
APHID Game-Tree SearchMark G. Brockington, brock@cs.ualberta.caJonathan Schae�er, jonathan@cs.ualberta.caDepartment of Computing ScienceUniversity of AlbertaEdmonton, Alberta T6G 2H1CanadaJune 13, 1996AbstractThis paper introduces the APHID (Asynchronous Parallel Hierarchical Iterative Deepening) game-tree search algorithm. An APHID search is controlled by a master and a series of slave processors. Themaster searches the �rst d0 ply of the game-tree repeatedly. The slaves are responsible for the bottomplies of the game-tree. The slaves asynchronously read work lists from the master and return scoreinformation to the master. The master uses the returned score information to generate approximateminimax values, until all of the required score information is available.APHID has been programmed as an easy to implement, game-independent �� library, and was imple-mented into a chess program with one day of programming e�ort. APHID yields reasonable performanceon a network of workstations, an architecture where it is extremely di�cult to use a shared transpositiontable e�fectively.1 IntroductionThe alpha-beta (��) minimax tree search algorithm has proven to be a di�cult algorithm to parallelize.Although simulations predict excellent parallel performance, many of these results are based on an unrea-sonable set of assumptions. In practice, knowing where to initiate parallel activity is di�cult since the resultof searching one node at a branch may obviate the parallel work of the other branches (a so-called cut-o�). In real-world implementations, such as for high-performance chess, checkers and Othello game-playingprograms, the programs su�er from three major sources of parallel ine�ciency:� Synchronization Overhead: The search typically has many synchronization points that result in a highpercentage of processor idle time.� Communication Overhead: Processes must communicate information between them; the impact ofcommunication depends on the frequency of messages and the communication latency.� Search Overhead: Search trees are really directed graphs. Work performed on one processor may beuseful to the computations of another processor. If this information is not available, unnecessary searchmay be done.These overheads are not independent of each other. For example, increased communication can help reducethe search overhead. Reducing the number of synchronization points can increase the search overhead. In1



practice, the right balance between these sources of program ine�ciency is di�cult to �nd, and one usuallyperforms many experiments to �nd the right trade-o�s to maximize performance.Many parallel �� algorithms have appeared in the literature [1, 2, 3, 9, 13, 22]. The PV-Split algorithmrecognized that some nodes exist in the search tree where, having searched the �rst branch sequentially,the remaining branches can be searched in parallel [16]. Initiating parallelism along the best line of play,the principal variation, was e�ective for a small number of processors, although variations on this schemeseemed limited to speedups of less than 8 [21].The idea can be generalized to other nodes in the tree. At nodes where the �rst branch has been searchedand no cut-o� occurs, the rest can likely be searched in parallel. It is a trade-o� { increased parallelismversus additional search overhead, since one of these parallel tasks could cause a cuto�. This idea has beentried by a number of researchers [6, 7, 10]. The best-known instance of this type of algorithm is called YoungBrothers Wait (YBW) and was implemented by Feldmann in the Zugzwang chess program [5]. Feldmannachieved a 344-fold speedup using YBW on 1024 processors. Variations of this algorithm have appearedwith comparable experimental results, such as Jamboree search [12] and ABDADA [24].This class of algorithms cannot achieve a linear speedup primarily due to synchronization overhead;the search tree may have thousands of synchronization points and there are numerous occasions where theprocesses are starved for work. The algorithms have low search overhead, but this is primarily due to theimplementation of a globally shared transposition table [8].This paper introduces the Asynchronous Parallel Hierarchical Iterative Deepening (APHID1) game-treesearch algorithm. The algorithm represents a departure from the approaches used in practice. In contrastto other schemes, APHID de�nes a frontier (a �xed number of moves away from the root of the search tree),and all nodes at the frontier are done in parallel. Each worker process is assigned an equal number of frontiernodes to search. The workers continually search these nodes deeper and deeper, never having to synchronizewith a controlling master process. The master process repeatedly searches to the frontier to get the latestsearch results. In this way, there is e�ectively no idle time; search ine�ciencies are primarily due to searchoverhead. APHID's performance does not rely on the implementation of a global shared memory, whichmakes the algorithm suitable for loosely-coupled architectures (such as a network of workstations), as wellas tightly-coupled architectures.Unlike most parallel �� algorithms, APHID is designed to �t into a sequential �� structure. APHID hasbeen implemented as a game-independent library of routines. These, combined with application-dependentroutines that the user supplies, allow a sequential �� program to be easily converted to a parallel �� program.Although most parallel �� programs take months to develop, the game-independent library allows users tointegrate parallelism into their application with only a few hours of work.This paper discusses the APHID algorithm, its application-independent interface and the performanceof the APHID algorithm. The paper is organized into �ve sections. Section 2 is a brief summary of previouswork in parallel game-tree search. Section 3 is primarily concerned with the details of how the APHIDalgorithm operates, and how the library integrates with an existing sequential �� algorithm. Section 4describes the preliminary results of integrating the library into a chess program, and Section 5 describessome of the research directions that we are currently working on.1An aphid is a soft-bodied insect that sucks the sap from plants.2



