
Why Not Use a Pattern-based ParallelProgramming System?John Anvik, Jonathan S
hae�er, Duane Szafron, and Kai TanDepartment of Computing S
ien
e, University of AlbertaEdmonton, Alberta, Canada T6G 2E8fjanvik, jonathan, duane, 
avalierg�
s.ualberta.
aAbstra
t. Parallel programming environments provide a way for usersto reap the bene�ts of parallelism, while redu
ing the e�ort required to
reate parallel appli
ations. The CO2P3S parallel programming systemis one su
h tool, using a pattern-based approa
h to express 
on
urren
y.This paper demonstrates that the CO2P3S system 
ontains a ri
h set ofparallel patterns for implementing a wide variety of appli
ations runningon shared-memory or distributed-memory hardware. Code metri
s andperforman
e results are presented to show the usability of the CO2P3Ssystem and its ability to redu
e programming e�ort, while produ
ingprograms with reasonable performan
e.1 Introdu
tionIn sequential programming, a powerful paradigm has emerged to simplify thedesign and implementation of programs. Design patterns en
apsulate the knowl-edge of solutions for a 
lass of problems [4℄. To solve a problem using a designpattern, an appropriate pattern is 
hosen and adapted to the parti
ular prob-lem. By referring to a problem by the parti
ular strategy that may be used tosolve it, a deeper understanding of the solution to the problem is immediately
onveyed and 
ertain design de
isions are impli
itly made.Just as there are sequential design patterns, there exist parallel design pat-terns whi
h 
apture the syn
hronization and 
ommuni
ation stru
ture for aparti
ular parallel solution. The notion of these 
ommonly-o

urring parallelstru
tures has been well-known for de
ades in su
h forms as skeletons [3, 5℄, ortemplates [7℄. Examples of 
ommon parallel design patterns are the fork/joinmodel, pipelines, meshes, and work piles.Although there have been many attempts to build pattern-based high-levelparallel programming tools, few have gained a

eptan
e by even a small user
ommunity. The idea of having a tool that 
an take a sele
ted parallel stru
tureand automati
ally generate 
orre
t stru
tural 
ode is quite appealing. Typi
ally,the user would only �ll in appli
ation-dependent sequential routines to 
ompletethe appli
ation. Unfortunately these tools have not made their way into pra
ti
efor a number of reasons:



1. Performan
e. Generi
 patterns produ
e generi
 
ode that is ineÆ
ient andsu�ers from loss of performan
e.2. Utility. The set of patterns in a given tool is limited, and if the appli
ationdoes not mat
h the provided patterns, then the tool is e�e
tively useless.3. Extensibility. High-level tools 
ontain a �xed set of patterns and the tool
annot be extended to in
lude more.The CO2P3S parallel programming system uses design patterns to ease thee�ort required to write parallel programs. The system addresses the limitationsof previous high-level parallel programming tools in the following ways:1. Performan
e. CO2P3S uses adaptive generative parallel design patterns [6℄,an augmented design pattern whi
h is parameterized so that it 
an be read-ily adapted for an appli
ation, and used to generate a parallel frameworktailored for the appli
ation. In this manner the performan
e degradation ofgeneri
 frameworks is eliminated.2. Utility. CO2P3S provides a ri
h set of parallel design patterns, in
ludingsupport for both shared-memory and distributed-memory environments.3. Extensibility. MetaCO2P3S is a tool used for rapidly 
reating and editingCO2P3S patterns [2℄. CO2P3S 
urrently supports 17 parallel and sequentialdesign patterns, with more patterns under development.This paper fo
uses on the utility aspe
t of CO2P3S. The intent is to showthat the use of a high-level pattern-based parallel programming tool is not onlypossible, but more importantly, it is pra
ti
al. The CO2P3S system 
an be usedto qui
kly generate 
ode for a diverse set of appli
ations with widely di�erentparallel stru
tures. This 
an be done with minimum e�ort, where e�ort is mea-sured by the number of additional lines of 
ode written by the CO2P3S user.The Cowi
han Problems [8℄ are used to demonstrate this utility by showingthe breadth of appli
ations whi
h 
an be written using the tool. Furthermore,it is shown that a shared-memory appli
ation 
an be re
ompiled to run in adistributed-memory environment with no 
hanges to the user 
ode. We know ofno other parallel programming tool that 
an support the variety of appli
ationsthat CO2P3S 
an, is extensible, supports both shared-memory and distributed-memory ar
hite
tures, and a
hieves good performan
e for the user e�ort ex-pended.2 The CO2P3S Parallel Programming SystemThe CO2P3S1 parallel programming system is a tool for implementing parallelprograms in Java [6℄. CO2P3S generates parallel programs through the use ofpattern templates. A pattern template is an intermediary form between a pat-tern and a framework, and represents a parameterized family of design solutions.Members of the solution family are sele
ted based upon the values of the pa-rameters for the parti
ular pattern template. This is where CO2P3S di�ers from1 Corre
t Obje
t-Oriented Pattern-based Parallel Programming System, `
ops'.



