The Enterprise Distributed Programming Model

Duane Szafron, Jonathan Schaeffer, Pok Sze Wong, Enoch Chan, Paul Lu and Carol Smith
Dept. of Computing Science, University of Alberta, Edmonton, Alberta, CANADA T6G 2H1

Abstract

Workstation environments have been in use for more than a decade. Although a network of
workstations represents a large amount of aggregate computing power, single users often
cannot utilize these resources for their applicatiBngerpriseis a programming environment
for designing, coding, debugging, testing, monitoring, profiling and executing programs in a
distributed hardware environment. Programs written uBintgrpriselook like familiar
sequential C code; the parallelism is expressed graphically. The system automatically inserts
the code necessary to handle communication, synchronization and fault tolerance, allowing the
rapid construction of correct distributed prograrEsterpriseprograms run on a network of
computers, absorbing the idle cycles on machines. The system supports load balancing,
limited process migration, and dynamic distribution of work in environments with changing
resource utilization. This paper concentrates on the user's view of programiaiigririse

Keyword Codes: D.2.6; D.1.3; C.2.4
Keywords: Programming Environments; Concurrent Programming; Distributed Systems

1. Introduction

Enterpriseis a programming environment for designing, coding, debugging, testing,
monitoring, profiling and executing programs in a distributed hardware environment. It
represents the evolution of our succesBf@meworkssystem [14][15]. Programs written in
the Enterpriseenvironment look like familiar sequential C code since the parallelism is
expressed graphically. The system automatically inserts all code necessary to handle
communication, synchronization and fault tolerance, allowing the rapid construction of correct
distributed programs. This bridges the complexity gap between distributed and sequential
software. Enterpriseprograms run on networks, absorbing the idle machine cycles. The
system supports load balancing, limited process migration, and dynamic distribution of work
in environments with changing resource utilizati@nterpriseoffers a cost-effective method
for increasing the productivity of programmers and the throughput of existing resources.

This paper concentrates on the model that the programmer uses for writing distributed
applications. A discussion of the implementation and run-time issues (such as process-
processor assignment, process migration, load balancing, debugging, etc.) can be found in [7].
From the user's point of viegnterprisehas a number of features that distinguish it from
other parallel and distributed program development tools (see Section 4):

» Programs are written in a sequential programming language (C) that is augmented by new
semantics for procedure/function calls that allows them to be executed in parallel. The
semantic changes are simple and have the important property that parallel code is
indistinguishable from sequential code. Users do not deal with implementation details such
as communication and synchronization. Inst&derpriseautomatically inserts all of the
necessary communication protocols into the user's code.

» Enterprisecan automatically generate these protocols because most large-grained parallel
programs make use of a small number of regular techniques, such as pipelines,

This is a pre-print of a copyrighted article in IFIP Transactions A11: Progamming Environments for Parallel
Computing, 1992, pp. 67-76.

master/slave processes, divide-and-conquer, etdntarprise the user specifies the
desired technique at a high level by manipulating icons using the graphical user interface.
The user-written code that implements the parallel procedure is independent of the
parallelization technique selected (although the code generateaténprisecertainly is

not). The decoupling of the procedure that is to be parallelized and the parallelization
technique allows applications to be easily adapted to a varying number and type of
processors, usually without changing user-written code. It also provides a simple
mechanism for experimentation and evaluation of how the various parallelization techniques
fare on the user's particular application.

» For simplicity in expressing parallelisfanterpriseuses an analogy between the structure
of a parallel program and the structure of an organization. The analogy eliminates
inconsistent analogies used in the past (pipelines, masters, slaves, etc.) and replaces it with
a uniform set ofassets(contracts, departments, individuals, etc.). An organizational
analogy was chosen because organizations are common and inherently parallel. This
allows the programmer a different (but familiar) model for designing parallel programs.

