
Safer Tuple SpacesRoel van der Goot1, Jonathan Schae�er2, and Gregory V. Wilson31 Erasmus University Rotterdam, The Netherlands, vandergoot@few.eur.nl2 University of Alberta, Canada, jonathan@cs.ualberta.ca3 Visible Decisions, Canada, greg@vizbiz.comAbstract. The simplicity and elegance of the Linda programming modelis based on its single, global, typeless tuple space. However, these virtuescome at a cost. First, the tuple space can be an impediment to scalablehigh performance. Second, the \black box" nature of the tuple spacemakes it an inherently dangerous data structure, prone to many typesof programming errors.Blossom is a C++ version of Linda with extensions. This paper intro-duces some of the novelties in Blossom, as they pertain to creating \safe"tuple spaces. These new features include multiple strongly typed tuplespaces, �eld access patterns, tuple space access patterns, and assertions.1 IntroductionThe computing literature is replete with programming models for writing par-allel programs. Many of them are research prototypes that are good enoughfor a few academic papers and then quietly disappear. Few models attract sus-tained interest in the literature, or establish a large user community. Linda [7]is one of the rare parallel programming models that has managed to survive forover a decade, in spite of the discriminating (and critical) tastes of the parallelcomputing community.Linda's strength is the simplicity of its programming model. In e�ect, Lindao�ers a blackboard (the tuple space) that processes can read from, write to, anderase portions of. To support Linda, languages (such as C, C++, and Fortran)need only have a library implementing a few calls to access the tuple space.Thus, a simple implementation is easily built. More sophisticated versions ofLinda exist, relying on compiler techniques to understand the parallelism in theapplication and optimize accordingly [8].Although the uniqueness of the Linda approach excited the parallel comput-ing community in the late 1980's, with time the novelty waned. In part this wasbecause Linda became a commercial product (with the resulting licensing fees),and free versions su�ered in performance. Nevertheless there continues to be anactive Linda user community.Although there are many advantages to the Linda model (simplicity, ease ofintegration in a language, ease of expressing communication and synchroniza-tion), there are two major criticisms. First and foremost, the tuple space is oftenseen to be a bottleneck and an impediment to high scalable performance. For

many applications, these performance concerns e�ectively rule out Linda as aviable tool. Second, an often overlooked point is that the tuple space has somedangerous design aws that can give rise to serious programming errors. Thetuple space is a generic shared data structure that can be viewed as a black box:one can read and write to it, but an application cannot see inside it. It is legalto put anything into the tuple space, including semantically invalid data. Fur-thermore, there is no way to peek into this black box to see its internal structureand check for errors. Thus, to make Linda a more attractive parallel program-ming model, two things must be addressed: improved program performance, andmaking the model safer, in the sense that the likelihood of programming errorsis reduced.This paper introduces Blossom, an extended version of Linda for the C++programming language, designed to address the major concerns of Linda. Thispaper describes some of the innovations in Blossom that inuence the structureof the tuple space. By appropriately specifying tuple space(s), the probabilityof introducing a programming error into a parallel Blossom program is greatlyreduced. Parallel programs are notoriously di�cult to design, implement, test,and debug. Anything that can be done to shorten the program developmentcycle is welcome. Although the enhancements described in this paper addressthe software engineering concerns of generating correct programs, most of themalso can be used to improve program performance.Since C-Linda and Fortran-Linda made their debut, there has been a majorshift in programming language trends. Strong typing and class libraries (as inC++ and Java) have increased the expressive power available to the programmer.In particular, these features and C++ templates allow us to achieve many of thecapabilities of a Linda compiler using just a standard C++ compiler, withoutintroducing new syntax or changing the semantics of the programming language.The