other pattern-based parallel programming tools. Instead of generating an appli-
ation framework whi
h has been generalized to the point of being ineÆ
ient,CO2P3S produ
es a framework whi
h a

ounts for appli
ation-spe
i�
 detailsthrough parameterization of its patterns.A framework generated by CO2P3S provides the 
ommuni
ation and syn-
hronization for the parallel appli
ation, and the user provides the appli
ation-spe
i�
 sequential 
ode. These 
ode portions are added through the use of se-quential hook methods. This abstra
tion maintains the 
orre
tness of the parallelappli
ation sin
e the user 
annot 
hange the 
ode whi
h implements the paral-lelism at the pattern level. However, due to the layered model of CO2P3S [6℄,the user has a

ess to lower abstra
tion layers when ne
essary in order to tunethe appli
ation.Extensibility of a programming system supports in
reased utility. CO2P3Simproves its utility by allowing new pattern templates to be added to the systemusing the MetaCO2P3S tool [2℄. Pattern templates added through MetaCO2P3Sare indistinguishable in form and fun
tion from those already 
ontained inCO2P3S. This allows CO2P3S to adapt to the needs of the user; if CO2P3Sla
ks the ne
essary pattern for a problem then MetaCO2P3S supports its rapidaddition to CO2P3S.3 Using CO2P3S to Implement the Cowi
han ProblemsThe number of test suites whi
h address the utility or usability of a system arefew. For parallel programming systems, we know of only one non-trivial set, theCowi
han Problems [8, 9℄, a suite of seven problems spe
i�
ally designed to testthe breadth and ease of use of a parallel programming tool.2When the Cowi
han problems were analyzed, it be
ame evident that CO2P3Sla
ked the ne
essary patterns to implement four of these problems. For any otherhigh-level programming system, the experiment would have been over. However,using MetaCO2P3S, we were able to extend CO2P3S to �t our requirementsthrough the addition of two new patterns: the Wavefront pattern and the Sear
h-Tree pattern [1℄. For ea
h of these patterns, simple parameterization made themgeneral enough to handle a wide 
lass of appli
ations.Table 1 provides a summary of whi
h CO2P3S pattern was used to solve ea
hof the Cowi
han Problems. Note that while CO2P3S supports using multiplepatterns in an appli
ation, this 
apability was not needed here.4 Evaluating CO2P3SThe results of using CO2P3S to implement solutions to the Cowi
han Problemsare presented here. The results take on two forms: 
ode metri
s to show thee�ort required by a user to take a sequential program and 
onvert it into aparallel program, and performan
e results. Together, these results show that2 One modi�
ation was made to the original problem set. The single-agent sear
hproblem (A
tive Chart Parsing) takes only a few se
onds of CPU time on a mod-ern pro
essor. Therefore, a di�erent single-agent sear
h (IDA*), whi
h was morerepresentative of this 
lass of problems, was used.