» Several of the parallelization techniques supportedEterprisecan distribute work
dynamically in environments with changing resource utilization. For exampbsteact
can be used to distribute work to a variable number of identical subordinates. A contract
uses as many idle machines as possible to help complete the task. During peak hours, a
program may only be able to use a handful of processors, while in the evening many more
may be available to help fulfill the contract.

* In most parallel/distributed computing tools, the user is required to draw communication
graphs. The user usually draws a diagram connecting nodes (processes) by arcs
(communication paths). IBnterprise a similar diagram is created, but the user is spared
the tedium of drawing the details. Instead, the user need only edit the diagram by coercing
and expanding nodes that represent assets. Coercion provides the user with a high-level
technique to alter the method that a process (asset) uses to communicate with its neighbors
and corresponds to the choice of a common parallelization technique. Expanding a node
allows the user to explore the hierarchical structuring of the application.

Using the graphical user interface, the user manipulates a diagram of the parallel computation
and writes sequential code that is devoid of any parallel constructs. Based on the user's
diagram Enterprisedetermines where to insert the parallel code. It then compiles the routines,
dynamically assigns processes to processors and establishes the necessary connections.
Processes run in the background, taking advantage of idle machines and recognizing when
machines become heavily loaded. In this way we can keep the user community happy, while
having applications profitably using machines that would otherwise be idle.

Section 2 contains a typicBhterprisesession, illustrating the model and the graphical user
interface. Section 3 describes the two key components &ntieeprisemodel: the semantics
of the sequential code that the user writes, and the kinds of parallelism (assets) supported.
Section 4 discusses other parallel programming environments and contrasts them with
Enterprise The current status &nterpriseis discussed in Section 5.

2. Program Design in Enterprise

This section presents a simple example of Hfwerprisecan be used to construct a
distributed program. Consider an animation program that displays a group of fish swimming

across a display screen. There are three fundamental operations in the phgdah:
PolyConvandSplit with the following functionality:

* Modet Computes the location and motion of each object in a frame, stores the results in a
file, callsPolyConwvto process the frame and proceeds to the next frame.

» PolyConv Reads a frame from the disk file, performs some data format transformations,
viewing transformations, projections, sorts and cafit, passing it a transformed frame
and a sequence number.

 Split Performs hidden surface removal, anti-aliasing and stores the image in a file.

This problem comes from a Departmental research group and is more complex than portrayed
by our brief description. However, examining the structure of the program showAoitheit
consists of a loop that, for each frame in the animation, performs some work on the frame and
calls PolyConvwith the results.PolyConvmanipulates the image received friddodel and
callsSplit Splitdoes the final polishing of the frame and writes the final image to disk.

An Enterpriseuser manipulates icons that represent high-level program components called
assets(defined in the next section of this paper). For this example, assume that an asset
represents a single C procedure/function, calleengiry procedurgtogether with a collection
of support procedures used by the entry procedure, all contained in a single file. A program
consists of several assets. In this example, there are three MssktisPolyConvandSplit

After startingEnterpriseand choosingNew Programfrom the main menu, a dialog box
appears asking for the name of the program. After entering the name of the program,
Animationin this case, a single asset appears that represents the entire program. Each asset is
represented by a box, with the arrow indicating the flow of dat&nterprisediagrams the
length of the critical data path is represented by the height of the diagram, while the degree of
replicated (non-line) parallelism is represented by the width of the diagram.

The Enterprisewindow consists of an asset palette containing one icon for each asset kind
and a canvas containing the program. A new program containsm@nelual asset that
represents a sequential program component. The code for the proddddetdPolyConv
andSplit could be associated with this single individual asset and run as a sequential program.
However, there is no reason wiWodel should wait untilPolyConvcompletes execution of
the first animation frame to start processing the second frame. SimiatyConvdoes not
need to wait foSplit Therefore, théndividual asset can beoercedto (replaced by) &ne
asset (pipeline in more traditional terminology) by selecting the individual asset and then
selecting thdine icon from the asset palette. After entering three as the length of the line, the
individual is coerced to a three component line as shown in Figure 1.

