
Sequene Alignment using FastLSAKevin Charter, Jonathan Shae�er, Duane SzafronDepartment of Computing SieneUniversity of AlbertaEdmonton, AlbertaCanada T6G 2H1Abstrat For two strings of length m and n(m � n), optimal sequene alignment (as afuntion of the alignment soring funtion)takes time and spae proportional to m�n toompute. The time atually onsists of twoparts: omputing the sore of the best align-ment (alulating (m+1)�(n+1) values), andthen extrating the alignment (by reading theomputed values). The spae requirement isusually prohibitive. Hirshberg's algorithmredues the spae needs to roughly 2�m, butdoubles the ost of omputing and extrat-ing the alignment. This paper introdues theFastLSA algorithm that is adaptive to theamount of spae available. At one extreme,it uses linear spae, while at the other ituses quadrati spae. Based on the memoryresoures available, the algorithm saves themaximum amount of information to ahievethe lowest extration ost. The algorithm isshown to be analytially and experimentallysuperior to Hirshberg's algorithm.Keywords: sequene alignment, DNA, protein,Hirshberg's algorithm, dynami programming, lin-ear spae.1 IntrodutionSequene alignment is one of the fundamen-tal operations performed in omputational bi-ology researh. It is at the heart of the HumanGenome Projet, where sequenes are om-pared to gather evidene for a ommon fun-tion or biologial origin. The goal is to produe

the best alignment for a pair of DNA or pro-tein sequenes (represented as strings of har-aters). A good alignment has zero or moregaps inserted into the sequenes to maximizethe number of positions in the aligned stringsthat math. For example, onsider aligning thesequenes \ATTGGC" and \AGGAC". By in-serting gaps (\-") in the appropriate plae, thenumber of positions where the two sequenesagree an be maximized:ATTGG-CA--GGACHere, the aligned sequenes math in four po-sitions. Algorithms for eÆiently solving thistype of problem are well known and are basedon dynami programming. Aligning the se-quenes \ATTGGC" and \AGGAC" reduesto �nding the maximum ost path through anarray of size m + 1 and n + 1 (m = 5, n = 6,adding an extra row and olumn to inludethe gap). Given an array of size O(m � n),it takes O(m � n) time to ompute the arrayost entries, and then O(m + n) time to iden-tify the maximum-ost path in the matrix. Inthis paper, algorithms that are based on stor-ing the omplete matrix are alled full matrixalgorithms.Unfortunately, O(m � n) spae an be pro-hibitive, espeially given that a DNA sequenean be millions of haraters long. Even align-ing two (small) sequenes of 10,000 requires aprohibitive amount of storage (100,000,000 en-tries). Hirshberg was �rst to report a way ofdoing the omputation using linear spae [1℄.Less storage means that some values must be



reomputed. It is a spae-time tradeo�: theomputation osts double but the spae over-head drops to being linear in the length of thestrings.In summary, there are two extremes for se-quene alignment: full matrix, whih mini-mizes the omputational omplexity, and lin-ear spae, whih minimizes the storage require-ments. Neither of these algorithms aommo-dates the real-world situation where you havemore memory than needed for a linear spaealgorithm, but not enough to do a full matrixomputation.This paper introdues the FastLSA(Fast Linear-Spae Alignment) algorithm.Linear-spae alignment algorithms (suhas Hirshberg's) do not take advantage ofadditional memory that might be available.By reursively subdividing the problem intok � 2 piees using storage that is bounded by2 � k � n, FastLSA uses the the additionalstorage to redue the exeution time. In thelimit, where k = m, the algorithm beomesequivalent to a full matrix algorithm. FastLSAan be viewed as being two generalizations ofHirshberg's algorithm:1. Reognizing that the best sequene align-ment is likely a diagonal path through thematrix. Thus, subdividing the problemvertially and horizontally makes sense forthis lass of appliations.2. Generalizing the reursion. Sine all ma-trix entries must be visited at least one,reursively partitioning the data into k �2 piees allows additional storage to beused to redue repeated omputations.This paper briey desribes the FastLSAalgorithm and assesses its exeution perfor-mane. Hirshberg's algorithm ends up reom-puting roughly (m+ 1)� (n+ 1) values, whilea full matrix algorithm has no reomputations.FastLSA with k = 2 reomputes only half asmany values as Hirshberg's algorithm. Highervalues of k give additional savings. In thelimit (k = m), FastLSA does no reomputa-tions. The experimental results losely mirror