Table 1. Patterns used to solve the Cowi
han Problems.Algorithm Appli
ation PatternIDA* sear
h Fifteen Puzzle Sear
h-TreeAlpha-Beta sear
h Ke
e Sear
h-TreeLU-De
omposition Skyline Matrix Solver WavefrontDynami
 Programming Matrix Produ
t Chain WavefrontPolygon Interse
tion Map Overlay PipelineImage Thinning Graphi
s MeshGauss-Seidel/Ja
obi Rea
tion/Di�usion MeshTable 2. Code metri
s for the shared-memory implementations.Appli
ation Sequential Parallel Generated Reused NewFifteen Puzzle 125 308 123 122 47Ke
e 375 539 135 362 42Skyline Matrix Solver 196 390 224 144 22Matrix Produ
t Chain 68 296 223 60 13Map Overlay 85 455 235 60 160Image Thinning 221 529 350 170 9Rea
tion/Di�usion 263 434 205 177 52with minimal user e�ort, reasonable speedups 
an be a
hieved. The speedupsare not ne
essarily the best, sin
e the appli
ations 
ould be further tuned toimprove performan
e using the CO2P3S layered model [6℄.The results are presented in two tables. Table 2 shows the 
ode metri
s fromthe various implementations and 
ontains the sizes of the sequential and parallelprograms, how mu
h of the parallel 
ode was generated by CO2P3S, how mu
h
ode was reused from the sequential appli
ation, and how mu
h new sequential
ode the user was required to write. Table 3 provides performan
e results for ashared-memory 
omputer.Table 2 shows that a sequential program 
an be adapted to a shared-memoryparallel program with little additional e�ort on user's part. The time requiredto move from a sequential implementation to a parallel implementation took inthe range of a few hours to a few days (if a new pattern had to be 
reated) inea
h 
ase. The additional 
ode that the user was required to write was typi
ally
hanges to the sequential driver program to use the parallel framework, and/or
hanges ne
essary due to the use of the sequential hook methods. The extreme
ase of this is for the Map Overly problem where there was a fundamental 
hangein paradigm between the two implementations. To use the Pipeline pattern,the user is required to 
reate 
lasses for various stages of the pipeline. Ea
hof these 
lasses is required to 
ontain a spe
i�
 hook method for performingthe 
omputation of that stage, and for transforming the 
urrent obje
t to theobje
t representing the next stage. As this was not ne
essary in the sequentialappli
ation, the user had to write more 
ode to use the Pipeline pattern. For all



Table 3. Speedups for the shared-memory implementations.Appli
ation 2 4 8 16Fifteen Puzzle 1.74 3.56 6.70 10.60Ke
e 1.93 3.42 4.83 5.80Skyline Matrix Solver 1.93 3.89 7.84 14.86Matrix Produ
t Chain 1.81 3.64 7.80 13.37Map Overlay 1.56 3.11 4.67 -Image Thinning 1.88 3.53 6.39 10.43Rea
tion/Di�usion 1.75 3.13 4.92 6.50Table 4. Code metri
s for the distributed-memory implementations.Appli
ation Sequential Parallel Generated Reused NewSkyline Matrix Solver 196 1929 1760 144 25Matrix Produ
t Chain 68 1534 1458 60 16Image Thinning 221 2138 1968 170 12Rea
tion/Di�usion 263 1476 1304 177 55the other patterns, the user only had to �ll in the hook methods for a generated
lass.The performan
e results presented in Table 3 are for a shared-memory ar
hi-te
ture. The ma
hine used to run the appli
ations was an SGI Origin 2000 with46 MIPS R100 195 MHz pro
essors and 11.75 GB of memory. A native threadedJava implementation from SGI (Java 1.3.1) was used with optimizations andJIT turned on, and the virtual ma
hine was started with 1 GB of heap spa
e.Table 3 shows that the use of the patterns 
an produ
e programs that havereasonable s
alability. Again, these �gures are not the best that 
an be a
hieved;all of these programs 
ould be furthered tuned to improve the performan
e.While most of the programs show reasonable s
alability, the two that do not,Ke
e and Map Overlay, are the result of appli
ation-spe
i�
 fa
tors and not a
onsequen
e of the use of the spe
i�
 pattern. In the 
ase of Ke
e, the numberof siblings pro
essed in parallel during the depth-�rst sear
h was found to neverex
eed 20, and was usually less than 10 resulting in pro
essors being starved forwork. For the Map Overlay, the problem was only run using up to 8 pro
essors,as the appli
ation ran for 5 se
onds using 8 pro
essors for the largest datasetsize that the JVM 
ould support.Table 4 shows the 
ode metri
s for using CO2P3S to generate distributed-memory 
ode. As the distributed implementations of the Pipeline and Sear
h-Tree patterns have not been done (a la
k of resour
es), only a subset of theproblems are shown. A key point is that although CO2P3S generates very di�er-ent frameworks for the shared and distributed-memory environments, the 
odethat the user provides is almost identi
al. There are only two small one-linedi�eren
es (to handle distributed ex
eptions).