The line shown in the figure isollapsed that is, its components cannot be seen. By
selecting the line and choosiggpand Assdrom a pop-up menu, thime is expanded so that
the threandividual assets that it contains are visible.

To name an asset, the user selects it, chddmee Assdrom a pop-up menu and enters the
name of the asset in the dialog box that appears. When the dialog box is closed, the name
appears on the icon. To associate code with an asset, select it, EibdSedefrom a pop-
up menu and enter the C code using your favorite text editor. NoteEttatrprise
automatically names the output file for the code you enter as the name of the asset with a ".c"
suffix. In the example, th®lodel code would be saved in the file Model.c, illustrating the
close relationship betweé&mterprisecode and sequential C code.

X Enterprise: Animation []
N

| ;

w
<]

Figure 1. A Collapsed Line Asset Composed of Three Assets

To compile the application, the user sel€xsnpilefrom a menu and thEnterprisesystem
automatically inserts the code to handle the distributed computation, compiles the program and
reports any errors back to the user. Once the program is compiled, the user sdieesutee
menu item andenterprisefinds as many processors as are necessary to start the program,
initiates processes on the processors, monitors the load on the machines and (if a contract is
used) dynamically adds additional processors to the application as they become needed. For
this animation example, a speed-up of 1.7 was obtained by using a line running on three
processors instead of a single individual asset (a sequential program). Note that any timings
are subject to large variations, depending on the number of available processors and the amount
of traffic on the network.

The strength of thEnterprisemodel can be seen by the ease with which it is possible to take
a program and experiment with alternate parallelization technigudly without changing the
C source codeFor example, by selecting tBplit asset and selectingcantractasset from the
asset palette, tHeplitasset is coerced from amividual to acontractas shown in Figure 2.

X Enterprise: Animation [T [
N
| Model
'—'—E:
Polyconv
lit
M
[>

Figure 2. A Collapsed Contract Asset in a Line

In Enterprise each asset represents at least one process. If a call is madmdavitdaal
Split, it is executed as a process and if a subsequent call is magi before the first call is
complete, the second call must wait for the first call to finish. However, whenteactis
executed, multiple processes can be used to execute multiple calls concurrently. That is, when
PolyConvcallsSplit, a process is initiated and if a subsequent call is mafplitdoefore the

first call is done then a second process is initiated (if there is an available maEmitesprise
contracts are dynamic So as many processors as are available are used.

Coercing theSplit asset to a contract results in as much as a 5.7-fold speed-up (using a
dynamically varying number of processors) compared to the sequential animation program,
depending on when the program is run. Of course, there is no reason why the user cannot
coerce thé?olyConvasset from an individual to a contract as well. However, in this case, a
speedup of only 6.0 was obtained. This implies thaSfti# procedure is the real bottleneck
in the animation program. That is, an individBalyConvcan almost keep up with its calls by
Modelbut an individuaBplit cannot keep up with its calls ByplyConv

If the C code for the individugplit contained a sequence of procedure calls (or even a
single procedure call at the end of it), ti&glit could be expanded to reveal its individual asset
components that could then be coerced to a line. Each of the assets in the line would represent
one of the procedure calls. Several other asset kinds are suppodaetipriseand they can
be combined in arbitrary hierarchies. The next section details the asset kinds that are available.

3. The Enterprise Model

The organization of a parallel or distributed programEmterpriseis similar to the
organization of a sequential program. The structure of a program is independent of whether it
is intended for sequential or distributed execution. The user vietwstarpriseprogram as a
collection of modules. Eaahoduleconsists of a singlentry procedurehat can be called by
other modules and a (possibly empty) collectiomtdrnal procedureshat are known only
within that module. No common variables among modules are allowed. In many ways, this is
analogous to programming with abstract data types, which provide well-defined means for
manipulating data structures while hiding all of the implementation details from the user.