Linda model can easily be integrated into an object oriented program-ming language [15]. Linda implementations for Ei�el [13] and Java [9] requirethe user to explicitly create objects of class Tuple. In C++ Linda [5] a precom-piler is required to translate new syntax into C++. Our Blossom system neitherneeds explicit creation of objects of class Tuple, nor does it use a precompiler.Section 2 describes the Linda model and introduces some of the proposedmodel enhancements in the literature. Section 3 describes four innovations inBlossom. The paper is restricted to discussing the design of the tuple space,since these enhancements are currently implemented and working. Section 4 il-lustrates programming using Blossom. Finally, Section 5 discusses Blossom workin progress, including the performance enhancements.2 LindaLinda was introduced in 1985. Although the Linda model was not in its �nalform, it contained the idea of a global memory accessible by multiple processes.The global memory contains a collection of data records, called tuples, and it is

accordingly called the tuple space. Tuple space data is organized as an associativememory, meaning that data is retrieved by its value(s), not by an index.Linda provides six simple operations to access the tuple space. Operation ingets a tuple from the tuple space (in the program), out puts a tuple (out of theprogram) into the tuple space, and rd replicates a tuple. The rd operation issemantically equivalent to an in immediately followed by an out (combined inone atomic action).The following example illustrates how a program might manipulate the tuplespace. An out("todo", 1); puts a tuple with two �elds into the tuple space;the �rst �eld is a string with value "todo" and the second �eld is an integer withvalue 1. A variable with value 1 as the second �eld would have the same result.An in("todo", 1); will get the same tuple out of the tuple space, if it ispresent. If there is no tuple with values equivalent to all the arguments, theoperation will block until another process puts a matching tuple in the tuplespace. Wild cards can be used to enhance the capabilities of the operations thatread tuples. For example,int i;in("todo", ?i);matches any tuple with two �elds, the �rst being a string with value "todo" andthe second an integer (with any value). Such a wild card �eld (?i) is called aformal parameter as opposed to an actual parameter (a value �eld). Tuples thatcontain formal �elds are sometimes referred to as anti-tuples.Linda provides an eval operation for spawning new processes. For example,eval("todo", sqr(5)); will spawn two processes, each evaluating one of thearguments in parallel with the spawning process. As soon as all the argumentsof the eval are evaluated, the resulting tuple is put into tuple space (the tuple("todo", 25) in this case).The operations inp and rdp are nonblocking versions of in and rd, respec-tively. They query the tuple space for a match and return a boolean indicatingwhether they succeeded in that. If no match is found the operations will notwait (i.e., block) for another process to insert a matching tuple.Because the model is so simple (and elegant), it is easy to �nd fault withit. Consequently, numerous extensions to the model have been proposed inthe literature. Some of the more interesting ones include: having multiple tu-ple spaces [11], more powerful tuple space operations such as collect [4] andcopy-collect [16], specifying access patterns on tuples [6], persistent tuplespaces [3], fault-tolerant tuple spaces [1], and open Linda [14]. In this paperwe will use the extension of multiple tuple spaces.This paper discusses Blossom, a C++-based implementation of Linda withextensions. Since we are using only the C++ compiler and not a Linda compiler,the syntax of Blossom di�ers slightly from that of Linda. In Blossom tuple spacesbecome objects, and the operations on tuple spaces become member functions.The original Linda operations are relative to the program; the Blossom memberfunctions are relative to the tuple space. Hence new names for the operations had