5 Con
lusionsWhile parallel programs are known to improve the performan
e of
omputationally-intensive appli
ations, they are also known to be 
hallengingto write. Parallel programming tools, su
h as CO2P3S, provide a way to allevi-ate this diÆ
ulty. The CO2P3S system is a relatively new addition to a 
olle
tionof su
h tools and before it 
an gain wide user a

eptan
e there needs to be a
on�den
e that the tool 
an provide the assistan
e ne
essary. To this end, theutility of the CO2P3S system was tested by implementing the Cowi
han ProblemSet. This required the addition of two new patterns to CO2P3S, highlighting theextensibility of CO2P3S|an important 
ontribution to a system's utility.Parallel 
omputing must eventually move away from MPI and OpenMP.High-level abstra
tions have been resear
hed for years. The most serious ob-sta
les |performan
e, utility, and extensibility|are all addressed by CO2P3S.CO2P3S is available for download at http://www.
s.ualberta.
a/~systems/
ops/index.html. A longer version of this paper is available athttp://www.
s.ualberta.
a/~jonathan/Papers/par.2003.html.A
knowledgmentsFinan
ial support was provided by the Natural S
ien
es and Engineering Re-sear
h Coun
il of Canada (NSERC) and Alberta's Informati
s Cir
le of Resear
hEx
ellen
e (iCORE).Referen
es1. J. Anvik. Asserting the utility of COPS using the Cowi
han Problems. Master'sthesis, Department of Computing S
ien
e, University of Alberta, 2002.2. S. Bromling. Meta-programming with parallel design patterns. Master's thesis,Department of Computing S
ien
e, University of Alberta, 2002.3. M. Cole. Algorithmi
 Skeletons: A Stru
tured Approa
h to the Management of Par-allel Computations. MIT Press, 1988.4. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements ofReusable Obje
t-Oriented Software. Addison-Wesley, 1995.5. D. Goswami, A. Singh, and B. Priess. Ar
hite
tural skeletons: The re-usablebuilding-blo
ks for parallel appli
ations. In Parallel and Distributed Pro
essingTe
hniques and Appl
iations (PDPTA'99), pages 1250{1256, 1999.6. S. Ma
Donald. From Patterns to Frameworks to Parallel Programs. PhD thesis,Department of Computing S
ien
e, University of Alberta, 2001.7. J. S
hae�er, D. Szafron, G. Lobe, and I. Parsons. The Enterprise model for develop-ing distributed appli
ations. IEEE Parallel and Distributed Te
hnology, 1(3):85{96,1993.8. G. Wilson. Assessing the usability of parallel programming systems: The Cowi
hanproblems. In IFIP Working Conferen
e on Programming Environments for Mas-sively Parallel Distributed Systems, pages 183{193, 1994.9. G. Wilson and H. Bal. An empiri
al assessment of the usability of Or
a using theCowi
han problems. IEEE Parallel and Distributed Te
hnology, 4(3):36{44, 1996.