Within any module, the code is executed sequentially. For example, a sequential program
simply consists of a single module whose entry procedure is the main progrderprise
introduces parallelism by allowing the user to specify the way in which the modules interact.
Module interaction is specified by two factors: thé of a module and theall to a module.

The role of a module defines which one of a fixed set of parallelization techrégseskinds)

the module will use when it is invoked. The call to a module defines the identity of the called
module, the information passed and the information returned. The role of a module is specified
graphically while the call is specified in the code.

3.1 Module Calls

In a sequential program, procedures communicate using procedure calls. Procedure A
contains a call to procedure B, that includes a list of arguments. When the call is made,
procedure A is suspended and procedure B is activated. Procedure B can make use of the
information passed as arguments. When procedure B has finished execution, it can
communicate results to procedure A via side-effects to the arguments and/or by returning a
value if the procedure is in fact a function.

Enterprisemodule calls are similar to sequential procedure calls. As with procedure and
function calls, it is useful to differentiate between module calls that return a result and those that
do not. Module calls that return a result are cdHealls (function calls) and module calls that
do not return a result are callpetalls (procedure calls).

Enterprisemodule calls differ from sequential calls in the following ways:

» Arguments cannot be pointers, nor can they contain any pointers.

* When module A, calls another module, B, module A continues to execute. However, if the
call to module B was an f-call, then module A would suspend itself when it tried to use the
function result, if module B had not yet finished execution.

There is no syntactic difference between procedure calls and module calls. This makes it easier
to transform sequential programs to parallel ones and makes it trivial to change parallelization
techniques using the graphical user interface, usually without making changes to the user's
code.

In Enterprise an f-call is not necessarily blocking. Instead, the caller blocks only if the result

Is needed and the called module has not yet returned. Consider the following example:
result = B(data);
/* some other code */
value = result + 1,

When this code is executed, the calling module, say A, only blocks when the stateahent "
=result + 1;" is executed and only if module B has not yet returned the vakeswat. This
concept is similar to the work on futures in object-oriented programming [6]. The p-call in the
statement:

B(dat a);

/* sone other code */
is non-blocking, so that A continues to execute concurrently with B. Of course in this case, B
does not return a result to A.

3.2 Module Roles and Assets

The role of a module is based solely on a parallelization technique and is independent of its
call. There are a fixed number of pre-defined roles correspondassgédkinds. For example,
in the previous section, the role of tBelit module was changed from amdividual to a
contractwithout changing the call.

We have created an analogy betwEaterpriseprograms and the structure of an organization
to help describe module roles. In general, an organization has various assets available to
perform its tasks. For example, a large task could be divided into sub-tasks where various
sub-tasks are given to different parts of the organization (divisions, departments, pools, lines
and/or individuals) to perform in parallel. Some tasks could even be completed by contract
where the organization is not directly concerned about the nature or number of individuals that
perform it. In addition, an organization usually provides many starsgaxices(like time
keeping, information storage and retrieval, etc.) that are available on demand to improve its
functionality.

Currently, Enterprise supports the roles corresponding to seven different asset kinds:
individual, line, pool, contract, department, division and service, with more being developed.

3.2.1 Individual

An individual contains no other assets. It is analogous to an individual person in an
organization. When called, an individual executes its sequential code to completion.
Therefore, any subsequent call to the same individual must wait until the previous call is
finished. An individual may be called by any external asset using its name.

3.2.2 Line

A line contains a fixed number of heterogeneous assets in a fixed order. Each asset contains
a call to the next asset in the line. A line is analogous to a construction, manufacturing or
assembly line in an organization where at each point in the line, the work of the previous asset

Is refined. For example, a line might consist of an individual who takes an order, someone
else to fill it and a third person to address the package and mail it. A subsequent call to the line
waits only until the first asset is finished its sub-task of the previous call, not until the entire
line is finished. The first asset in a line serves asdbeptionistfor the line and is the only

asset that is externally visible. That is, the first asset of a line is the only asset that may be
called from an external asset and it shares its name with the line asset for this purpose. Lines
are often referred to as pipelines in the literature.

