
The APHID Parallel �� Search Algorithm

Mark G. Brockington and Jonathan Schaeffer
Department of Computing Science, University of Alberta

Edmonton, Alberta T6G 2H1 Canadafbrock, jonathang@cs.ualberta.ca

Abstract

This paper introduces the APHID (Asynchronous Par-
allel Hierarchical Iterative Deepening) game-tree search
algorithm. APHID represents a departure from the ap-
proaches used in practice. Instead of parallelism based on
the minimal search tree, APHID uses a truncated game-
tree and all of the leaves of that tree are searched in par-
allel. APHID has been programmed as an easy to imple-
ment, game-independent �� library, and has been tested on
several game-playing programs. Results for an Othello pro-
gram are presented here. The algorithmyields good parallel
performance on a network of workstations, without using a
shared transposition table.

1. Introduction

The alpha-beta (��) minimax tree search algorithm has
proven to be a difficult algorithm to parallelize. Although
simulations predict excellent parallel performance, most re-
sults are based on an unreasonable set of assumptions. In
practice, knowing where to initiate parallel activity is diffi-
cult since the result of searching one node at a branch may
obviate the parallel work of the other branches.

In real-world implementations, such as high performance
chess, checkers and Othello game-playing programs, the
programs suffer from three major sources of parallel inef-
ficiency (a similar model is presented in [6]).

The first is synchronization overhead. The search typ-
ically has many synchronization points where there is no
work available, which results in a high percentage of idle
time.

The second is parallelization overhead. This is the over-
head of incorporating the parallel algorithm, which includes
the handling of communication, and maintaining structures
to allow for allocation of work.

The third is search overhead. Search trees are really di-
rected graphs. Work performed on one processor may be
useful to the computations of another processor. If this in-
formation is not available, unnecessary search may be done.

These overheads are not independent of each other. For
example, increased communication can help reduce the

search overhead. Reducing the number of synchronization
points can increase the search overhead. In practice, the
right balance between these sources of program inefficiency
is difficult to find, and one usually performs many experi-
ments to find the right trade-offs to maximize performance.

Many parallel �� algorithms have appeared in the liter-
ature (a more complete list is available elsewhere [1]). The
PV-Split algorithm recognized that some nodes exist in the
search tree where, having searched the first branch sequen-
tially, the remaining branches can be searched in parallel [5].
Initiating parallelism along the best line of play, the princi-
pal variation, was effective for a small number of proces-
sors, although variations on this scheme seemed limited to
speedups of less than 8 [7].

The idea can be generalized to other nodes in the tree.
At nodes where the first branch has been searched and no
cut-off occurred, the rest can likely be searched in paral-
lel. It is a trade-off – increased parallelism versus addi-
tional search overhead, since one of these parallel tasks
could cause a cut-off. This idea has been tried by a number
of researchers, such as Jamboree search [4] and ABDADA
[9]. The best-known instance of this type of algorithm is
called Young Brothers Wait (YBW) and was implemented in
the Zugzwang chess program [3]. YBW achieved a 344-
fold speedup using a network of 1024 Transputers.

This class of algorithms cannot achieve a linear speedup
primarily due to synchronization overhead; the search tree
may have thousands of synchronization points and there
are numerous occasions where the processes are starved for
work. The algorithms have low search overhead, with the
absolute performance being strongly linked to the quality of
the move ordering within the game-tree.

This paper introduces the Asynchronous Parallel Hierar-
chical Iterative Deepening (APHID) game-tree search algo-
rithm. The algorithm represents a departure from the ap-
proaches used in practice. In contrast to other schemes,
APHID defines a frontier (a fixed number of moves away
from the root of the search tree), and all nodes at the fron-
tier are done in parallel. Each worker process is assigned an
equal number of frontier nodes to search. The workers con-
tinually search these nodes deeper and deeper, never having
to synchronize with a controlling master process. The mas-
ter process repeatedly searches to the frontier to get the latest
search results. In this way, there is effectively no idle time;



search inefficiencies are primarily due to search overhead.
APHID’s performance does not rely on the implementation
of a distributed transposition table, which makes the algo-
rithm suitable for loosely-coupled architectures (such as a
network of workstations), as well as tightly-coupled archi-
tectures.

Unlike some parallel �� algorithms, APHID is designed
to fit into a sequential�� structure. APHID has been imple-
mented as a game-independent library of routines. These,
combined with application-dependent routines that the user
supplies, allow a sequential �� program to be easily con-
verted to a parallel program. Althoughmost parallel�� pro-
grams take months to develop, the game-independent library
allows users to integrate parallelism into their application
with only a few hours of work.

