
Why Not Use a Pattern-based ParallelProgramming System?John Anvik, Jonathan Shae�er, Duane Szafron, and Kai TanDepartment of Computing Siene, University of AlbertaEdmonton, Alberta, Canada T6G 2E8fjanvik, jonathan, duane, avalierg�s.ualberta.aAbstrat. Parallel programming environments provide a way for usersto reap the bene�ts of parallelism, while reduing the e�ort required toreate parallel appliations. The CO2P3S parallel programming systemis one suh tool, using a pattern-based approah to express onurreny.This paper demonstrates that the CO2P3S system ontains a rih set ofparallel patterns for implementing a wide variety of appliations runningon shared-memory or distributed-memory hardware. Code metris andperformane results are presented to show the usability of the CO2P3Ssystem and its ability to redue programming e�ort, while produingprograms with reasonable performane.1 IntrodutionIn sequential programming, a powerful paradigm has emerged to simplify thedesign and implementation of programs. Design patterns enapsulate the knowl-edge of solutions for a lass of problems [4℄. To solve a problem using a designpattern, an appropriate pattern is hosen and adapted to the partiular prob-lem. By referring to a problem by the partiular strategy that may be used tosolve it, a deeper understanding of the solution to the problem is immediatelyonveyed and ertain design deisions are impliitly made.Just as there are sequential design patterns, there exist parallel design pat-terns whih apture the synhronization and ommuniation struture for apartiular parallel solution. The notion of these ommonly-ourring parallelstrutures has been well-known for deades in suh forms as skeletons [3, 5℄, ortemplates [7℄. Examples of ommon parallel design patterns are the fork/joinmodel, pipelines, meshes, and work piles.Although there have been many attempts to build pattern-based high-levelparallel programming tools, few have gained aeptane by even a small userommunity. The idea of having a tool that an take a seleted parallel strutureand automatially generate orret strutural ode is quite appealing. Typially,the user would only �ll in appliation-dependent sequential routines to ompletethe appliation. Unfortunately these tools have not made their way into pratiefor a number of reasons:

1. Performane. Generi patterns produe generi ode that is ineÆient andsu�ers from loss of performane.2. Utility. The set of patterns in a given tool is limited, and if the appliationdoes not math the provided patterns, then the tool is e�etively useless.3. Extensibility. High-level tools ontain a �xed set of patterns and the toolannot be extended to inlude more.The CO2P3S parallel programming system uses design patterns to ease thee�ort required to write parallel programs. The system addresses the limitationsof previous high-level parallel programming tools in the following ways:1. Performane. CO2P3S uses adaptive generative parallel design patterns [6℄,an augmented design pattern whih is parameterized so that it an be read-ily adapted for an appliation, and used to generate a parallel frameworktailored for the appliation. In this manner the performane degradation ofgeneri frameworks is eliminated.2. Utility. CO2P3S provides a rih set of parallel design patterns, inludingsupport for both shared-memory and distributed-memory environments.3. Extensibility. MetaCO2P3S is a tool used for rapidly reating and editingCO2P3S patterns [2℄. CO2P3S urrently supports 17 parallel and sequentialdesign patterns, with more patterns under development.This paper fouses on the utility aspet of CO2P3S. The intent is to showthat the use of a high-level pattern-based parallel programming tool is not onlypossible, but more importantly, it is pratial. The CO2P3S system an be usedto quikly generate ode for a diverse set of appliations with widely di�erentparallel strutures. This an be done with minimum e�ort, where e�ort is mea-sured by the number of additional lines of ode written by the CO2P3S user.The Cowihan Problems [8℄ are used to demonstrate this utility by showingthe breadth of appliations whih an be written using the tool. Furthermore,it is shown that a shared-memory appliation an be reompiled to run in adistributed-memory environment with no hanges to the user ode. We know ofno other parallel programming tool that an support the variety of appliationsthat CO2P3S an, is extensible, supports both shared-memory and distributed-memory arhitetures, and ahieves good performane for the user e�ort ex-pended.2 The CO2P3S Parallel Programming SystemThe CO2P3S1 parallel programming system is a tool for implementing parallelprograms in Java [6℄. CO2P3S generates parallel programs through the use ofpattern templates. A pattern template is an intermediary form between a pat-tern and a framework, and represents a parameterized family of design solutions.Members of the solution family are seleted based upon the values of the pa-rameters for the partiular pattern template. This is where CO2P3S di�ers from1 Corret Objet-Oriented Pattern-based Parallel Programming System, `ops'.