to be chosen: out becomes put, in becomes get, rd becomes copy, inp becomesget nb, and rdp becomes copy nb (where nb indicates the call is nonblocking).The eval operation is handled as a special case of put:eval(5, sqr(5));becomes// "ts" is the name of a user-defined tuple spacets.put(5, eval(sqr)(5));indicating that only one process is created to evaluate the square of 5.Formal parameters (?) are handled di�erently as well:int i;in(5, ?i);becomesArg<int> i;ts.get(5, i.var());where Arg<type> is a Blossom class that enhances the type to include additionalmethods. The var() method allows the variable to be used as a wild card.Blossom's tuple spaces are �rst class objects, which means that it is possibleto have tuple spaces of tuple spaces.3 EnhancementsThe tuple space is a typeless black box. The user can put data of any type init, and attempt to extract data of any type from it. But the wealth of program-ming language design experience suggests that this is a bad idea. The trend incomputing today is towards strong typing. We have seen the evolution of BCPLto C to C++, motivated in part by the bene�ts of strong typing. These bene�tsare twofold: catching more errors at compile-time, and preventing some classesof run-time errors. Given the inherently di�cult nature of parallel programming,any language enhancements that reduce the probability of error are welcome.In this section, four new enhancements to the basic Linda model are pre-sented. All of them have to do with either preventing or detecting parallel pro-gram errors at compile- or run-time. This is achieved by changing the de�nitionof the tuple space: it is given structure, behavior, and is made accessible (seeFigure 1). The user provides annotations that give the compiler and run-timesystem information as to the expected behavior of the program, and forces it tomeet those constraints.Blossom is a C++ class library. Unlike C-Linda and Fortran-Linda, it doesnot add new syntax, alter the semantics, or extend the host language, each ofwhich tends to result in programmer confusion [17]. C++ is a modern program-ming language with a rich set of features. This enables Blossom to achieve many

(a) (b) (c)Fig. 1. Di�erences between tuple spaces; (a) Original Linda tuple space: It is a singlecollection of tuples of arbitrary structure. This implies that the user can try to in-sert/remove semantically incorrect tuples. The user cannot look inside the tuple space.(b) Strongly typed tuple space: Each tuple space can contain only one type of tu-ple. Hence a program cannot inadvertently insert/remove a wrongly typed tuple. (c)Strongly typed tuple space with assertions: It provides the user the additional bene�tof being able to peek inside the tuple space.of its objectives (including preventing programming errors) using only C++ syn-tax, without the need for a separate precompiler. To achieve the same bene�ts ofa Linda precompiler (including error checking and run-time optimizations) , theuser has to specify a small amount of additional detail in their program. This isreected in the Blossom examples given later. They are (slightly) more verbosethan their pure-Linda counterparts.One issue not addressed in this paper is how to handle run-time errors gen-erated by the new Blossom enhancements. Since we are using C++, a naturalsolution is to throw an exception whenever a run-time error occurs. The usercan (at their discretion) catch the exception and handle it. Although this soundsgood, it does have its problems. For example, do child processes throw exceptionsin their parents? What if a process' parent is no longer around, but its grand-parent is? Right now, all run-time errors result in aborting the application.3.1 Strongly Typed Tuple SpacesLinda's single tuple space can contain tuples of any type. Although this soundsconceptually simple, it has the disadvantage that it is easy to inadvertentlyintroduce a bug in a program. Accidentally omitting a tuple �eld, introducingan additional �eld, changing a �eld, or reversing two �elds is perfectly legal,yet may result in a semantically incorrect program. A sophisticated precompilermay be able to detect some but not all of these errors.By having multiple tuple spaces, each strongly typed, these problems cannotoccur. Each tuple space is created with a speci�cation that gives the number,order, and type of each �eld of the tuples legally allowed (much like the param-eters of a subroutine call). With this speci�cation, many commonly occurringerrors can be caught at compile time without the need for a Linda precompiler.The advantages of strong typing can be summarized as follows:

1. Eliminate Errors. A strongly typed tuple space can eliminate many commonerrors.2. Performance. Although this paper emphasizes the software engineering as-pects of Blossom, it is important to realize that many of these enhancementscan also be used to improve program performance. In e�ect, the typing par-titions the tuple space into multiple disjoint address spaces. Hence, given atuple of a particular type, the system knows exactly in what address spaceto look for the tuple.The following example illustrates having multiple, strongly-typed tuple spacesin Blossom. The TupleSpace declarations each create new named tuple spaces,and specify the type of the tuples that are allowed inside them.TupleSpace<Tuple<int, int> > square;TupleSpace<Tuple<int, float> > sqrroot;// Put values in the tuple spacesfor (int i = 1; i < MAX; i++) {square.put(i, i*i);sqrroot.put(i, sqrt(i));}// Take values out of the tuple spacesArg<float> answer;sqrroot.get(4, answer.var()); // Succeedssquare.get(1, 1); // Succeedssquare.get(2, 2); // Blocks: no such tuple availablesquare.get("one", 1); // Compile-time type errorsquare.get(1, 1.0); // Compile-time type errorsquare.get(1.0, 1); // Compile-time type error3.2 Field Access PatternsThe philosophy behind typing a tuple space can be carried even further. Acommon programming scenario in Linda is to extract tuples using one of the�elds as a discriminator. For example, one might have a producer-consumercomputation where the tuples produced have to be processed in order. Everytuple contains a unique number which is more or less a time stamp. The smallerthe number the older the tuple. The consumer gets the next tuple by increasingthe time stamp �eld. In this case, this �eld is not only an integer, but it is alwaysused as a value, not a wild card variable.Every �eld in a tuple space declaration contains a declaration as to whetherit is legal to use a wild card variable to retrieve a value or not. In other words,a �eld is designated as either Actual or Any. Actual indicates that a tuple �eldcan only be retrieved by specifying a value, while Any extends this to includewild card variables.This additional piece of information o�ers the user several advantages:

1. Eliminate Errors. By providing additional information about the intendedbehavior of the tuple space, the compiler can check whether the programmeralways satis�es the speci�ed requirements.2. Performance. Speci�c �elds can be used to determine (by hashing) on whichmachine to store or look for a tuple. Another method to distribute the tu-ple space is by broadcasting every change of the tuple space to all Lindaprocesses. Hashing has the advantage that broadcasts are not necessary todistribute the tuple space. Instead a single communication is enough to put atuple in a remote tuple space and only two communications are needed to getor to copy a tuple from a remote tuple space (the �rst sends the get or copyrequest to the remote tuple space; the second one when a matching tupleis found and how the formals are instantiated). An evenly distributed tuplespace results in less tuples to be searched and removes possible bottlenecksof a big tuple space on one machine.The following example illustrates �eld access patterns:TupleSpace<Tuple<Actual<int>, Any<int> > > square;Arg<int> sq;for (int i = 1; i < MAX; i++)square.put(i, i*i);square.get(1, sq.var()); // Succeedssquare.get(2, 2); // Legal, but blockssquare.get(sq.var(), 4); // Compile-time error3.3 Tuple Space Access PatternsThe object-oriented community has recently embraced the concept of design pat-terns [10]: generic, frequently occurring programming paradigms. Similar ideashave played a prominent role in parallel computing, with common parallel struc-tures such as master-slave and pipelines. Recent studies have shown that thereare commonly occurring access patterns1 on objects [2]. As part of program de-sign, the user knows the intended access patterns on their objects. The �rst twocolumns of Table 1 gives these access patterns and their description, as de�nedin the Munin system [2].The access patterns on objects are easily translated to access patterns ontuples [6]. In Blossom the access patterns are applied to tuple spaces instead oftuples. There are several reasons for doing this. First, in a good design, everytuple space has a unique purpose. All members of that tuple space are thereto ful�ll the design goals of the tuple space and should be handled similarly.Tuples with di�erent access patterns in one tuple space are an indication ofa poor design. Second, access patterns can be used to inuence the (hidden)implementation of the tuple space, a�ecting program performance. For example,the choice of design pattern can e�ect the placement of the tuple space, thedistribution of the tuple space, and whether data should be replicated.1 The original name is type-speci�c coherence mechanisms.