the analytial results, showing that FastLSAout-performs Hirshberg's algorithm on DNAsequene alignment.2 Sequene AlignmentA simple model of sequene alignment illus-trates the basi idea. The following sor-ing metri is simplisti; more omplex soringfuntions are used in pratie. If two alignedsequenes have idential values in the same ol-umn, then this will have a sore of +2. If thevalues in a olumn di�er then the sore is -1.If a olumn ontains a gap, then a penalty of-2 is imposed. The alignments are built assum-ing that both sequenes do not have a gap inthe same olumn. The best alignment is theone that has the maximal sore. The align-ment path is usually not unique. Our examplealignment, ATTGG-CA--GGAChas a sore of (+2�4)+(�1�0)+(�2�3) =+2.The basi sequene alignment algorithm as-sumes that the entire dynami programmingmatrix is in memory. It onsists of two parts:FindSore to build the matrix of values andFindPath to traverse the matrix and identifythe path(s) that lead to the maximal sore.Sine O(m � n) storage is used, this is a fullmatrix algorithm. The storage makes it possi-ble to produe the alignment path (FindPath)by a linear traversal aross the matrix.Figure 1 shows the dynami programmingmatrix built for the alignment of \ATTGC"and \AGGAC". In the FindSore phase, thetable values are �lled in from right-to-left andbottom-to-top. Between the table entries, thevalues that get propagated horizontally to theleft, vertially up, and diagonally up-left areshown. Going left orresponds to inserting agap in the left-hand-side sequene. Going upinserts a gap in the sequene at the top. Go-ing diagonally up-left orresponds to "math-ing" the orresponding letters (no gap is in-serted). Eah table entry is the maximum of



Figure 1: Alignment Matrix for \ATTGGC"and \AGGAC".the three inoming values. The answer in thetop left-hand orner (+2) on�rms that thealignment given previously leads to the maxi-mum sore. The arrows show the optimal pathbak through the matrix. Note that there arethree optimal alignments aording to our met-ri, eah giving the sore of +2. In addition tothe alignment given above, the following arealso optimal:ATTGGC ATTGGCA-GGAC AG-GACThere are a variety of sequene align-ment algorithms based on Figure 1, of whihNeedleman-Wunsh [2℄ and Smith-Waterman[3℄ are two of the most important. The timeand spae onerns led to the invention offaster algorithms that were not as thoroughin their alignment soring. These algorithms,suh as the well known Basi Loal AlignmentSearh Tool (BLAST) [4℄, attempt to �nd high-soring substring mathes. The fast algorithmsare often used �rst to see if there is an inter-esting relationship between the sequenes. Ifa math is found then a more omputation-ally expensive algorithm (suh as Needleman-Wunsh or Smith-Waterman) is used to get abetter quality answer.

Figure 2: Hirshberg's Algorithm.Hirshberg was the �rst to observe that thesame omputation an be done using linearspae [1℄. The FindSore omponent is eas-ily modi�ed to use linear spae sine it usesonly the urrent and previous row at any time.Atually, it has been shown that only thelast row is needed [5℄. The FindPath ompo-nent is harder, sine it uses the results in thereverse order to whih they were omputed.Hirshberg's algorithm redues the spae re-quirements by using a reursive divide-and-onquer proedure, as shown in Figure 2. Con-sider string q of length m and string s of lengthn. The algorithm divides q in half: q1 [1::m=2℄and q2 [m=2::m℄. q1 is aligned with s using alinear-spae FindSore algorithm, saving onlythe last row of the omputation. This align-ment is the upper-left box in Figure 2. Thealignment has proeeded from the upper-leftorner to the middle dividing line. It thenaligns the reverse of q2 with the reverse of susing a linear-spae FindSore algorithm, sav-ing only the last row of the omputation. Thisalignment is from the bottom right-hand or-ner to the middle dividing line. The �rst align-ment omputes the sores from the start of thesequene to the midpoint; the seond does itfrom the end of the sequene to the midpoint.From the two saved rows, the algorithm andetermine where the alignment path rosses q'smidpoint (). This is point A in Figure 2. Theproblem now is redued to solving two sim-pler problems: align q1 with s[1::℄ and q2 with