other pattern-based parallel programming tools. Instead of generating an appli-ation framework whih has been generalized to the point of being ineÆient,CO2P3S produes a framework whih aounts for appliation-spei� detailsthrough parameterization of its patterns.A framework generated by CO2P3S provides the ommuniation and syn-hronization for the parallel appliation, and the user provides the appliation-spei� sequential ode. These ode portions are added through the use of se-quential hook methods. This abstration maintains the orretness of the parallelappliation sine the user annot hange the ode whih implements the paral-lelism at the pattern level. However, due to the layered model of CO2P3S [6℄,the user has aess to lower abstration layers when neessary in order to tunethe appliation.Extensibility of a programming system supports inreased utility. CO2P3Simproves its utility by allowing new pattern templates to be added to the systemusing the MetaCO2P3S tool [2℄. Pattern templates added through MetaCO2P3Sare indistinguishable in form and funtion from those already ontained inCO2P3S. This allows CO2P3S to adapt to the needs of the user; if CO2P3Slaks the neessary pattern for a problem then MetaCO2P3S supports its rapidaddition to CO2P3S.3 Using CO2P3S to Implement the Cowihan ProblemsThe number of test suites whih address the utility or usability of a system arefew. For parallel programming systems, we know of only one non-trivial set, theCowihan Problems [8, 9℄, a suite of seven problems spei�ally designed to testthe breadth and ease of use of a parallel programming tool.2When the Cowihan problems were analyzed, it beame evident that CO2P3Slaked the neessary patterns to implement four of these problems. For any otherhigh-level programming system, the experiment would have been over. However,using MetaCO2P3S, we were able to extend CO2P3S to �t our requirementsthrough the addition of two new patterns: the Wavefront pattern and the Searh-Tree pattern [1℄. For eah of these patterns, simple parameterization made themgeneral enough to handle a wide lass of appliations.Table 1 provides a summary of whih CO2P3S pattern was used to solve eahof the Cowihan Problems. Note that while CO2P3S supports using multiplepatterns in an appliation, this apability was not needed here.4 Evaluating CO2P3SThe results of using CO2P3S to implement solutions to the Cowihan Problemsare presented here. The results take on two forms: ode metris to show thee�ort required by a user to take a sequential program and onvert it into aparallel program, and performane results. Together, these results show that2 One modi�ation was made to the original problem set. The single-agent searhproblem (Ative Chart Parsing) takes only a few seonds of CPU time on a mod-ern proessor. Therefore, a di�erent single-agent searh (IDA*), whih was morerepresentative of this lass of problems, was used.

Table 1. Patterns used to solve the Cowihan Problems.Algorithm Appliation PatternIDA* searh Fifteen Puzzle Searh-TreeAlpha-Beta searh Kee Searh-TreeLU-Deomposition Skyline Matrix Solver WavefrontDynami Programming Matrix Produt Chain WavefrontPolygon Intersetion Map Overlay PipelineImage Thinning Graphis MeshGauss-Seidel/Jaobi Reation/Di�usion MeshTable 2. Code metris for the shared-memory implementations.Appliation Sequential Parallel Generated Reused NewFifteen Puzzle 125 308 123 122 47Kee 375 539 135 362 42Skyline Matrix Solver 196 390 224 144 22Matrix Produt Chain 68 296 223 60 13Map Overlay 85 455 235 60 160Image Thinning 221 529 350 170 9Reation/Di�usion 263 434 205 177 52with minimal user e�ort, reasonable speedups an be ahieved. The speedupsare not neessarily the best, sine the appliations ould be further tuned toimprove performane using the CO2P3S layered model [6℄.The results are presented in two tables. Table 2 shows the ode metris fromthe various implementations and ontains the sizes of the sequential and parallelprograms, how muh of the parallel ode was generated by CO2P3S, how muhode was reused from the sequential appliation, and how muh new sequentialode the user was required to write. Table 3 provides performane results for ashared-memory omputer.Table 2 shows that a sequential program an be adapted to a shared-memoryparallel program with little additional e�ort on user's part. The time requiredto move from a sequential implementation to a parallel implementation took inthe range of a few hours to a few days (if a new pattern had to be reated) ineah ase. The additional ode that the user was required to write was typiallyhanges to the sequential driver program to use the parallel framework, and/orhanges neessary due to the use of the sequential hook methods. The extremease of this is for the Map Overly problem where there was a fundamental hangein paradigm between the two implementations. To use the Pipeline pattern,the user is required to reate lasses for various stages of the pipeline. Eahof these lasses is required to ontain a spei� hook method for performingthe omputation of that stage, and for transforming the urrent objet to theobjet representing the next stage. As this was not neessary in the sequentialappliation, the user had to write more ode to use the Pipeline pattern. For all