3.2.3 Pool

A pool contains a fixed number of identical assets. It is analogous to a pool in an
organization where each member performs an identical task. For example, consider a pool of
telephone operators. When a call is received, an idle operator services the call. However, if all
the operators are busy, then the call waits for one of them to finish. Since pool members are
externally indistinguishable, an external call cannot select a particular pool asset. Therefore,
they are called by external assets using a single name that is shared with the pool asset for this
purpose. Since all assets in a pool are identical, they also share the same code. A pool is
analogous to a master-slave construct with a fixed number of slaves.

3.2.4 Contract

A contractcontains a collection of identical assets, so it is similar to a pool. However, the
number of assets in a contract is dynamic and depends on the number of processors that are
free at any time. A contract is analogous to a contract that an organization lets for the
performance of a collection of identical tasks. For example, an organization might sign a
contract to a courier company for the delivery of its packages. When a package must be
delivered, the courier company is informed. The organization doesn't care how many
resources the courier company uses or the route it takes to deliver the packages. The delivery
time can be affected by the number of resources used by the courier company and the amount
of competing traffic. Similarly when aBnterprisecall is made to a contract, an idle asset
executes the call. However, if all assets are busy and no more are available for hire, then the
call waits for an asset to become available. As is the case with a pool asset, a contract asset
shares a common name with the identical assets it contains and these component assets also
have common code. A contract is equivalent to a dynamic master-slave construct, where the
number of slaves varies in response to program needs (demand) and resource utilization
(environment).

3.2.5 Department

A departmentcontains a fixed number of heterogeneous assets. Every department has a
single receptionist asset that shares its name with the department so that it can be called by
external assets. However, unlike a line, the other assets in a department do not call each other
in a fixed sequential order. Instead, all other assets in the department are called directly by the
receptionist. A department is analogous to a department in an organization where a receptionist
is responsible for directing all incoming communications to the appropriate place. Note that in
our analogy, a department consists of a collection of assets of any kind: individuals,
departments, lines, etc. The department has no analogous term in the literature.

3.2.6 Division
A divisioncontains a hierarchical collection of identical assets with a fixed breadth and depth
where work is divided and distributed at each level. Every division has a single receptionist

asset that shares its name with the division so that the division can be called by external assets.
Divisions can be used to parallelize divide-and-conquer computations.

3.2.7 Service

A servicecontains no other assets. However, unlike an individual that can only answer a
single call at any one time, a service may be used by more than one asset at the same time. A
service is analogous to any asset in an organization that is not consumed by use and whose
order of use is not significant. A service may be called by any asset using its name.

3.3 Enterprise Diagrams

An Enterprisediagram can be built from any combination of assets. For example, one can
construct a contract, where each asset is itself a line of individuals. The model allows the user
to coerce an asset from one kind to anotiserally without any changes to the user's source
code (there are some problems users can encounter, particularly if pointers are used to alias
data). However, some gathering or separation of functions from one file to another may be
needed. For example, if a line is used for the animation example, there would be three
individuals Model PolyConvandSplif) each having their code in a separate file. If the line is
coerced into an individual, the code needs to be gathered together (either in the same file or by
using libraries). There are ways tlatterprisecould do this management automatically, but
there are some issues we have yet to resolve.

4. Related Work

In recent years, graphical parallel programming environments have been an area of active
research. In these environment, a parallel program is specified as a graph with nodes
containing a textual description of a sequential program. Most of the environments specify
parallelism based on the large grain dataflow model developed by Babb [2] (for example:
CODE [4], DGL [11], LGDF [8], Paralex [1], PPSE [12], TDFL [19]). In these models, an
application is usually defined as a dataflow graph whose nodes contain sequential modules and
the edges represents data dependencies between the modules.