s[+1::n℄. The reursion ends when the lengthof a sequene to be aligned is one.The time omplexity for Hirshberg's algo-rithm isO(n2). The spae omplexity is 2�n =O(n). Chao, Hardison and Miller provide anie overview of linear-spae sequene align-ment algorithms [6℄. A new redued-spaed se-quene alignment algorithm uses bidiretionalsearh [7℄. This algorithm has the nie prop-erty that it does not need to onsider the entirem � n matrix, eliminating portions of it thatprobably annot be part of the best alignment.However the program runs two to three timesslower than Hirshberg's algorithm [8℄.3 FastLSA AlgorithmGiven two strings of length m and n (m � n),and R units of memory, what is the most ost-e�etive way to do a sequene alignment? IfR � m � n, then the full matrix algorithman be used sine everything will be residentin memory (note that you may not want to dothis anyway beause ahe e�ets may resultin poor performane). If this is not the ase,then a redued memory variant must be used.Hirshberg's algorithm works and only uses 2�m memory. It does not address the issue ofwhat to do if you have more memory available.Hirshberg's algorithm reursively dividesthe problem in half, by saving row informa-tion. However, if the problem is biseted bothrow-wise and olumn-wise, and both the rowand olumn boundaries are saved, then thealignment an be omputed while realulat-ing fewer values.Consider the olumn and row bisetion inFigure 3a. Computing 3/4 of the matrix (quad-rants B, C, and D) allows the bisetion bound-ary information (the thik horizontal and ver-tial lines in the matrix) to be saved. Nowthe last quarter of the problem (quadrant A)an be reursively solved. When it is om-pleted, the optimal path will either go fromquadrant A to quadrant B, C or D (C in the�gure). However, the saved olumn informa-tion allows the algorithm to quikly omputethe information needed to extend the path to

a) k = 2
b) k = 5Figure 3: Subdividing the Sequene AlignmentMatrix.quadrant D. To �nd the path through quad-rant C requires onsideration of only the dottedportion of that region. Hirshberg's algorithm,in ontrast, would require the entire row fromthe right-hand side of the matrix to the pathto be reomputed. Here, a little informationan save a lot of realulation. Hirshberg's al-gorithm requires alulating, on average, eahvalue in the matrix twie. Figure 3a illus-trates that FastLSA o�ers signi�ant savings;only the dotted regions are reomputed. Eahof these regions an, in turn, be solved reur-sively.The algorithm is not restrited to bise-tion. The FastLSA algorithm reursively di-vides eah dimension of the matrix into k � 2subproblems. Figure 3b illustrates this ideafor k = 5. Initially the entire matrix is om-puted, saving 4 rows and 4 olumns during theomputation (as seen on the left-hand side ofFigure 3b). One the top-left region is (reur-sively) omputed, the optimal path will extendinto one of three (m=k) � (n=k) boxes (to theimmediate right, immediately below, or diago-nally down). Eah box has the neessary rowand olumn information to loalize the amountof realulation that needs to be done. The



dotted regions are the reursive subproblemswhere reomputations need to be performed.Hene, in Figure 3b, the number of areas (sub-problems) that need to be solved is k in thebest ase (the k boxes on the diagonal) and2k�1 in the worst ase. In this example, 8 sub-problems are needed. Eah of these subprob-lems an, in turn, be solved reursively usingthe same proedure. For example, the right-hand side of Figure 3b shows an enlargementof the bottom-right orner of the matrix givenon the left-hand side of the �gure. The part ofthe region that is still relevant to the solutionis divided into 5, both horizontally and verti-ally. The top shaded portion of the region isignored sine it has been proven that the op-timal path being followed annot go throughit.An analysis of FastLSA's performane givesthe following results for aligning two sequenesof length n:� Spae: S(n; n) � 2kn (assuming n >> k).� Expeted number of values reomputed:E(m;n) � m� n=k.For k = 2, FastLSA an be expeted to re-ompute roughly E(m;n) = 0:5 �m � n val-ues, about half of the reomputation ost ofHirshberg's algorithm. This omes at the ostof using double the storage of Hirshberg's al-gorithm. Depending on the length of the se-quenes being aligned, this extra storage is usu-ally not an issue. Inreasing k redues the timeomplexity by inreasing the spae usage. Inthe limit, k = m, FastLSA beomes equivalentto the full matrix algorithm with no reompu-tations.4 Experimental ResultsFastLSA has been integrated into the ommer-ial sequene alignment ode for the BioToolsprodut GeneTool (www.biotools.om). Ex-periments were onduted using a databaseof 3,171 sequenes (a publily available sub-set of GenBank sequenes). For eah value of