If a tuple space were annotated with an access pattern speci�cation, thenthat might impose a constraint on how the tuple space is accessed at run-time(as shown in the third column of Table 1). Note that not all access patternsresult in constraints on the tuple space. Read-mostly, write-many, and generalread-write all allow an arbitrary combination of reads/writes to the tuple space.The only di�erence is the relative frequency with which the reads/writes occur.Hence these are too general to allow constraints to be imposed.Table 1. Access patterns for tuple spacesAccess Pattern Description Restrictionswrite-once written during initialization,afterwards only read no puts after a get or copyprivate local accesses only only one process is allowedaccesswrite-many frequently modi�ed |result not needed until all data iscollected |synchronization semaphores no copy or copy nb allowedmigratory accessed by a single process at atime |producer-consumer written by one process, consumedby other processes only one process is allowedto putread-mostly read far more often read thanwritten |general read-write general access pattern |There are a number of important advantages for having the user declare theaccess pattern of a tuple space:1. Eliminate Errors. If the access pattern of a tuple space does not matchthe access pattern in the user's code, then warnings or errors can be givenat compile- and run-time. For example, if the access pattern is producer-consumer and there are two or more processes putting tuples in the tuplespace, the program can detect this at run-time. (Not at compile-time becausewe do not use a precompiler.) If the program has to run e�ciently this run-time check can be turned o�.2. Performance. A programmer usually knows the intended use of a tuple space.Depending on these intentions, a distribution strategy could be selected bythe user. For example a producer-consumer tuple space is best located inthe data space of the producer process. It does not make sense that theproducer �rst distributes the tuples over several processes, and next theconsumer gathers the tuples from all these processes. The former approach

needs less communications to ship the data to the place it is used (consumed)and is thus faster.3. Awareness of access patterns results in better designs. A good design neveruses an object for more than one reason. This general rule applies to tuplespaces too. Access patterns can help the programmer distinguish di�erentfunctionalities more easily.It is important to realize that the access pattern attribute only changes thesemantics of a tuple space if a restriction is encountered; if this is not the caseaccess pattern attributes only change the implementation and not the semantics.The following example illustrates the use of access patterns:TupleSpace<Tuple<Any<int> >, ProducerConsumer> buffer;// PRODUCER...while(1) {int number = ...;buffer.put(number); // Succeeds}// CONSUMER...while(1) {Arg<int> number;buffer.get(number.var()); // Succeeds// ...buffer.put(16); // Run-time error}3.4 Tuple Space AssertionsThe simplicity of the Linda programming model comes, in part, from the capa-bilities of the tuple space; it is a black box with all the structure and implemen-tation details hidden from the user. However, when looking for a bug, you wantto be able to look inside the black box. This cannot be done in Linda, unlessyou extract each of the tuples one at a time and then put them back.Tuple space assertions allow the user to peek into the tuple space. A problemwith assertions in parallel programming is that several processes have accessto the same tuple space. This means that if you put a tuple in the tuple spaceand then, for example, immediately assert that the number of tuples in the tuplespace is greater than zero, the assertion can fail because another process removedthe tuple. So either you have to make the assertion general (i.e., it takes otherprocesses into account) or the assertion should form an atomic action with theother Linda operations. We chose the latter kind of assertion, because it bettermeets the needs of concurrent debugging.Assertions act on an entire tuple space, which may be very ine�cient if thetuple space is distributed. This is mainly because the whole tuple space should

be locked during the evaluation of an assertion; no other processes are allowedto change its state. Assertions on tuple spaces should only be used to debuga program. However after �xing the bug you want to be able to recompile theprogram without removing the assertions again. Inclusion of another library (acompile-time option) can achieve this.If the user wants to de�ne an assertion on a tuple space, he has to derive a newclass from class Assertion. In this class he can de�ne two methods, foreach()and exit(). The constructor call initializes the object, the foreach() call isperformed for every tuple in the tuple space, and the exit() call should returna boolean, indicating whether the assertion succeeded (true) or failed (false).If the exit() call returns false the program terminates. Blossom provides the(hidden) code to ensure that foreach() and exit() are called correctly.Assertions are illustrated in the next section.4 ExampleThe following example illustrates the usage of the concepts introduced in thispaper. A (distributed) sieve of Eratosthenes calculates all primes smaller than acertain upper bound LIMIT. The function is prime decides whether a number(the �rst argument) is a prime or not by trying to divide the number by allsmaller primes (passed in the tuple space in the second argument). The stronglytyped tuple space checks at compile-time that all accesses (here put and copy)have a tuple of the correct type (put only allows actual �elds and copy onlyallows the speci�ed �elds). The SizeAssertion checks that the number of tuplesin the tuple space is correct after all the primes are calculated.