2 Previous Work on Parallel �� AlgorithmsThe idea behind the PV-Split algorithm has proven to be a fundamental building block in developing high-performance parallel game-tree algorithms [16]. Simply stated, the �rst move at a principal variation nodemust be completely evaluated before the subsequent moves can be handed out to other processors andevaluated in parallel. Parallelism occurs only at the PV nodes, and the nature of the algorithm ensures thatan accurate search window is determined before allocating work to the slaves in parallel, which reduces searchoverhead. Although it is easy to control the PV-Split algorithm since only one PV node can be evaluated inparallel at a given moment in time, a di�erent approach is needed if you have more processors than movesat the current PV node.Newborn's UIDPABS algorithm [17] was the �rst attempt to asynchronously start the next level of aniteratively deepened search instead of synchronizing at the root of the game-tree. The moves from the rootposition are partitioned among the processors, and the processors search their own subset of the moves withiterative deepening. Each processor is given the same initial window, but some of the processors may havechanged their windows, based on the search results of their moves. The UIDPABS algorithm then combinesthe results once a predetermined time limit has been reached. The APHID algorithm uses the basic conceptof how to implement asynchronous search from UIDPABS, as we shall see in Section 3.The Young Brothers Wait (YBW) algorithm extends PV-Split to state that the other moves (the \youngbrothers") can be searched in parallel only if the �rst move of a node has been completely searched andhas not caused the �� window to be cut o� [5]. This is always true at PV nodes, and is generally true atALL nodes, assuming we start with an in�nite search window at the root position. Thus, there are multiplepotential parallel nodes at any given time when searching the tree. However, the search is still synchronizedin the same way that PV-Split is synchronized. Until a search of all children of a given PV node is completed,the other children of the PV node's parent cannot be searched.Although the synchronization overhead in YBW is a lot smaller than in PV-Split, workers still searchfor a processor that has work to do (according to the YBW criterion) by sending a message to a processorat random. This dynamic load-balancing method, \work-stealing" [12], is e�ective in balancing the share ofwork done on each processor, but periodically imposes a heavy communication load.In the implementation of Zugzwang presented in Feldmann's thesis [5], a distributed transposition tablewas implemented with message passing across a series of Transputers to improve the results of the algorithm.On a system with a low CPU cycle to message latency ratio, this type of distributed transposition table ispractical and is useful in controlling the search overhead.David's ��� framework uses a global transposition table to control where the processors should besearching [4]. By adding a �eld to the global transposition table to indicate the number of processorssearching that node, each processor can pretend it is searching the tree sequentially, and make decisions onwhere to search based on the number of processors searching the children of the node. When any processorgenerates a value for the root position, the search is �nished. Unfortunately, David's method of controllingwhere the processors should be searching was ine�cient, and the scheme was hampered by the use of half ofthe Transputers as transposition table storage units, limiting the speedup reported to 6.5 on 16 Transputers.Regrettably, no work is reported that addresses these shortcomings.Weill [24] recognized that the YBW criterion could be used in conjunction with the ��� framework.3



Weill showed the combination, ABDADA, yields comparable performance to a YBW implementation on aCM-5. On 16 processors, ABDADA yielded an 10-fold speedup for a chess program, while YBW generateda speedup of just under 8.Unfortunately, neither of these scheduling methods deal adequately with architectures that have highCPU cycle/message latency ratios, such as a network of workstations. Using YBW on a system with onlytransposition tables local to each process will yield large search overheads, since there is no guarantee ofwhere a given node will end up when we use the chaotic work-stealing scheduler in combination with iterativedeepening. Using ABDADA is infeasible since the system requires a shared transposition table, which wouldbe extremely slow on a parallel architecture with a high CPU cycle/message latency ratio.3 The APHID AlgorithmYoung Brothers Wait and other algorithms su�er from three serious problems. First, the numerous synchro-nization points result in idle time. This suggests that a new algorithm must strive to reduce or eliminatesynchronization altogether. Second, the chaotic nature of a work-stealing scheduler requires algorithms suchas YBW and Jamboree to use a shared transposition table to achieve reasonable performance. Algorithmsbased on the ��� framework require a shared transposition table to function. Third, the program may initi-ate parallelism at nodes which are better done sequentially. For example, having searched the �rst branch ata node and not achieved a cut-o�, Young Brothers Wait (in its simplest form) permits all of the remainingbranches to be searched in parallel. However, if the second branch causes a cuto�, then all the parallel workdone on the third (and subsequent) branches has been wasted. This suggests parallelism should only beinitiated at nodes where there is a very high probability that all branches must be considered.This section introduces the Asynchronous Parallel Hierarchical Iterative Deepening (APHID) game-treesearching algorithm. APHID has been designed to address the above three issues. The algorithm is asyn-chronous in nature; it removes all synchronization points from the �� search and from iterative deepening.Also, parallelism is only applied at nodes that have a high probability of needing parallelism. The top pliesof a game-tree (near the root) vary infrequently between steps of iterative deepening [19]. This relativeinvariance of the top portion of the game-tree is exploited by the APHID algorithm.In its simplest form, APHID can be viewed as a master/slave program although, as discussed later, it canbe generalized to a hierarchical processor tree. For a depth d search, the master is responsible for the topd0 ply of the tree, and the remaining d� d0 ply are searched in parallel by the slaves. Figure 1 shows whereparallel activities occur in APHID and YBW. Each location marked with an x shows where the parallelismtypically takes place. Although more work could be generated in YBW, each x represents a potentially costlysynchronization point. The parallelism is more constrained in APHID and, hence, is more likely to su�erfrom load imbalances than other dynamic scheduling routines (such as YBW, Jamboree, or ���).3.1 Operation of the Master in APHIDThe master is responsible for searching the top d0 ply of the tree. It repeatedly traverses this tree until thecorrect minimax value has been determined. The master is executing a normal �� search, with the exceptionthat APHID enforces an arti�cial search horizon at d0 ply from the root. Each leaf node in the master's d04