k = 2; 3; :::11, �ve runs were performed align-ing a sequene against eah member of thedatabase using di�erent alignment soring pa-rameters. The average exeution times andnumber of reomputed values over these runsare reported. Timings were done on a 200 MHzPC with 128 MB of RAM running Linux.Figure 4 ompares algorithms based on thenumber of values reomputed. Full matrixis at a onstant of 0 reomputations, andHirshberg's algorithm required 0:93�m�n re-omputations in our experiments (better thanthe theoretial value of 1.0). FastLSA is illus-trated for k = 2 through 11. Both the theoret-ial (expeted ase E(m;n)) and experimentalresults are shown. The analytial result is agood preditor of performane, even though itis an upper bound based on unrealisti assump-tions (that both matries are the same size).The standard deviation is small, ranging from0.041 for k = 2 to 0.015 for k = 11.Figure 5 ompares the reomputation ex-eution time for FastLSA and Hirshberg.The FastLSA(1) time is an extrapolation ofFastLSA(2)'s time. FastLSA's atual exeu-tion times redue by a faster rate than pre-dited by E(m;n). The exeution overheadof FastLSA (saving values; reursing; deidingwhen reomputations are needed) appears tobe more than o�set by positive ahe e�etsdue to using less memory. Performane lev-els o� at k = 11, where the overhead of usinglinear storage is within a few perent of fullmatrix performane.Full matrix results are not shown in Fig-ure 5, sine the exessive spae requirementsdegrade performane due to swapping andahe e�ets (alignments of two sequenes withsizes greater than 5,000 do not �t omfortablyin RAM). Even small alignments, suh as se-quenes of length 500, have poor ahe perfor-mane. Exept for small sequenes, full matrixalgorithms run slower than linear spae algo-rithms, even though they ompute fewer val-ues!The anomaly in Figure 5 is the poor perfor-mane of Hirshberg's algorithm. Our imple-mentation produes the orret results, but the



Figure 4: Number of Reomputations.

Figure 5: Exeution Time.times are surprisingly bad. A major reason forthis is the ahe. FastLSA uses memory like astak, ontinually pushing, popping, and read-ing from the top of the memory area alloatedto the algorithm. This gives very good aheloality. It also has a smaller ahe workingset then does Hirshberg's algorithm beausethe intervals it works with are at least a fa-tor of k smaller. In ontrast, Hirshberg's al-gorithm ontinually overwrites its entire allo-ated memory. When it solves a subproblem,the algorithm ontinually overwrites a singlerow in memory. Eah overwrite goes sequen-tially from the �rst to the last element in therow. If the spae requirements for the row are

too big to �t into the ahe, then eah row a-ess is likely no longer in the ahe.
5 AknowledgmentsWe would like to thank BioTools In. forkindly making their soure ode available tous. Ian Parsons integrated FastLSA into theBioTools produts.Finanial support was provided by the Natu-ral Sienes and Engineering Researh Counilof Canada (NSERC).



Referenes[1℄ D. Hirshberg. A linear spae algorithmfor omputing maximal ommon subex-pressions. Communiations of the ACM,18(6):341{343, 1975.[2℄ S. Needleman and C. Wunsh. A generalmethod appliable to the searh for simi-larities in the amino aid sequenes of twoproteins. Journal of Moleular Biology,48:443{453, 1970.[3℄ T. Smith and M. Waterman. Identi�ationof ommon moleular sequenes. Journalof Moleular Biology, 197:723{728, 1981.[4℄ S. Altshul, W. Gish, W. Miller, E. My-ers, and D. Lipman. Basi loal alignmentsearh tool. Journal of Moleular Biology,215:403{410, 1990.[5℄ E. Myers and W. Miller. Optimal align-ments in linear spae. Computer Applia-tions in the Biosienes, 4(1):11{17, 1988.[6℄ K. Chao, R. Hardison, and W. Miller. Re-ent developments in linear-spae align-ment methods: A survey. Journal of Com-putational Biology, 1(4):271{291, 1994.[7℄ R. Korf. Divide-and-onquer bidiretionalsearh. In International Joint Confereneon Arti�ial Intelligene, pages 1184{1189,1999.[8℄ R. Korf, 1999. Private ommuniation,September.