TDFL introduces the idea of mutable computation graphs to support the mutable execution of
recursive functions. If the data input to a function is above a threshold size, then additional
processes are created to help process the data. The creation of nodes continues until the data
size is within the threshold. However, data size may not be the best criteria to determine the
degree of mutability, since processor usage is usually not necessarily proportional to data size.
Enterprisealso supports the mutable execution of recursive functions, but the criterion for
creating additional processes is the depth of recursion instead of data size.

The dataflow approach has a number of drawbacks. Usually it requires the programmer to
supply low-level information which is often not intuitive to the programmer. Parallelism by
replication of processes is hard to specify. In many of the systems, the programmer has to
draw the data dependencies connecting every node. The graph can become a dense structure,
even with a small number of modules, and it is often time consuming and error prone to draw.

Another research area is in graphical environments to support dependency analysis of
programs which are usually written in Fortran and run on machines with a small granularity
(for example: PAT [16], E/SP [17], CAPER [18]). Yet another class of approaches provide a
set of predefined parallel objects which define the communication and execution behavior of the
enclosed module. Among the earlier efforts, PIE [13] made available to the programmer pre-
coded templates of parallel structures such as master-slave, pipeline and systolic

multidimensional pipeline. A template provided an implementation of the communication and
synchronization structures and the programmer needed only to provide the sequential code.
However, the parallelism supported is at a much smaller grain size than that offered by
Enterprise In contrastEnterprisefocuses on problem solving at a higher level, using the
analogy to the structure of organizations. This allows new parallel templates to be defined
whenever necessary. In our earlier systEnameWorks dynamic initiation of replicated
process according to available idle processors was introduced [14][15]. The programmer also
needed to specify parallelism, in a less intuitive way, through templates defining the input and
output communication pattern of the process.

Linda, although not a graphical environment, is an important parallel programming model
[5]. Linda uses the concept of a virtual shared memory, calledutble space for
communication between concurrent processes. Processes use atomic operations to read, add,
or delete a tuple to/from the tuple space. In contEaderprise(and Paralex) is implemented
using the object-based, message passing ISIS system [3]. Processes communicate by
broadcasting messages to a message handler of a specified process.

Another relevant parallel programming model is the Chare-Kernel [8hafeis a module to
be executed in parallel. It can have multiple entries in which enclosed program segments and
new chares can be created (even recursively) to execute the entries. The portability of
applications is a tremendous asset, however the onus is still on the programmer to use the
supplied programming language enhancements and explicitly code all the parallelism.

5. Project Status

Enterpriseis built on a number of available tools. The user interface was implemented using
X Windows [10] (Motif), and is written in C++. It is currently 50% completed, but a textual
interface is available now. Enterprise programs are executed using the communications and
fault tolerance facilities of ISIS [3] and lines, pools, services, contracts and individuals have
been implemented. A code librarian uses the UNbkefacility to automatically recompile
source code when needed. The GNU C compiler has been modified t&meeprisecode
into the user's source program. The Monitor and debugging tools are in the design phase.

In recent years, there has been an enormous increase in the number and quality of parallel
programming tools described in the literature. The authors of these tools have diverse opinions
as to where and how in the software development cycle they can be used to increase a
programmer's productivity. Th&nterprise project aims for a complete, integrated
programming environment that is suitable for the complete software development life cycle.
By capturing an application's parallelism through the use of diagrams that are simple to edit, it
is not difficult for the user to make the leap from sequential to parallel programming. Although
the complexity of parallel systems, as portrayed in the literature, has been a powerful deterrent
to growth in this area, we believe that with a simple model, all of the complexity of parallel
programming can be hidden from the user. The analogical model Usetkrpriserepresents
a different way of viewing an old problem.