#include <iostream.h>#include "ts.h"typedef TupleSpace<Actual<int>, Any<bool> > PrimesTS;const int LIMIT = 5000;class SizeAssertion: public Assertion fint size;int expected_size;public:SizeAssertion(int s): expected_size(s), size(0) fg~SizeAssertion() fgvoid foreach(int, bool) fsize++;gbool exit() freturn size == expected_size;g

g;bool is_prime(int number, PrimesTS primes) fint limit = sqrt(number);for (int i = 2; i < limit; i++) fArg<bool> prime;primes.copy(i, prime.var());if (prime && (number%i == 0))return false;greturn true;gvoid main() fPrimesTS primes;Arg<bool> prime;for (int i = 2; i < LIMIT; i++) fprimes.copy(i, prime.var());if (prime)cout << i << endl;gg5 Future WorkThe four enhancements discussed in this paper have been implemented and areworking. All four help the user eliminate and/or detect common parallel pro-gramming errors. By making the tuple space safer, the user will spend less timedebugging and they can invest more time in the design of their program.Regrettably, it is impossible for us to quantify the bene�ts of the safe tuplespaces of Blossom. There is no easy metric, such as speedup, to compare against.A fair evaluation would require users to implement solutions using C-Linda andBlossom, and then compare the time it takes to correctly implement their solu-tions. Although we have experience performing these type of experiments [17],it is too early in the life-cycle of Blossom to go to this e�ort. Once we have com-pleted the full Blossom implementation, we will be very interested in quantifyingthe inuence of safer tuple spaces on the program design and implementationtime.Blossom is an evolving system. The following performance enhancements arein various stages of completion:Futures: Arguments to get and copy can be futures [12]. Futures allow asyn-chronous versions of the aforementioned operations.Get-update-put operation: The equivalent of a get-update-put operation inLinda results in three communications: send get, receive result, (update

value,) and put update. By combining the operations, a reduction of onecommunication can be achieved: send get, (update value and put,) andreceive result.Reduction operations: Without a reduction operation, reducing a tuple spacerequires the user to get each tuple and perform the reduction, resulting in apotentially large amount of communication. A reduction operator performsthe reduction according to the owner computes paradigm. There is a strongsimilarity between tuple space assertions and reduction operations: bothrequire access to the entire tuple space in an e�cient manner. The user canspecify the reduction operator and let Blossom do the rest.Conditionals: Sending a conditional to the tuple space, indicating what tuplesyou are interested in, can reduce communication and improve parallelism.Blossom can apply the conditional to all tuples in a tuple space and returnthose that match. The alternative in Linda is to get tuples until you �ndone that meets your conditions, and then put back all unneeded tuples.Tuple space attributes: Additional information can be associated with a tu-ple space. Ordered vs. Unordered : Tuple spaces in which the tuples are or-dered (sorted) are better for database applications (faster searching), butunordered tuple spaces generally have better performance. Fair vs. Unfair :In a fair tuple space every matching tuple has an equal opportunity of beingselected. Unfair tuple spaces have biases but may have more e�cient im-plementations. Persistence: Persistent tuple spaces are kept in �les, whichmeans that they are still present after a program terminates. Databases arein general persistent. Size: Allowing the user to specify the maximum sizeof a tuple space allows Blossom to more e�ciently organize the data.We expect to have complete working system by the end of the year.AcknowledgmentsWe would like to thank Nederlandse Organisatie voor Wetenschappelijk On-derzoek (NWO), National Sciences & Engineering Research Council of Canada(NSERC), and IBM Toronto Labs for their �nancial assistance. Furthermore,we thank Jos�ee Lajoie (IBM) for her patience answering numerous ANSI C++questions, Bill O'Farrell (IBM) for sharing some of his knowledge on C++, SteveMacDonald (University of Alberta), and Arie de Bruin (Erasmus University Rot-terdam) for their comments on the article.References1. Bakken, D. E., and Schlichting, R. D. Supporting Fault-Tolerant ParallelProgramming in Linda. IEEE Transactions on Parallel and Distributed Systems6, 3 (1995), 287{302.2. Bennett, J. K., Carter, J. B., and Zwaenepoel, W. Munin: DistributedShared Memory Based on Type-Speci�c Memory Coherence. In Second ACMSIGPLAN Symposium on Principles & Practice of Parallel Programming (PPoPP)(1990), pp. 168{176.