Table 3. Speedups for the shared-memory implementations.Appliation 2 4 8 16Fifteen Puzzle 1.74 3.56 6.70 10.60Kee 1.93 3.42 4.83 5.80Skyline Matrix Solver 1.93 3.89 7.84 14.86Matrix Produt Chain 1.81 3.64 7.80 13.37Map Overlay 1.56 3.11 4.67 -Image Thinning 1.88 3.53 6.39 10.43Reation/Di�usion 1.75 3.13 4.92 6.50Table 4. Code metris for the distributed-memory implementations.Appliation Sequential Parallel Generated Reused NewSkyline Matrix Solver 196 1929 1760 144 25Matrix Produt Chain 68 1534 1458 60 16Image Thinning 221 2138 1968 170 12Reation/Di�usion 263 1476 1304 177 55the other patterns, the user only had to �ll in the hook methods for a generatedlass.The performane results presented in Table 3 are for a shared-memory arhi-teture. The mahine used to run the appliations was an SGI Origin 2000 with46 MIPS R100 195 MHz proessors and 11.75 GB of memory. A native threadedJava implementation from SGI (Java 1.3.1) was used with optimizations andJIT turned on, and the virtual mahine was started with 1 GB of heap spae.Table 3 shows that the use of the patterns an produe programs that havereasonable salability. Again, these �gures are not the best that an be ahieved;all of these programs ould be furthered tuned to improve the performane.While most of the programs show reasonable salability, the two that do not,Kee and Map Overlay, are the result of appliation-spei� fators and not aonsequene of the use of the spei� pattern. In the ase of Kee, the numberof siblings proessed in parallel during the depth-�rst searh was found to neverexeed 20, and was usually less than 10 resulting in proessors being starved forwork. For the Map Overlay, the problem was only run using up to 8 proessors,as the appliation ran for 5 seonds using 8 proessors for the largest datasetsize that the JVM ould support.Table 4 shows the ode metris for using CO2P3S to generate distributed-memory ode. As the distributed implementations of the Pipeline and Searh-Tree patterns have not been done (a lak of resoures), only a subset of theproblems are shown. A key point is that although CO2P3S generates very di�er-ent frameworks for the shared and distributed-memory environments, the odethat the user provides is almost idential. There are only two small one-linedi�erenes (to handle distributed exeptions).

5 ConlusionsWhile parallel programs are known to improve the performane ofomputationally-intensive appliations, they are also known to be hallengingto write. Parallel programming tools, suh as CO2P3S, provide a way to allevi-ate this diÆulty. The CO2P3S system is a relatively new addition to a olletionof suh tools and before it an gain wide user aeptane there needs to be aon�dene that the tool an provide the assistane neessary. To this end, theutility of the CO2P3S system was tested by implementing the Cowihan ProblemSet. This required the addition of two new patterns to CO2P3S, highlighting theextensibility of CO2P3S|an important ontribution to a system's utility.Parallel omputing must eventually move away from MPI and OpenMP.High-level abstrations have been researhed for years. The most serious ob-stales |performane, utility, and extensibility|are all addressed by CO2P3S.CO2P3S is available for download at http://www.s.ualberta.a/~systems/ops/index.html. A longer version of this paper is available athttp://www.s.ualberta.a/~jonathan/Papers/par.2003.html.AknowledgmentsFinanial support was provided by the Natural Sienes and Engineering Re-searh Counil of Canada (NSERC) and Alberta's Informatis Cirle of ResearhExellene (iCORE).Referenes1. J. Anvik. Asserting the utility of COPS using the Cowihan Problems. Master'sthesis, Department of Computing Siene, University of Alberta, 2002.2. S. Bromling. Meta-programming with parallel design patterns. Master's thesis,Department of Computing Siene, University of Alberta, 2002.3. M. Cole. Algorithmi Skeletons: A Strutured Approah to the Management of Par-allel Computations. MIT Press, 1988.4. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements ofReusable Objet-Oriented Software. Addison-Wesley, 1995.5. D. Goswami, A. Singh, and B. Priess. Arhitetural skeletons: The re-usablebuilding-bloks for parallel appliations. In Parallel and Distributed ProessingTehniques and Appliations (PDPTA'99), pages 1250{1256, 1999.6. S. MaDonald. From Patterns to Frameworks to Parallel Programs. PhD thesis,Department of Computing Siene, University of Alberta, 2001.7. J. Shae�er, D. Szafron, G. Lobe, and I. Parsons. The Enterprise model for develop-ing distributed appliations. IEEE Parallel and Distributed Tehnology, 1(3):85{96,1993.8. G. Wilson. Assessing the usability of parallel programming systems: The Cowihanproblems. In IFIP Working Conferene on Programming Environments for Mas-sively Parallel Distributed Systems, pages 183{193, 1994.9. G. Wilson and H. Bal. An empirial assessment of the usability of Ora using theCowihan problems. IEEE Parallel and Distributed Tehnology, 4(3):36{44, 1996.