Acknowledgement

This research was supported in part by research grants from the University of Alberta's
Central Research Fund and the Natural Sciences and Engineering Research Council of Canada,
grants OGP-8173 and infrastructure grant 107880. Also, Rasit Eskicioglu provided us with a
number of useful references.

[EEN

O. Babaoglu, L. Alvisi, A. Amoroso and R. Davdbaralex: An Environment for Parallel
Programming in Distributed Systeni®991, Technical Report UB-LCS-91-01, Department
of Mathematics, University of Bologna, Bologna, Italy.

2 R. Babb.Parallel Processing with Large Grain Data Flow Technigu&EE Computer,
1984, Vol 17, No 7, pp 55-61.

3 K. Birman, R. Cooper, T. Joseph, K. Marzullo, M. Makpangou, K. Kane, F. Schmuck
and M. Wood.The ISIS System Manual, Version,21991, ISIS Project, Computer
Science Dept., Cornell University.

4 J. Browne, M. Azam and S. Sob&ODE: A Unified Approach to Parallel Programming
IEEE Software, 1989, Vol 6, No 6, pp 10-18.

5 N. Carriero and D. Gelerntdrinda in ContextCACM, 1988, Vol 32, No 4, pp 444-458.

6 A. ChatterjeeFutures: A Mechanism for Concurrency Among ObjeStgpercomputing
'89, 1989, pp 562-567.

7 E. Chan, P. Lu, J. Mohsin, J. Schaeffer, C. Smith, D. Szafron, P. \Batgyprise: An
Interactive Graphical Programming Environment for Distributed Software Development
1991, TR 91-17, Dept. of Computing Science, University of Alberta.

8 D. DiNucci and R. Babb IlArchitecture of the Parallel Programming Support
EnvironmentIEEE COMPCON, 1989, pp 102-107.

9 W. Fenton, B. Ramkumar, V. Saletore, A. Sinha and L. K&8epporting Machine
Independent Programming on Diverse Parallel Architectul@BP, 1991, pp 193-201.

10 J. Gettys, P. Karlton and S. McGregorhe X Window System, Version $loftware -
Practice and Experience, 1990, Vol 20, No s2, pp s35-s67.

11 R. Jagannathan, A. Downing, W.T. Zaumen and R.K.S. [Ra&taflow-based
Methodology for Coarse-Grain Multiprocessing on a Network of Workstati@QiP,
1989, pp 54-58.

12 T. Lewis and W. RuddArchitecture of the Parallel Programming Support Environment
IEEE COMPCON, 1990, pp 589-594.

13 Z. Segall and L. RudolpiRie (A Programming and Instrumentation Environment for
Parallel Processing)IEEE Software, 1985, Vol 2, No 6, pp 22-37.

14 A. Singh.A Template-Based Approach to Structuring Distributed Algorithms Using a
Network of Workstationsl991, Ph.D. Thesis, Dept. of Computing Science, University
of Alberta.

15 A. Singh, J. Schaeffer and M. GreénTemplate-Based Approach to the Generation of
Distributed Applications Using a Network of Workstatidi&EE Transactions on Parallel
and Distributed System$991, Vol 2, No 1, pp 52-67.

16 K. Smith, B. Appelbe and K. Stirewalhcremental Dependence Analysis for Interactive
Parallelization Supercomputing '90 , 1990, pp 330-341.

17 K. Sridharan, M. McShea, C. Denton, B. Eventoff, J. Browne, P. Newton, M. Ellis, D.
Grossbard, T. Wise and D. Clemm&n Environment for Parallel Structuring of Fortran
Programs ICPP, 1989, pp 98-106.

18 B. Sugla, J. Edmark and B. Robinsdgin Introduction to the CAPER Application
Programming EnvironmentCPP, 1989, pp 107-111.

19 P. Suhler, J. Biswas, K. Korner and J. Brown&DFL: A Task-Level Dataflow
Language Journal of Parallel and Distributed Computing, 1990, Vol 9, No 2, pp 103-115.

10