3. Brown, T., Jeong, K., Li, B., Talla, S., Wyckoff, P., and Shasha, D.PLinda User Manual. http://merv.cs.nyu.edu:8001/~binli/plinda/manual.ps, 1997.4. Butcher, P., Wood, A., and Atkins, M. Global Synchronisation in Linda.Concurrency: Practice and Experience 6, 6 (Sept. 1994), 505{516.5. Callsen, C. J., Cheng, I., and Hagen, P. L. The AUC C++Linda System. InLinda-Like Systems and Their Implementation, G. Wilson, Ed. Tech. Rep., EPCCTR91{13, Edinburgh Parallel Computing Centre, June 1991, ch. 4, pp. 39{73.6. Carreira, J., Silva, L., and Silva, J. G. On the design of Eileen: a Linda-likelibrary for MPI. In Proceedings of the 1994 Scalable Parallel Libraries Conference(1995), pp. 175{184.7. Carriero, N., and Gelernter, D. How To Write Parallel Programs: A FirstCourse. MIT Press, Cambridge, MA, 1990.8. Carriero, N., and Gelernter, D. Tuple Analysis and Partial Evaluation Strate-gies in the Linda Precompiler. Research Monographs in Parallel and DistributedComputing. Pitman, London, 1990, ch. 7, pp. 114{125.9. Ciancarini, P., and Rossi, D. Jada: Coordination and Communication for Javaagents. In Mobile Object Systems: Towards the Programmable Internet, J. Vitekand C. Tschudin, Eds., vol. 1222 of Lecture Notes in Computer Science. SpringerVerlag, 1997, pp. 213{228.10. Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design Patterns.Addison-Wesley, 1995.11. Gelernter, D. Multiple Tuple Spaces in Linda. In Proceedings PARLE'89:Parallel Architectures and Languages Europe (June 1989), pp. 20{27.12. Halstead, A. MultiLisp: A Language for Concurrent Symbolic Computation.ACM Transactions on Programming Languages and Systems 7, 4 (1985), 501{538.13. Jellinghaus, R. Ei�el Linda: An Object-Oriented Linda Dialect. ACM SIGPLANNotices 25, 12 (Dec. 1990), 70{84.14. Kielmann, T. Designing a Coordination Model for Open Systems. In Coordina-tion Languages and Models, First International Conference COORDINATION '96(1996), P. Ciancarini and C. Hankin, Eds., pp. 267{284.15. Matsuoka, S., and Kawai, S. Using Tuple-Space Communication in DistributedObject-Oriented Architectures. Proceedings ACM Conference on Object-OrientedProgramming Systems, Languages and Applications (OOPSLA) 23, 11 (1988), 276{284.16. Rowstron, A., and Wood, A. Solving the Linda Multiple rd Problem. In Coor-dination Languages and Models, First International Conference COORDINATION'96 (1996), P. Ciancarini and C. Hankin, Eds., pp. 357{367.17. Szafron, D., and Schaeffer, J. An Experiment to Measure the Usability ofParallel Programming Systems. Concurrency: Practice and Experience 8, 2 (1996),147{166.

