the
extensibility of CO2P3S—an important contribution to a system’s utility.
Parallel computing must eventually move away from MPI and OpenMP.
High-level abstractions have been researched for years. The most serious ob-
stacles —performance, utility, and extensibility—are all addressed by CO,P3S.
CO,P3S is available for download at http://www.cs.ualberta.ca/
“systems/cops/index.html. A longer version of this paper is available at
http://www.cs.ualberta.ca/~ jonathan/Papers/par.2003.html.

Acknowledgments

Financial support was provided by the Natural Sciences and Engineering Re-
search Council of Canada (NSERC) and Alberta’s Informatics Circle of Research
Excellence (iCORE).

References

1. J. Anvik. Asserting the utility of COPS using the Cowichan Problems. Master’s
thesis, Department of Computing Science, University of Alberta, 2002.

2. S. Bromling. Meta-programming with parallel design patterns. Master’s thesis,
Department of Computing Science, University of Alberta, 2002.

3. M. Cole. Algorithmic Skeletons: A Structured Approach to the Management of Par-
allel Computations. MIT Press, 1988.

4. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1995.

5. D. Goswami, A. Singh, and B. Priess. Architectural skeletons: The re-usable
building-blocks for parallel applications. In Parallel and Distributed Processing
Techniques and Applciations (PDPTA’99), pages 1250-1256, 1999.

6. S. MacDonald. From Patterns to Frameworks to Parallel Programs. PhD thesis,
Department of Computing Science, University of Alberta, 2001.

7. J. Schaeffer, D. Szafron, G. Lobe, and I. Parsons. The Enterprise model for develop-
ing distributed applications. IEEE Parallel and Distributed Technology, 1(3):85-96,
1993.

8. G. Wilson. Assessing the usability of parallel programming systems: The Cowichan
problems. In IFIP Working Conference on Programming Environments for Mas-
siely Parallel Distributed Systems, pages 183-193, 1994.

9. G. Wilson and H. Bal. An empirical assessment of the usability of Orca using the
Cowichan problems. IEEE Parallel and Distributed Technology, 4(3):36-44, 1996.