2. The APHID Algorithm

Young Brothers Wait and other similar algorithms suf-
fer from three serious problems. First, the numerous syn-
chronization points and occasions where there is little or no
work to be done in parallel result in idle time. This suggests
that a new algorithm must strive to reduce or eliminate syn-
chronization and small work lists. Second, the chaotic na-
ture of a work-stealing scheduler requires algorithms such
as YBW and Jamboree to use a shared transposition table
to achieve good move ordering and reasonable performance.
ABDADA requires a shared transposition table to function
correctly. Third, the program may initiate parallelism at
nodes which are better done sequentially. For example, hav-
ing searched the first branch at a node and not achieved a cut-
off, Young Brothers Wait (in its simplest form) permits all of
the remaining branches to be searched in parallel. However,
if the second branch, for example, causes a cut-off, then all
the parallel work has been wasted. This suggests parallelism
should only be initiated at nodes where there is a very high
probability that all branches must be considered.

This section introduces the Asynchronous Parallel Hier-
archical Iterative Deepening (APHID) game-tree searching
algorithm. APHID has been designed to address the above
three issues. The algorithm is asynchronous in nature; it re-
moves all synchronization points from the �� search and
from iterative deepening. Also, parallelism is only applied
at nodes that have a high probability of needing parallelism.
The top plies 1 of a game-tree near the root vary infrequently
between steps of iterative deepening. This relative invari-
ance of the top portion of the game-tree is exploited by the
APHID algorithm.

In its simplest form, APHID can be viewed as a mas-
ter/slave program although, as discussed later, it can be gen-
eralized to a hierarchical processor tree. For a depth d
search, the master is responsible for the top d0 ply of the tree,
and the remaining d� d0 ply are searched in parallel by the
slaves.1The ply of a node is its depth within the game-tree, starting with ply 0
at the root of the game-tree.

2.1. Operation of the Master in APHID

The master is responsible for searching the top d0 ply of
the tree. It repeatedly traverses this tree until the correct
minimax value has been determined. The master is execut-
ing a normal �� search, with the exception that APHID en-
forces an artificial search horizon at d0 ply from the root.
Each leaf node in the master’s d0 ply game-tree is being
asynchronously searched by the slaves. Before describing
the master’s stopping condition, we must first describe how
the master searches the d0 ply tree.

When the master reaches a leaf of the d0 ply tree, it uses a
reliable or approximate value for the leaf, depending on the
information available. If a d� d0 ply search result is avail-
able from the slave, that will be used. However, if the d�d0
ply result is not available, then the algorithm uses the deep-
est search result that has been returned by the slave to gener-
ate a guessed minimax value. Any node where we are forced
to guess are marked as uncertain.

As values get backed up the tree, the master maintains a
count of how many uncertain nodes have been visited in a
pass over the tree. As long as the score at any of the leaves
is uncertain, the master must do another pass over the tree.
Once the master has a reliable value for all the leaves in its d0
ply tree, the search of thed ply tree is complete. The control-
ling program would then proceed to the next iteration by in-
crementing d and asking the master to search the tree again.

The slaves are responsible for setting their own search
windows, based on information from the master. Some-
times, the information returned by the slave may not be use-
ful to the master. For example, a slave can tell the master
that the score of a given node is less than 30, but the mas-
ter may want to know if the score is in between -5 and 5. In
this case, a “bad bound” search is generated, and the search
window parameters, � and �, must be communicated to the
slave processor. Any nodes where we are waiting for “bad
bound” information are considered as uncertain by the mas-
ter, even though we have a score bound for the d � d0 ply
search. Eventually, the slave will return updated informa-
tion that is consistent with both the original information and
the search window requested.

2.2. The APHID Table

If a node is visited by the master for the first time, it is
statically allocated to a slave processor. This information is
recorded in a table, the APHID table, that is shared by all
processors. Figure 1 shows an example of how the APHID
table would be organized at a given point in time.

The APHID table is partitioned into two parts: one which
only the master can write to, and one which only the slave
that has been assigned that piece of work can write to. Any
attempt to write into the table generates a message that in-
forms the slave or the master process of the update to the in-
formation. The master and slave only read their local copies
of the information; there are no explicit messages sent be-
tween the master and the slave asking for information.

The master’s half of the table is illustrated above the
dashed line in Figure 1. For each leaf that has been visited


